Rev 1115 | Rev 1196 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 1 | jermar | 1 | /* |
| 2 | * Copyright (C) 2001-2004 Jakub Jermar |
||
| 3 | * All rights reserved. |
||
| 4 | * |
||
| 5 | * Redistribution and use in source and binary forms, with or without |
||
| 6 | * modification, are permitted provided that the following conditions |
||
| 7 | * are met: |
||
| 8 | * |
||
| 9 | * - Redistributions of source code must retain the above copyright |
||
| 10 | * notice, this list of conditions and the following disclaimer. |
||
| 11 | * - Redistributions in binary form must reproduce the above copyright |
||
| 12 | * notice, this list of conditions and the following disclaimer in the |
||
| 13 | * documentation and/or other materials provided with the distribution. |
||
| 14 | * - The name of the author may not be used to endorse or promote products |
||
| 15 | * derived from this software without specific prior written permission. |
||
| 16 | * |
||
| 17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
||
| 18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
||
| 19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
||
| 20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
||
| 21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
||
| 22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
||
| 23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
||
| 24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
||
| 25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
||
| 26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||
| 27 | */ |
||
| 28 | |||
| 29 | #include <proc/scheduler.h> |
||
| 30 | #include <proc/thread.h> |
||
| 31 | #include <proc/task.h> |
||
| 378 | jermar | 32 | #include <mm/frame.h> |
| 33 | #include <mm/page.h> |
||
| 703 | jermar | 34 | #include <mm/as.h> |
| 378 | jermar | 35 | #include <arch/asm.h> |
| 36 | #include <arch/faddr.h> |
||
| 1104 | jermar | 37 | #include <atomic.h> |
| 378 | jermar | 38 | #include <synch/spinlock.h> |
| 1 | jermar | 39 | #include <config.h> |
| 40 | #include <context.h> |
||
| 41 | #include <func.h> |
||
| 42 | #include <arch.h> |
||
| 788 | jermar | 43 | #include <adt/list.h> |
| 68 | decky | 44 | #include <panic.h> |
| 1 | jermar | 45 | #include <typedefs.h> |
| 378 | jermar | 46 | #include <cpu.h> |
| 195 | vana | 47 | #include <print.h> |
| 227 | jermar | 48 | #include <debug.h> |
| 1 | jermar | 49 | |
| 1187 | jermar | 50 | static void before_task_runs(void); |
| 51 | static void before_thread_runs(void); |
||
| 52 | static void after_thread_ran(void); |
||
| 898 | jermar | 53 | static void scheduler_separated_stack(void); |
| 195 | vana | 54 | |
| 898 | jermar | 55 | atomic_t nrdy; /**< Number of ready threads in the system. */ |
| 56 | |||
| 1187 | jermar | 57 | /** Carry out actions before new task runs. */ |
| 58 | void before_task_runs(void) |
||
| 59 | { |
||
| 60 | before_task_runs_arch(); |
||
| 61 | } |
||
| 62 | |||
| 897 | jermar | 63 | /** Take actions before new thread runs. |
| 107 | decky | 64 | * |
| 118 | jermar | 65 | * Perform actions that need to be |
| 66 | * taken before the newly selected |
||
| 67 | * tread is passed control. |
