Subversion Repositories HelenOS

Rev

Rev 3022 | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1018 decky 1
/*
2071 jermar 2
 * Copyright (c) 2005 Martin Decky
3
 * Copyright (c) 2006 Jakub Jermar
1018 decky 4
 * All rights reserved.
5
 *
6
 * Redistribution and use in source and binary forms, with or without
7
 * modification, are permitted provided that the following conditions
8
 * are met:
9
 *
10
 * - Redistributions of source code must retain the above copyright
11
 *   notice, this list of conditions and the following disclaimer.
12
 * - Redistributions in binary form must reproduce the above copyright
13
 *   notice, this list of conditions and the following disclaimer in the
14
 *   documentation and/or other materials provided with the distribution.
15
 * - The name of the author may not be used to endorse or promote products
16
 *   derived from this software without specific prior written permission.
17
 *
18
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28
 */
29
 
30
#include "main.h" 
1764 jermar 31
#include <printf.h>
1018 decky 32
#include "asm.h"
1685 decky 33
#include "_components.h"
1894 jermar 34
#include <balloc.h>
1782 jermar 35
#include <ofw.h>
1894 jermar 36
#include <ofw_tree.h>
1837 jermar 37
#include "ofwarch.h"
1789 jermar 38
#include <align.h>
4055 trochtova 39
#include <macros.h>
40
#include <string.h>
1018 decky 41
 
1782 jermar 42
bootinfo_t bootinfo;
4055 trochtova 43
 
1972 jermar 44
component_t components[COMPONENTS];
1782 jermar 45
 
4055 trochtova 46
char *release = STRING(RELEASE);
1997 decky 47
 
48
#ifdef REVISION
4055 trochtova 49
    char *revision = ", revision " STRING(REVISION);
1997 decky 50
#else
51
    char *revision = "";
52
#endif
53
 
54
#ifdef TIMESTAMP
4055 trochtova 55
    char *timestamp = "\nBuilt on " STRING(TIMESTAMP);
1997 decky 56
#else
57
    char *timestamp = "";
58
#endif
59
 
4055 trochtova 60
/** UltraSPARC subarchitecture - 1 for US, 3 for US3 */
61
uint8_t subarchitecture;
62
 
63
/**
64
 * mask of the MID field inside the ICBUS_CONFIG register shifted by
65
 * MID_SHIFT bits to the right
66
 */
67
uint16_t mid_mask;
68
 
1997 decky 69
/** Print version information. */
70
static void version_print(void)
71
{
4055 trochtova 72
    printf("HelenOS SPARC64 Bootloader\nRelease %s%s%s\n"
73
        "Copyright (c) 2006 HelenOS project\n",
74
        release, revision, timestamp);
1997 decky 75
}
76
 
4055 trochtova 77
/* the lowest ID (read from the VER register) of some US3 CPU model */
78
#define FIRST_US3_CPU   0x14
79
 
80
/* the greatest ID (read from the VER register) of some US3 CPU model */
81
#define LAST_US3_CPU    0x19
82
 
83
/* UltraSPARC IIIi processor implementation code */
84
#define US_IIIi_CODE    0x15
85
 
86
/**
87
 * Sets the global variables "subarchitecture" and "mid_mask" to
88
 * correct values.
89
 */
90
static void detect_subarchitecture(void)
91
{
92
    uint64_t v;
93
    asm volatile ("rdpr %%ver, %0\n" : "=r" (v));
94
 
95
    v = (v << 16) >> 48;
96
    if ((v >= FIRST_US3_CPU) && (v <= LAST_US3_CPU)) {
97
        subarchitecture = SUBARCH_US3;
98
        if (v == US_IIIi_CODE)
99
            mid_mask = (1 << 5) - 1;
100
        else
101
            mid_mask = (1 << 10) - 1;
102
    } else if (v < FIRST_US3_CPU) {
103
        subarchitecture = SUBARCH_US;
104
        mid_mask = (1 << 5) - 1;
105
    } else {
106
        printf("\nThis CPU is not supported by HelenOS.");
107
    }
108
}
109
 
1018 decky 110
void bootstrap(void)
111
{
4055 trochtova 112
    void *base = (void *) KERNEL_VIRTUAL_ADDRESS;
113
    void *balloc_base;
114
    unsigned int top = 0;
115
    int i, j;
116
 
