Rev 857 | Rev 874 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
647 | cejka | 1 | /* |
2 | * Copyright (C) 2005 Josef Cejka |
||
3 | * All rights reserved. |
||
4 | * |
||
5 | * Redistribution and use in source and binary forms, with or without |
||
6 | * modification, are permitted provided that the following conditions |
||
7 | * are met: |
||
8 | * |
||
9 | * - Redistributions of source code must retain the above copyright |
||
10 | * notice, this list of conditions and the following disclaimer. |
||
11 | * - Redistributions in binary form must reproduce the above copyright |
||
12 | * notice, this list of conditions and the following disclaimer in the |
||
13 | * documentation and/or other materials provided with the distribution. |
||
14 | * - The name of the author may not be used to endorse or promote products |
||
15 | * derived from this software without specific prior written permission. |
||
16 | * |
||
17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
||
18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
||
19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
||
20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
||
21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
||
22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
||
23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
||
24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
||
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
||
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||
27 | */ |
||
28 | |||
697 | cejka | 29 | #include "sftypes.h" |
30 | #include "conversion.h" |
||
857 | cejka | 31 | #include "comparison.h" |
697 | cejka | 32 | |
33 | float64 convertFloat32ToFloat64(float32 a) |
||
34 | { |
||
35 | float64 result; |
||
804 | cejka | 36 | __u64 frac; |
697 | cejka | 37 | |
38 | result.parts.sign = a.parts.sign; |
||
804 | cejka | 39 | result.parts.fraction = a.parts.fraction; |
40 | result.parts.fraction <<= (FLOAT64_FRACTION_SIZE - FLOAT32_FRACTION_SIZE ); |
||
697 | cejka | 41 | |
42 | if ((isFloat32Infinity(a))||(isFloat32NaN(a))) { |
||
43 | result.parts.exp = 0x7FF; |
||
44 | /* TODO; check if its correct for SigNaNs*/ |
||
45 | return result; |
||
46 | }; |
||
47 | |||
48 | result.parts.exp = a.parts.exp + ( (int)FLOAT64_BIAS - FLOAT32_BIAS ); |
||
49 | if (a.parts.exp == 0) { |
||
50 | /* normalize denormalized numbers */ |
||
51 | |||
804 | cejka | 52 | if (result.parts.fraction == 0ll) { /* fix zero */ |
697 | cejka | 53 | result.parts.exp = 0ll; |
54 | return result; |
||
55 | } |
||
56 | |||
804 | cejka | 57 | frac = result.parts.fraction; |
697 | cejka | 58 | |
804 | cejka | 59 | while (!(frac & (0x10000000000000ll))) { |
60 | frac <<= 1; |
||
697 | cejka | 61 | --result.parts.exp; |
62 | }; |
||
698 | cejka | 63 | |
64 | ++result.parts.exp; |
||
804 | cejka | 65 | result.parts.fraction = frac; |
697 | cejka | 66 | }; |
67 | |||
68 | return result; |
||
69 | |||
857 | cejka | 70 | } |
697 | cejka | 71 | |
72 | float32 convertFloat64ToFloat32(float64 a) |
||
73 | { |
||
74 | float32 result; |
||
75 | __s32 exp; |
||
804 | cejka | 76 | __u64 frac; |
697 | cejka | 77 | |
78 | result.parts.sign = a.parts.sign; |
||
79 | |||
80 | if (isFloat64NaN(a)) { |