||
| 107 | decky | 68 | * |
| 827 | palkovsky | 69 | * THREAD->lock is locked on entry |
| 70 | * |
||
| 107 | decky | 71 | */ |
| 52 | vana | 72 | void before_thread_runs(void) |
| 73 | { |
||
| 309 | palkovsky | 74 | before_thread_runs_arch(); |
| 906 | palkovsky | 75 | #ifdef CONFIG_FPU_LAZY |
| 309 | palkovsky | 76 | if(THREAD==CPU->fpu_owner) |
| 77 | fpu_enable(); |
||
| 78 | else |
||
| 79 | fpu_disable(); |
||
| 906 | palkovsky | 80 | #else |
| 309 | palkovsky | 81 | fpu_enable(); |
| 82 | if (THREAD->fpu_context_exists) |
||
| 906 | palkovsky | 83 | fpu_context_restore(THREAD->saved_fpu_context); |
| 309 | palkovsky | 84 | else { |
| 906 | palkovsky | 85 | fpu_init(); |
| 309 | palkovsky | 86 | THREAD->fpu_context_exists=1; |
| 87 | } |
||
| 906 | palkovsky | 88 | #endif |
| 52 | vana | 89 | } |
| 90 | |||
| 898 | jermar | 91 | /** Take actions after THREAD had run. |
| 897 | jermar | 92 | * |
| 93 | * Perform actions that need to be |
||
| 94 | * taken after the running thread |
||
| 898 | jermar | 95 | * had been preempted by the scheduler. |
| 897 | jermar | 96 | * |
| 97 | * THREAD->lock is locked on entry |
||
| 98 | * |
||
| 99 | */ |
||
| 100 | void after_thread_ran(void) |
||
| 101 | { |
||
| 102 | after_thread_ran_arch(); |
||
| 103 | } |
||
| 104 | |||
| 458 | decky | 105 | #ifdef CONFIG_FPU_LAZY |
| 309 | palkovsky | 106 | void scheduler_fpu_lazy_request(void) |
| 107 | { |
||
| 907 | palkovsky | 108 | restart: |
| 309 | palkovsky | 109 | fpu_enable(); |
| 827 | palkovsky | 110 | spinlock_lock(&CPU->lock); |
| 111 | |||
| 112 | /* Save old context */ |
||
| 309 | palkovsky | 113 | if (CPU->fpu_owner != NULL) { |
| 827 | palkovsky | 114 | spinlock_lock(&CPU->fpu_owner->lock); |
| 906 | palkovsky | 115 | fpu_context_save(CPU->fpu_owner->saved_fpu_context); |
| 309 | palkovsky | 116 | /* don't prevent migration */ |
| 117 | CPU->fpu_owner->fpu_context_engaged=0; |
||
| 827 | palkovsky | 118 | spinlock_unlock(&CPU->fpu_owner->lock); |
| 907 | palkovsky | 119 | CPU->fpu_owner = NULL; |
| 309 | palkovsky | 120 | } |
| 827 | palkovsky | 121 | |
| 122 | spinlock_lock(&THREAD->lock); |
||
| 898 | jermar | 123 | if (THREAD->fpu_context_exists) { |
| 906 | palkovsky | 124 | fpu_context_restore(THREAD->saved_fpu_context); |
| 898 | jermar | 125 | } else { |
| 906 | palkovsky | 126 | /* Allocate FPU context */ |
| 127 | if (!THREAD->saved_fpu_context) { |
||
| 128 | /* Might sleep */ |
||
| 129 | spinlock_unlock(&THREAD->lock); |
||
| 907 | palkovsky | 130 | spinlock_unlock(&CPU->lock); |
| 906 | palkovsky | 131 | THREAD->saved_fpu_context = slab_alloc(fpu_context_slab, |
| 132 | 0); |
||
| 907 | palkovsky | 133 | /* We may have switched CPUs during slab_alloc */ |
| 134 | goto restart; |
||
| 906 | palkovsky | 135 | } |
| 136 | fpu_init(); |
||
| 309 | palkovsky | 137 | THREAD->fpu_context_exists=1; |
| 138 | } |
||
| 139 | CPU->fpu_owner=THREAD; |
||
| 140 | THREAD->fpu_context_engaged = 1; |
||
| 898 | jermar | 141 | spinlock_unlock(&THREAD->lock); |
| 827 | palkovsky | 142 | |
| 143 | spinlock_unlock(&CPU->lock); |
||
| 309 | palkovsky | 144 | } |
| 145 | #endif |
||
| 52 | vana | 146 | |
| 107 | decky | 147 | /** Initialize scheduler |