1997 decky 117
    version_print();
1972 jermar 118
 
4055 trochtova 119
    detect_subarchitecture();
1685 decky 120
    init_components(components);
1782 jermar 121
 
1978 jermar 122
    if (!ofw_get_physmem_start(&bootinfo.physmem_start)) {
123
        printf("Error: unable to get start of physical memory.\n");
124
        halt();
125
    }
126
 
1789 jermar 127
    if (!ofw_memmap(&bootinfo.memmap)) {
128
        printf("Error: unable to get memory map, halting.\n");
129
        halt();
130
    }
4055 trochtova 131
 
1789 jermar 132
    if (bootinfo.memmap.total == 0) {
133
        printf("Error: no memory detected, halting.\n");
134
        halt();
135
    }
4055 trochtova 136
 
137
    /*
138
     * SILO for some reason adds 0x400000 and subtracts
139
     * bootinfo.physmem_start to/from silo_ramdisk_image.
140
     * We just need plain physical address so we fix it up.
141
     */
142
    if (silo_ramdisk_image) {
143
        silo_ramdisk_image += bootinfo.physmem_start;
144
        silo_ramdisk_image -= 0x400000;
145
        /* Install 1:1 mapping for the ramdisk. */
146
        if (ofw_map((void *)((uintptr_t) silo_ramdisk_image),
147
            (void *)((uintptr_t) silo_ramdisk_image),
148
            silo_ramdisk_size, -1) != 0) {
149
            printf("Failed to map ramdisk.\n");
150
            halt();
151
        }
152
    }
1789 jermar 153
 
1899 jermar 154
    printf("\nSystem info\n");
1978 jermar 155
    printf(" memory: %dM starting at %P\n",
4055 trochtova 156
        bootinfo.memmap.total >> 20, bootinfo.physmem_start);
1789 jermar 157
 
1685 decky 158
    printf("\nMemory statistics\n");
1789 jermar 159
    printf(" kernel entry point at %P\n", KERNEL_VIRTUAL_ADDRESS);
160
    printf(" %P: boot info structure\n", &bootinfo);
1685 decky 161
 
4055 trochtova 162
    /*
163
     * Figure out destination address for each component.
164
     * In this phase, we don't copy the components yet because we want to
165
     * to be careful not to overwrite anything, especially the components
166
     * which haven't been copied yet.
167
     */
168
    bootinfo.taskmap.count = 0;
169
    for (i = 0; i < COMPONENTS; i++) {
1978 jermar 170
        printf(" %P: %s image (size %d bytes)\n", components[i].start,
2250 jermar 171
            components[i].name, components[i].size);
4055 trochtova 172
        top = ALIGN_UP(top, PAGE_SIZE);
173
        if (i > 0) {
174
            if (bootinfo.taskmap.count == TASKMAP_MAX_RECORDS) {
175
                printf("Skipping superfluous components.\n");
176
                break;
177
            }
178
            bootinfo.taskmap.tasks[bootinfo.taskmap.count].addr =
179
                base + top;
180
            bootinfo.taskmap.tasks[bootinfo.taskmap.count].size =
181
                components[i].size;
182
            strncpy(bootinfo.taskmap.tasks[
183
                bootinfo.taskmap.count].name, components[i].name,
184
                BOOTINFO_TASK_NAME_BUFLEN);
185
            bootinfo.taskmap.count++;
186
        }
187
        top += components[i].size;
188
    }
1782 jermar 189
 
4055 trochtova 190
    j = bootinfo.taskmap.count - 1; /* do not consider ramdisk */
1894 jermar 191
 