||
81 | |||
82 | result.parts.exp = 0xFF; |
||
83 | |||
84 | if (isFloat64SigNaN(a)) { |
||
804 | cejka | 85 | result.parts.fraction = 0x800000; /* set first bit of fraction nonzero */ |
697 | cejka | 86 | return result; |
87 | } |
||
88 | |||
804 | cejka | 89 | result.parts.fraction = 0x1; /* fraction nonzero but its first bit is zero */ |
697 | cejka | 90 | return result; |
91 | }; |
||
92 | |||
93 | if (isFloat64Infinity(a)) { |
||
804 | cejka | 94 | result.parts.fraction = 0; |
697 | cejka | 95 | result.parts.exp = 0xFF; |
96 | return result; |
||
97 | }; |
||
98 | |||
99 | exp = (int)a.parts.exp - FLOAT64_BIAS + FLOAT32_BIAS; |
||
100 | |||
101 | if (exp >= 0xFF) { |
||
102 | /*FIXME: overflow*/ |
||
804 | cejka | 103 | result.parts.fraction = 0; |
697 | cejka | 104 | result.parts.exp = 0xFF; |
105 | return result; |
||
106 | |||
107 | } else if (exp <= 0 ) { |
||
108 | |||
109 | /* underflow or denormalized */ |
||
110 | |||
111 | result.parts.exp = 0; |
||
112 | |||
113 | exp *= -1; |
||
804 | cejka | 114 | if (exp > FLOAT32_FRACTION_SIZE ) { |
697 | cejka | 115 | /* FIXME: underflow */ |
804 | cejka | 116 | result.parts.fraction = 0; |
697 | cejka | 117 | return result; |
118 | }; |
||
119 | |||
120 | /* denormalized */ |
||
121 | |||
804 | cejka | 122 | frac = a.parts.fraction; |
123 | frac |= 0x10000000000000ll; /* denormalize and set hidden bit */ |
||
697 | cejka | 124 | |
804 | cejka | 125 | frac >>= (FLOAT64_FRACTION_SIZE - FLOAT32_FRACTION_SIZE + 1); |
698 | cejka | 126 | |
697 | cejka | 127 | while (exp > 0) { |
128 | --exp; |
||
804 | cejka | 129 | frac >>= 1; |
697 | cejka | 130 | }; |
804 | cejka | 131 | result.parts.fraction = frac; |
697 | cejka | 132 | |
133 | return result; |
||
134 | }; |
||
135 | |||
136 | result.parts.exp = exp; |
||
804 | cejka | 137 | result.parts.fraction = a.parts.fraction >> (FLOAT64_FRACTION_SIZE - FLOAT32_FRACTION_SIZE); |
697 | cejka | 138 | return result; |
857 | cejka | 139 | } |
697 | cejka | 140 | |
857 | cejka | 141 | |
142 | /** Helping procedure for converting float32 to uint32 |
||
143 | * @param a floating point number in normalized form (no NaNs or Inf are checked ) |
||
144 | * @return unsigned integer |
||
145 | */ |
||
146 | static __u32 _float32_to_uint32_helper(float32 a) |
||
147 | { |
||
148 | __u32 frac; |
||
149 | |||
150 | if (a.parts.exp < FLOAT32_BIAS) { |
||
151 | /*TODO: rounding*/ |
||
152 | return 0; |
||
153 | } |
||
154 | |||
155 | frac = a.parts.fraction; |
||
156 | |||
157 | frac |= FLOAT32_HIDDEN_BIT_MASK; |
||
158 | /* shift fraction to left so hidden bit will be the most significant bit */ |
||
159 | frac <<= 32 - FLOAT32_FRACTION_SIZE - 1; |
||
160 | |||
161 | frac >>= 32 - (a.parts.exp - FLOAT32_BIAS) - 1; |
||
162 | if ((a.parts.sign == 1) && (frac != 0)) { |
||
163 | frac = ~frac; |
||
164 | ++frac; |
||
165 | } |
||
166 | |||
167 | return frac; |
||
168 | } |
||
169 | |||
170 | /* Convert float to unsigned int32 |
||
171 | * FIXME: Im not sure what to return if overflow/underflow happens |
||
172 | * - now its the biggest or the smallest int |
||
173 | */ |
||
174 | __u32 float32_to_uint32(float32 a) |
||
175 | { |
||
176 | if (isFloat32NaN(a)) { |
||
177 | return MAX_UINT32; |