| 148 | * |
||
| 149 | * Initialize kernel scheduler. |
||
| 150 | * |
||
| 151 | */ |
||
| 1 | jermar | 152 | void scheduler_init(void) |
| 153 | { |
||
| 154 | } |
||
| 155 | |||
| 107 | decky | 156 | /** Get thread to be scheduled |
| 157 | * |
||
| 158 | * Get the optimal thread to be scheduled |
||
| 109 | jermar | 159 | * according to thread accounting and scheduler |
| 107 | decky | 160 | * policy. |
| 161 | * |
||
| 162 | * @return Thread to be scheduled. |
||
| 163 | * |
||
| 164 | */ |
||
| 483 | jermar | 165 | static thread_t *find_best_thread(void) |
| 1 | jermar | 166 | { |
| 167 | thread_t *t; |
||
| 168 | runq_t *r; |
||
| 783 | palkovsky | 169 | int i; |
| 1 | jermar | 170 | |
| 227 | jermar | 171 | ASSERT(CPU != NULL); |
| 172 | |||
| 1 | jermar | 173 | loop: |
| 413 | jermar | 174 | interrupts_enable(); |
| 1 | jermar | 175 | |
| 783 | palkovsky | 176 | if (atomic_get(&CPU->nrdy) == 0) { |
| 1 | jermar | 177 | /* |
| 178 | * For there was nothing to run, the CPU goes to sleep |
||
| 179 | * until a hardware interrupt or an IPI comes. |
||
| 180 | * This improves energy saving and hyperthreading. |
||
| 181 | */ |
||
| 785 | jermar | 182 | |
| 183 | /* |
||
| 184 | * An interrupt might occur right now and wake up a thread. |
||
| 185 | * In such case, the CPU will continue to go to sleep |
||
| 186 | * even though there is a runnable thread. |
||
| 187 | */ |
||
| 188 | |||
| 1 | jermar | 189 | cpu_sleep(); |
| 190 | goto loop; |
||
| 191 | } |
||
| 192 | |||
| 413 | jermar | 193 | interrupts_disable(); |
| 114 | jermar | 194 | |
| 898 | jermar | 195 | for (i = 0; i<RQ_COUNT; i++) { |
| 15 | jermar | 196 | r = &CPU->rq[i]; |
| 1 | jermar | 197 | spinlock_lock(&r->lock); |
| 198 | if (r->n == 0) { |
||
| 199 | /* |
||
| 200 | * If this queue is empty, try a lower-priority queue. |
||
| 201 | */ |
||
| 202 | spinlock_unlock(&r->lock); |
||
| 203 | continue; |
||
| 204 | } |
||
| 213 | jermar | 205 | |
| 783 | palkovsky | 206 | atomic_dec(&CPU->nrdy); |
| 475 | jermar | 207 | atomic_dec(&nrdy); |
| 1 | jermar | 208 | r->n--; |
| 209 | |||
| 210 | /* |
||
| 211 | * Take the first thread from the queue. |
||
| 212 | */ |
||
| 213 | t = list_get_instance(r->rq_head.next, thread_t, rq_link); |
||
| 214 | list_remove(&t->rq_link); |
||
| 215 | |||
| 216 | spinlock_unlock(&r->lock); |
||
| 217 | |||
| 218 | spinlock_lock(&t->lock); |
||
| 15 | jermar | 219 | t->cpu = CPU; |
| 1 | jermar | 220 | |
| 221 | t->ticks = us2ticks((i+1)*10000); |
||
| 898 | jermar | 222 | t->priority = i; /* correct rq index */ |
| 1 | jermar | 223 | |
| 224 | /* |
||
| 225 | * Clear the X_STOLEN flag so that t can be migrated when load balancing needs emerge. |
||
| 226 | */ |
||
| 227 | t->flags &= ~X_STOLEN; |
||
| 228 | spinlock_unlock(&t->lock); |
||
| 229 | |||
| 230 | return t; |
||
| 231 | } |
||
| 232 | goto loop; |
||
| 233 | |||
| 234 | } |
||
| 235 | |||
| 107 | decky | 236 | /** Prevent rq starvation |
| 237 | * |
||
| 238 | * Prevent low priority threads from starving in rq's. |
||
| 239 | * |
||
| 240 | * When the function decides to relink rq's, it reconnects |
||
| 241 | * respective pointers so that in result threads with 'pri' |