4055 trochtova 192
    if (silo_ramdisk_image) {
193
        /* Treat the ramdisk as the last bootinfo task. */
194
        if (bootinfo.taskmap.count == TASKMAP_MAX_RECORDS) {
195
            printf("Skipping ramdisk.\n");
196
            goto skip_ramdisk;
197
        }
1685 decky 198
        top = ALIGN_UP(top, PAGE_SIZE);
4055 trochtova 199
        bootinfo.taskmap.tasks[bootinfo.taskmap.count].addr =
200
            base + top;
201
        bootinfo.taskmap.tasks[bootinfo.taskmap.count].size =
202
            silo_ramdisk_size;
203
        bootinfo.taskmap.count++;
204
        printf("\nCopying ramdisk...");
205
        /*
206
         * Claim and map the whole ramdisk as it may exceed the area
207
         * given to us by SILO.
208
         */
209
        (void) ofw_claim_phys(base + top, silo_ramdisk_size);
210
        (void) ofw_map(bootinfo.physmem_start + base + top, base + top,
211
            silo_ramdisk_size, -1);
212
        memmove(base + top, (void *)((uintptr_t)silo_ramdisk_image),
213
            silo_ramdisk_size);
214
        printf("done.\n");
215
        top += silo_ramdisk_size;
216
    }
217
skip_ramdisk:
2250 jermar 218
 
4055 trochtova 219
    /*
220
     * Now we can proceed to copy the components. We do it in reverse order
221
     * so that we don't overwrite anything even if the components overlap
222
     * with base.
223
     */
224
    printf("\nCopying bootinfo tasks\n");
225
    for (i = COMPONENTS - 1; i > 0; i--, j--) {
226
        printf(" %s...", components[i].name);
227
 
2250 jermar 228
        /*
229
         * At this point, we claim the physical memory that we are
230
         * going to use. We should be safe in case of the virtual
231
         * address space because the OpenFirmware, according to its
232
         * SPARC binding, should restrict its use of virtual memory
233
         * to addresses from [0xffd00000; 0xffefffff] and
234
         * [0xfe000000; 0xfeffffff].
4055 trochtova 235
         *
236
         * XXX We don't map this piece of memory. We simply rely on
237
         *     SILO to have it done for us already in this case.
2250 jermar 238
         */
4055 trochtova 239
        (void) ofw_claim_phys(bootinfo.physmem_start +
240
            bootinfo.taskmap.tasks[j].addr,
2250 jermar 241
            ALIGN_UP(components[i].size, PAGE_SIZE));
242
 
4055 trochtova 243
        memcpy((void *)bootinfo.taskmap.tasks[j].addr,
244
            components[i].start, components[i].size);
1685 decky 245
        printf("done.\n");
1018 decky 246
    }
1782 jermar 247
 
4055 trochtova 248
    printf("\nCopying kernel...");
249
    (void) ofw_claim_phys(bootinfo.physmem_start + base,
250
        ALIGN_UP(components[0].size, PAGE_SIZE));
251
    memcpy(base, components[0].start, components[0].size);
252
    printf("done.\n");
253
 
2250 jermar 254
    /*
4055 trochtova 255
     * Claim and map the physical memory for the boot allocator.
2250 jermar 256
     * Initialize the boot allocator.
257
     */
4055 trochtova 258
    balloc_base = base + ALIGN_UP(top, PAGE_SIZE);
259
    (void) ofw_claim_phys(bootinfo.physmem_start + balloc_base,
260
        BALLOC_MAX_SIZE);
261
    (void) ofw_map(bootinfo.physmem_start + balloc_base, balloc_base,
262
        BALLOC_MAX_SIZE, -1);
263
    balloc_init(&bootinfo.ballocs, (uintptr_t)balloc_base);
1894 jermar 264
 
265
    printf("\nCanonizing OpenFirmware device tree...");
266
    bootinfo.ofw_root = ofw_tree_build();
267
    printf("done.\n");
268
 
4055 trochtova 269
#ifdef CONFIG_AP
1899 jermar 270
    printf("\nChecking for secondary processors...");
271
    if (!ofw_cpu())
1978 jermar 272
        printf("Error: unable to get CPU properties\n");
1899 jermar 273
    printf("done.\n");
1979 jermar 274
#endif
1899 jermar 275
 
4055 trochtova 276
    ofw_setup_palette();
277
 
1018 decky 278
    printf("\nBooting the kernel...\n");
1978 jermar 279
    jump_to_kernel((void *) KERNEL_VIRTUAL_ADDRESS,
2250 jermar 280
        bootinfo.physmem_start | BSP_PROCESSOR, &bootinfo,
281
        sizeof(bootinfo));
1018 decky 282
}