||
178 | } |
||
179 | |||
180 | if (isFloat32Infinity(a) || (a.parts.exp >= (32 + FLOAT32_BIAS))) { |
||
181 | if (a.parts.sign) { |
||
182 | return MIN_UINT32; |
||
183 | } |
||
184 | return MAX_UINT32; |
||
185 | } |
||
186 | |||
187 | return _float32_to_uint32_helper(a); |
||
188 | } |
||
189 | |||
190 | /* Convert float to signed int32 |
||
191 | * FIXME: Im not sure what to return if overflow/underflow happens |
||
192 | * - now its the biggest or the smallest int |
||
193 | */ |
||
194 | __s32 float32_to_int32(float32 a) |
||
195 | { |
||
196 | if (isFloat32NaN(a)) { |
||
197 | return MAX_INT32; |
||
198 | } |
||
199 | |||
200 | if (isFloat32Infinity(a) || (a.parts.exp >= (32 + FLOAT32_BIAS))) { |
||
201 | if (a.parts.sign) { |
||
202 | return MIN_INT32; |
||
203 | } |
||
204 | return MAX_INT32; |
||
205 | } |
||
206 | return _float32_to_uint32_helper(a); |
||
207 | } |
||
208 | |||
209 | |||
865 | cejka | 210 | /** Helping procedure for converting float64 to uint64 |
211 | * @param a floating point number in normalized form (no NaNs or Inf are checked ) |
||
212 | * @return unsigned integer |
||
213 | */ |
||
214 | static __u64 _float64_to_uint64_helper(float64 a) |
||
215 | { |
||
216 | __u64 frac; |
||
217 | |||
218 | if (a.parts.exp < FLOAT64_BIAS) { |
||
219 | /*TODO: rounding*/ |
||
220 | return 0; |
||
221 | } |
||
222 | |||
223 | frac = a.parts.fraction; |
||
224 | |||
225 | frac |= FLOAT64_HIDDEN_BIT_MASK; |
||
226 | /* shift fraction to left so hidden bit will be the most significant bit */ |
||
227 | frac <<= 64 - FLOAT64_FRACTION_SIZE - 1; |
||
857 | cejka | 228 | |
865 | cejka | 229 | frac >>= 64 - (a.parts.exp - FLOAT64_BIAS) - 1; |
230 | if ((a.parts.sign == 1) && (frac != 0)) { |
||
231 | frac = ~frac; |
||
232 | ++frac; |
||
233 | } |
||
234 | |||
235 | return frac; |
||
236 | } |
||
237 | |||
238 | /* Convert float to unsigned int64 |
||
239 | * FIXME: Im not sure what to return if overflow/underflow happens |
||
240 | * - now its the biggest or the smallest int |
||
241 | */ |
||
242 | __u64 float64_to_uint64(float64 a) |
||
243 | { |
||
244 | if (isFloat64NaN(a)) { |
||
245 | return MAX_UINT64; |
||
246 | } |
||
247 | |||
248 | if (isFloat64Infinity(a) || (a.parts.exp >= (64 + FLOAT64_BIAS))) { |
||
249 | if (a.parts.sign) { |
||
250 | return MIN_UINT64; |
||
251 | } |
||
252 | return MAX_UINT64; |
||
253 | } |
||
254 | |||
255 | return _float64_to_uint64_helper(a); |
||
256 | } |
||
257 | |||
258 | /* Convert float to signed int64 |
||
259 | * FIXME: Im not sure what to return if overflow/underflow happens |
||
260 | * - now its the biggest or the smallest int |
||
261 | */ |
||
262 | __s64 float64_to_int64(float64 a) |
||
263 | { |
||
264 | if (isFloat64NaN(a)) { |
||
265 | return MAX_INT64; |
||
266 | } |
||
267 | |||
268 | if (isFloat64Infinity(a) || (a.parts.exp >= (64 + FLOAT64_BIAS))) { |
||
269 | if (a.parts.sign) { |
||
270 | return MIN_INT64; |
||
271 | } |
||
272 | return MAX_INT64; |
||
273 | } |
||
274 | return _float64_to_uint64_helper(a); |
||
275 | } |
||
276 | |||
277 | |||
278 | |||
279 | |||
280 | |||
281 | /** Helping procedure for converting float32 to uint64 |
||
282 | * @param a floating point number in normalized form (no NaNs or Inf are checked ) |