||
| 242 | * greater or equal 'start' are moved to a higher-priority queue. |
||
| 243 | * |
||
| 244 | * @param start Threshold priority. |
||
| 245 | * |
||
| 1 | jermar | 246 | */ |
| 452 | decky | 247 | static void relink_rq(int start) |
| 1 | jermar | 248 | { |
| 249 | link_t head; |
||
| 250 | runq_t *r; |
||
| 251 | int i, n; |
||
| 252 | |||
| 253 | list_initialize(&head); |
||
| 15 | jermar | 254 | spinlock_lock(&CPU->lock); |
| 255 | if (CPU->needs_relink > NEEDS_RELINK_MAX) { |
||
| 1 | jermar | 256 | for (i = start; i<RQ_COUNT-1; i++) { |
| 257 | /* remember and empty rq[i + 1] */ |
||
| 15 | jermar | 258 | r = &CPU->rq[i + 1]; |
| 1 | jermar | 259 | spinlock_lock(&r->lock); |
| 260 | list_concat(&head, &r->rq_head); |
||
| 261 | n = r->n; |
||
| 262 | r->n = 0; |
||
| 263 | spinlock_unlock(&r->lock); |
||
| 264 | |||
| 265 | /* append rq[i + 1] to rq[i] */ |
||
| 15 | jermar | 266 | r = &CPU->rq[i]; |
| 1 | jermar | 267 | spinlock_lock(&r->lock); |
| 268 | list_concat(&r->rq_head, &head); |
||
| 269 | r->n += n; |
||
| 270 | spinlock_unlock(&r->lock); |
||
| 271 | } |
||
| 15 | jermar | 272 | CPU->needs_relink = 0; |
| 1 | jermar | 273 | } |
| 784 | palkovsky | 274 | spinlock_unlock(&CPU->lock); |
| 1 | jermar | 275 | |
| 276 | } |
||
| 277 | |||
| 898 | jermar | 278 | /** The scheduler |
| 279 | * |
||
| 280 | * The thread scheduling procedure. |
||
| 281 | * Passes control directly to |
||
| 282 | * scheduler_separated_stack(). |
||
| 283 | * |
||
| 284 | */ |
||
| 285 | void scheduler(void) |
||
| 286 | { |
||
| 287 | volatile ipl_t ipl; |
||
| 107 | decky | 288 | |
| 898 | jermar | 289 | ASSERT(CPU != NULL); |
| 290 | |||
| 291 | ipl = interrupts_disable(); |
||
| 292 | |||
| 293 | if (atomic_get(&haltstate)) |
||
| 294 | halt(); |
||
| 1007 | decky | 295 | |
| 898 | jermar | 296 | if (THREAD) { |
| 297 | spinlock_lock(&THREAD->lock); |
||
| 906 | palkovsky | 298 | #ifndef CONFIG_FPU_LAZY |
| 299 | fpu_context_save(THREAD->saved_fpu_context); |
||
| 300 | #endif |
||
| 898 | jermar | 301 | if (!context_save(&THREAD->saved_context)) { |
| 302 | /* |
||
| 303 | * This is the place where threads leave scheduler(); |
||
| 304 | */ |
||
| 305 | spinlock_unlock(&THREAD->lock); |
||
| 306 | interrupts_restore(THREAD->saved_context.ipl); |
||
| 1007 | decky | 307 | |
| 898 | jermar | 308 | return; |
| 309 | } |
||
| 310 | |||
| 311 | /* |
||
| 312 | * Interrupt priority level of preempted thread is recorded here |
||
| 313 | * to facilitate scheduler() invocations from interrupts_disable()'d |
||
| 314 | * code (e.g. waitq_sleep_timeout()). |
||
| 315 | */ |
||
| 316 | THREAD->saved_context.ipl = ipl; |
||
| 317 | } |
||
| 318 | |||
| 319 | /* |
||
| 320 | * Through the 'THE' structure, we keep track of THREAD, TASK, CPU, VM |
||
| 321 | * and preemption counter. At this point THE could be coming either |
||
| 322 | * from THREAD's or CPU's stack. |
||
| 323 | */ |
||
| 324 | the_copy(THE, (the_t *) CPU->stack); |
||
| 325 | |||
| 326 | /* |
||
| 327 | * We may not keep the old stack. |
||
| 328 | * Reason: If we kept the old stack and got blocked, for instance, in |
||
| 329 | * find_best_thread(), the old thread could get rescheduled by another |
||
| 330 | * CPU and overwrite the part of its own stack that was also used by |
||
| 331 | * the scheduler on this CPU. |
||
| 332 | * |
||
| 333 | * Moreover, we have to bypass the compiler-generated POP sequence |
||
| 334 | * which is fooled by SP being set to the very top of the stack. |
||
| 335 | * Therefore the scheduler() function continues in |
||
| 336 | * scheduler_separated_stack(). |
||
| 337 | */ |
||
| 338 | context_save(&CPU->saved_context); |
||
| 339 | context_set(&CPU->saved_context, FADDR(scheduler_separated_stack), (__address) CPU->stack, CPU_STACK_SIZE); |
||
| 340 | context_restore(&CPU->saved_context); |
||
| 341 | /* not reached */ |
||
| 342 | } |
||
| 343 | |||
| 107 | decky | 344 | /** Scheduler stack switch wrapper |
| 345 | * |
||
| 346 | * Second part of the scheduler() function |
||
| 347 | * using new stack. Handling the actual context |
||
| 348 | * switch to a new thread. |
||
| 349 | * |
||
| 787 | palkovsky | 350 | * Assume THREAD->lock is held. |
| 107 | decky | 351 | */ |
| 898 | jermar | 352 | void scheduler_separated_stack(void) |
| 1 | jermar | 353 | { |
| 354 | int priority; |
||
| 1007 | decky | 355 | |
| 227 | jermar | 356 | ASSERT(CPU != NULL); |
| 1007 | decky | 357 | |
| 15 | jermar | 358 | if (THREAD) { |
| 898 | jermar | 359 | /* must be run after the switch to scheduler stack */ |
| 897 | jermar | 360 | after_thread_ran(); |
| 361 | |||
| 15 | jermar | 362 | switch (THREAD->state) { |
| 1 | jermar | 363 | case Running: |
| 125 | jermar | 364 | spinlock_unlock(&THREAD->lock); |
| 365 | thread_ready(THREAD); |
||
| 366 | break; |
||
| 1 | jermar | 367 | |
| 368 | case Exiting: |
||
| 787 | palkovsky | 369 | thread_destroy(THREAD); |
| 125 | jermar | 370 | break; |
| 787 | palkovsky | 371 | |
| 1 | jermar | 372 | case Sleeping: |
| 125 | jermar | 373 | /* |
| 374 | * Prefer the thread after it's woken up. |
||
| 375 | */ |
||
| 413 | jermar | 376 | THREAD->priority = -1; |
| 1 | jermar | 377 | |
| 125 | jermar | 378 | /* |
| 379 | * We need to release wq->lock which we locked in waitq_sleep(). |
||
| 380 | * Address of wq->lock is kept in THREAD->sleep_queue. |
||
| 381 | */ |
||
| 382 | spinlock_unlock(&THREAD->sleep_queue->lock); |
||
| 1 | jermar | 383 | |
| 125 | jermar | 384 | /* |
| 385 | * Check for possible requests for out-of-context invocation. |
||
| 386 | */ |
||
| 387 | if (THREAD->call_me) { |
||
| 388 | THREAD->call_me(THREAD->call_me_with); |
||
| 389 | THREAD->call_me = NULL; |
||
| 390 | THREAD->call_me_with = NULL; |
||
| 391 | } |
||
| 1 | jermar | 392 | |
| 125 | jermar | 393 | spinlock_unlock(&THREAD->lock); |
| 1 | jermar | 394 | |
| 125 | jermar | 395 | break; |
| 396 | |||
| 1 | jermar | 397 | default: |
| 125 | jermar | 398 | /* |
| 399 | * Entering state is unexpected. |
||
| 400 | */ |
||
| 401 | panic("tid%d: unexpected state %s\n", THREAD->tid, thread_states[THREAD->state]); |
||
| 402 | break; |
||
| 1 | jermar | 403 | } |
| 897 | jermar | 404 | |
| 15 | jermar | 405 | THREAD = NULL; |
| 1 | jermar | 406 | } |
| 198 | jermar | 407 | |
| 15 | jermar | 408 | THREAD = find_best_thread(); |
| 1 | jermar | 409 | |