||
283 | * @return unsigned integer |
||
284 | */ |
||
285 | static __u64 _float32_to_uint64_helper(float32 a) |
||
286 | { |
||
287 | __u64 frac; |
||
288 | |||
289 | if (a.parts.exp < FLOAT32_BIAS) { |
||
290 | /*TODO: rounding*/ |
||
291 | return 0; |
||
292 | } |
||
293 | |||
294 | frac = a.parts.fraction; |
||
295 | |||
296 | frac |= FLOAT32_HIDDEN_BIT_MASK; |
||
297 | /* shift fraction to left so hidden bit will be the most significant bit */ |
||
298 | frac <<= 64 - FLOAT32_FRACTION_SIZE - 1; |
||
299 | |||
300 | frac >>= 64 - (a.parts.exp - FLOAT32_BIAS) - 1; |
||
301 | if ((a.parts.sign == 1) && (frac != 0)) { |
||
302 | frac = ~frac; |
||
303 | ++frac; |
||
304 | } |
||
305 | |||
306 | return frac; |
||
307 | } |
||
308 | |||
309 | /* Convert float to unsigned int64 |
||
310 | * FIXME: Im not sure what to return if overflow/underflow happens |
||
311 | * - now its the biggest or the smallest int |
||
312 | */ |
||
313 | __u64 float32_to_uint64(float32 a) |
||
314 | { |
||
315 | if (isFloat32NaN(a)) { |
||
316 | return MAX_UINT64; |
||
317 | } |
||
318 | |||
319 | if (isFloat32Infinity(a) || (a.parts.exp >= (64 + FLOAT32_BIAS))) { |
||
320 | if (a.parts.sign) { |
||
321 | return MIN_UINT64; |
||
322 | } |
||
323 | return MAX_UINT64; |
||
324 | } |
||
325 | |||
326 | return _float32_to_uint64_helper(a); |
||
327 | } |
||
328 | |||
329 | /* Convert float to signed int64 |
||
330 | * FIXME: Im not sure what to return if overflow/underflow happens |
||
331 | * - now its the biggest or the smallest int |
||
332 | */ |
||
333 | __s64 float32_to_int64(float32 a) |
||
334 | { |
||
335 | if (isFloat32NaN(a)) { |
||
336 | return MAX_INT64; |
||
337 | } |
||
338 | |||
339 | if (isFloat32Infinity(a) || (a.parts.exp >= (64 + FLOAT32_BIAS))) { |
||
340 | if (a.parts.sign) { |
||
341 | return (MIN_INT64); |
||
342 | } |
||
343 | return MAX_INT64; |
||
344 | } |
||
345 | return _float32_to_uint64_helper(a); |
||
346 | } |
||
347 | |||
348 | |||
349 | /* Convert float64 to unsigned int32 |
||
350 | * FIXME: Im not sure what to return if overflow/underflow happens |
||
351 | * - now its the biggest or the smallest int |
||
352 | */ |
||
353 | __u32 float64_to_uint32(float64 a) |
||
354 | { |
||
355 | if (isFloat64NaN(a)) { |
||
356 | return MAX_UINT32; |
||
357 | } |
||
358 | |||
359 | if (isFloat64Infinity(a) || (a.parts.exp >= (32 + FLOAT64_BIAS))) { |
||
360 | if (a.parts.sign) { |
||
361 | return MIN_UINT32; |
||
362 | } |
||
363 | return MAX_UINT32; |
||
364 | } |
||
365 | |||
366 | return (__u32)_float64_to_uint64_helper(a); |
||
367 | } |
||
368 | |||
369 | /* Convert float64 to signed int32 |
||
370 | * FIXME: Im not sure what to return if overflow/underflow happens |
||
371 | * - now its the biggest or the smallest int |
||
372 | */ |
||
373 | __s32 float64_to_int32(float64 a) |
||
374 | { |
||
375 | if (isFloat64NaN(a)) { |
||
376 | return MAX_INT32; |
||
377 | } |
||
378 | |||
379 | if (isFloat64Infinity(a) || (a.parts.exp >= (32 + FLOAT64_BIAS))) { |
||
380 | if (a.parts.sign) { |
||
381 | return MIN_INT32; |
||
382 | } |
||
383 | return MAX_INT32; |
||
384 | } |
||
385 | return (__s32)_float64_to_uint64_helper(a); |
||
386 | } |
||
387 | |||
388 |