| 15 | jermar | 410 | spinlock_lock(&THREAD->lock); |
| 413 | jermar | 411 | priority = THREAD->priority; |
| 15 | jermar | 412 | spinlock_unlock(&THREAD->lock); |
| 192 | jermar | 413 | |
| 1 | jermar | 414 | relink_rq(priority); |
| 415 | |||
| 15 | jermar | 416 | spinlock_lock(&THREAD->lock); |
| 1 | jermar | 417 | |
| 418 | /* |
||
| 419 | * If both the old and the new task are the same, lots of work is avoided. |
||
| 420 | */ |
||
| 15 | jermar | 421 | if (TASK != THREAD->task) { |
| 703 | jermar | 422 | as_t *as1 = NULL; |
| 423 | as_t *as2; |
||
| 1 | jermar | 424 | |
| 15 | jermar | 425 | if (TASK) { |
| 426 | spinlock_lock(&TASK->lock); |
||
| 703 | jermar | 427 | as1 = TASK->as; |
| 15 | jermar | 428 | spinlock_unlock(&TASK->lock); |
| 1 | jermar | 429 | } |
| 430 | |||
| 15 | jermar | 431 | spinlock_lock(&THREAD->task->lock); |
| 703 | jermar | 432 | as2 = THREAD->task->as; |
| 15 | jermar | 433 | spinlock_unlock(&THREAD->task->lock); |
| 1 | jermar | 434 | |
| 435 | /* |
||
| 703 | jermar | 436 | * Note that it is possible for two tasks to share one address space. |
| 1 | jermar | 437 | */ |
| 703 | jermar | 438 | if (as1 != as2) { |
| 1 | jermar | 439 | /* |
| 703 | jermar | 440 | * Both tasks and address spaces are different. |
| 1 | jermar | 441 | * Replace the old one with the new one. |
| 442 | */ |
||
| 823 | jermar | 443 | as_switch(as1, as2); |
| 1 | jermar | 444 | } |
| 906 | palkovsky | 445 | TASK = THREAD->task; |
| 1187 | jermar | 446 | before_task_runs(); |
| 1 | jermar | 447 | } |
| 448 | |||
| 15 | jermar | 449 | THREAD->state = Running; |
| 1 | jermar | 450 | |
| 906 | palkovsky | 451 | #ifdef SCHEDULER_VERBOSE |
| 823 | jermar | 452 | printf("cpu%d: tid %d (priority=%d,ticks=%d,nrdy=%d)\n", CPU->id, THREAD->tid, THREAD->priority, THREAD->ticks, atomic_get(&CPU->nrdy)); |
| 906 | palkovsky | 453 | #endif |
| 1 | jermar | 454 | |
| 213 | jermar | 455 | /* |
| 897 | jermar | 456 | * Some architectures provide late kernel PA2KA(identity) |
| 457 | * mapping in a page fault handler. However, the page fault |
||
| 458 | * handler uses the kernel stack of the running thread and |
||
| 459 | * therefore cannot be used to map it. The kernel stack, if |
||
| 460 | * necessary, is to be mapped in before_thread_runs(). This |
||
| 461 | * function must be executed before the switch to the new stack. |
||
| 462 | */ |
||
| 463 | before_thread_runs(); |
||
| 464 | |||
| 465 | /* |
||
| 213 | jermar | 466 | * Copy the knowledge of CPU, TASK, THREAD and preemption counter to thread's stack. |
| 467 | */ |
||
| 184 | jermar | 468 | the_copy(THE, (the_t *) THREAD->kstack); |
| 469 | |||
| 15 | jermar | 470 | context_restore(&THREAD->saved_context); |
| 1 | jermar | 471 | /* not reached */ |
| 472 | } |
||
| 473 | |||
| 458 | decky | 474 | #ifdef CONFIG_SMP |
| 107 | decky | 475 | /** Load balancing thread |
| 476 | * |
||
| 477 | * SMP load balancing thread, supervising thread supplies |
||
| 478 | * for the CPU it's wired to. |
||
| 479 | * |
||
| 480 | * @param arg Generic thread argument (unused). |
||
| 481 | * |
||
| 1 | jermar | 482 | */ |
| 483 | void kcpulb(void *arg) |
||
| 484 | { |
||
| 485 | thread_t *t; |
||
| 783 | palkovsky | 486 | int count, average, i, j, k = 0; |
| 413 | jermar | 487 | ipl_t ipl; |
| 1 | jermar | 488 | |
| 489 | loop: |
||
| 490 | /* |
||
| 779 | jermar | 491 | * Work in 1s intervals. |
| 1 | jermar | 492 | */ |
| 779 | jermar | 493 | thread_sleep(1); |
| 1 | jermar | 494 | |
| 495 | not_satisfied: |
||
| 496 | /* |
||
| 497 | * Calculate the number of threads that will be migrated/stolen from |
||
| 498 | * other CPU's. Note that situation can have changed between two |
||
| 499 | * passes. Each time get the most up to date counts. |
||
| 500 | */ |
||
| 784 | palkovsky | 501 | average = atomic_get(&nrdy) / config.cpu_active + 1; |
| 783 | palkovsky | 502 | count = average - atomic_get(&CPU->nrdy); |
| 1 | jermar | 503 | |
| 784 | palkovsky | 504 | if (count <= 0) |
| 1 | jermar | 505 | goto satisfied; |
| 506 | |||
| 507 | /* |
||
| 508 | * Searching least priority queues on all CPU's first and most priority queues on all CPU's last. |
||
| 509 | */ |
||
| 510 | for (j=RQ_COUNT-1; j >= 0; j--) { |
||
| 511 | for (i=0; i < config.cpu_active; i++) { |
||
| 512 | link_t *l; |
||
| 513 | runq_t *r; |
||
| 514 | cpu_t *cpu; |
||
| 515 | |||
| 516 | cpu = &cpus[(i + k) % config.cpu_active]; |
||
| 517 | |||
| 518 | /* |
||
| 519 | * Not interested in ourselves. |
||
| 520 | * Doesn't require interrupt disabling for kcpulb is X_WIRED. |
||
| 521 | */ |
||
| 15 | jermar | 522 | if (CPU == cpu) |
| 783 | palkovsky | 523 | continue; |
| 524 | if (atomic_get(&cpu->nrdy) <= average) |
||
| 525 | continue; |
||
| 1 | jermar | 526 | |
| 784 | palkovsky | 527 | ipl = interrupts_disable(); |
| 115 | jermar | 528 | r = &cpu->rq[j]; |
| 1 | jermar | 529 | spinlock_lock(&r->lock); |
| 530 | if (r->n == 0) { |
||
| 531 | spinlock_unlock(&r->lock); |
||
| 413 | jermar | 532 | interrupts_restore(ipl); |
| 1 | jermar | 533 | continue; |
| 534 | } |
||
| 535 | |||
| 536 | t = NULL; |
||
| 537 | l = r->rq_head.prev; /* search rq from the back */ |
||
| 538 | while (l != &r->rq_head) { |
||
| 539 | t = list_get_instance(l, thread_t, rq_link); |
||
| 540 | /* |
||
| 125 | jermar | 541 | * We don't want to steal CPU-wired threads neither threads already stolen. |
| 1 | jermar | 542 | * The latter prevents threads from migrating between CPU's without ever being run. |
| 125 | jermar | 543 | * We don't want to steal threads whose FPU context is still in CPU. |
| 73 | vana | 544 | */ |
| 1 | jermar | 545 | spinlock_lock(&t->lock); |
| 73 | vana | 546 | if ( (!(t->flags & (X_WIRED | X_STOLEN))) && (!(t->fpu_context_engaged)) ) { |
| 1 | jermar | 547 | /* |
| 548 | * Remove t from r. |
||
| 549 | */ |
||
| 550 | spinlock_unlock(&t->lock); |
||
| 551 | |||
| 783 | palkovsky | 552 | atomic_dec(&cpu->nrdy); |
| 475 | jermar | 553 | atomic_dec(&nrdy); |
| 1 | jermar | 554 | |
| 125 | jermar | 555 | r->n--; |
| 1 | jermar | 556 | list_remove(&t->rq_link); |
| 557 | |||
| 558 | break; |
||
| 559 | } |
||
| 560 | spinlock_unlock(&t->lock); |
||
| 561 | l = l->prev; |
||
| 562 | t = NULL; |
||
| 563 | } |
||
| 564 | spinlock_unlock(&r->lock); |
||
| 565 | |||
| 566 | if (t) { |
||
| 567 | /* |
||
| 568 | * Ready t on local CPU |
||
| 569 | */ |
||
| 570 | spinlock_lock(&t->lock); |
||
| 906 | palkovsky | 571 | #ifdef KCPULB_VERBOSE |
| 783 | palkovsky | 572 | printf("kcpulb%d: TID %d -> cpu%d, nrdy=%d, avg=%d\n", CPU->id, t->tid, CPU->id, atomic_get(&CPU->nrdy), atomic_get(&nrdy) / config.cpu_active); |
| 906 | palkovsky | 573 | #endif |
| 1 | jermar | 574 | t->flags |= X_STOLEN; |
| 1115 | jermar | 575 | t->state = Entering; |
| 1 | jermar | 576 | spinlock_unlock(&t->lock); |
| 577 | |||
| 578 | thread_ready(t); |
||
| 579 | |||
| 413 | jermar | 580 | interrupts_restore(ipl); |
| 1 | jermar | 581 | |
| 582 | if (--count == 0) |
||
| 583 | goto satisfied; |
||
| 584 | |||
| 585 | /* |
||
| 125 | jermar | 586 | * We are not satisfied yet, focus on another CPU next time. |
| 1 | jermar | 587 | */ |
| 588 | k++; |
||
| 589 | |||
| 590 | continue; |
||
| 591 | } |
||
| 413 | jermar | 592 | interrupts_restore(ipl); |
| 1 | jermar | 593 | } |
| 594 | } |
||
| 595 | |||
| 783 | palkovsky | 596 | if (atomic_get(&CPU->nrdy)) { |
| 1 | jermar | 597 | /* |
| 598 | * Be a little bit light-weight and let migrated threads run. |
||
| 599 | */ |
||
| 600 | scheduler(); |
||
| 779 | jermar | 601 | } else { |
| 1 | jermar | 602 | /* |
| 603 | * We failed to migrate a single thread. |
||
| 779 | jermar | 604 | * Give up this turn. |
| 1 | jermar | 605 | */ |
| 779 | jermar | 606 | goto loop; |
| 1 | jermar | 607 | } |
| 608 | |||
| 609 | goto not_satisfied; |
||
| 125 | jermar | 610 | |
| 1 | jermar | 611 | satisfied: |
| 612 | goto loop; |
||
| 613 | } |
||
| 614 | |||
| 458 | decky | 615 | #endif /* CONFIG_SMP */ |
| 775 | palkovsky | 616 | |
| 617 | |||
| 618 | /** Print information about threads & scheduler queues */ |
||
| 619 | void sched_print_list(void) |
||
| 620 | { |
||
| 621 | ipl_t ipl; |
||
| 622 | int cpu,i; |
||
| 623 | runq_t *r; |
||
| 624 | thread_t *t; |
||
| 625 | link_t *cur; |
||
| 626 | |||
| 627 | /* We are going to mess with scheduler structures, |
||
| 628 | * let's not be interrupted */ |
||
| 629 | ipl = interrupts_disable(); |
||
| 630 | for (cpu=0;cpu < config.cpu_count; cpu++) { |
||
| 898 | jermar | 631 | |
| 775 | palkovsky | 632 | if (!cpus[cpu].active) |
| 633 | continue; |
||
| 898 | jermar | 634 | |
| 775 | palkovsky | 635 | spinlock_lock(&cpus[cpu].lock); |
| 1062 | jermar | 636 | printf("cpu%d: address=%P, nrdy=%d, needs_relink=%d\n", |
| 637 | cpus[cpu].id, &cpus[cpu], atomic_get(&cpus[cpu].nrdy), cpus[cpu].needs_relink); |
||
| 775 | palkovsky | 638 | |
| 639 | for (i=0; i<RQ_COUNT; i++) { |
||
| 640 | r = &cpus[cpu].rq[i]; |
||
| 641 | spinlock_lock(&r->lock); |
||
| 642 | if (!r->n) { |
||
| 643 | spinlock_unlock(&r->lock); |
||
| 644 | continue; |
||
| 645 | } |
||
| 898 | jermar | 646 | printf("\trq[%d]: ", i); |
| 775 | palkovsky | 647 | for (cur=r->rq_head.next; cur!=&r->rq_head; cur=cur->next) { |
| 648 | t = list_get_instance(cur, thread_t, rq_link); |
||
| 649 | printf("%d(%s) ", t->tid, |
||
| 650 | thread_states[t->state]); |
||
| 651 | } |
||
| 652 | printf("\n"); |
||
| 653 | spinlock_unlock(&r->lock); |
||
| 654 | } |
||
| 655 | spinlock_unlock(&cpus[cpu].lock); |
||
| 656 | } |
||
| 657 | |||
| 658 | interrupts_restore(ipl); |
||
| 659 | } |