Subversion Repositories HelenOS

Rev

Rev 3424 | Rev 3431 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
703 jermar 1
/*
2071 jermar 2
 * Copyright (c) 2001-2006 Jakub Jermar
703 jermar 3
 * All rights reserved.
4
 *
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
7
 * are met:
8
 *
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
28
 
1757 jermar 29
/** @addtogroup genericmm
1702 cejka 30
 * @{
31
 */
32
 
1248 jermar 33
/**
1702 cejka 34
 * @file
1248 jermar 35
 * @brief   Address space related functions.
36
 *
703 jermar 37
 * This file contains address space manipulation functions.
38
 * Roughly speaking, this is a higher-level client of
39
 * Virtual Address Translation (VAT) subsystem.
1248 jermar 40
 *
41
 * Functionality provided by this file allows one to
1757 jermar 42
 * create address spaces and create, resize and share
1248 jermar 43
 * address space areas.
44
 *
45
 * @see page.c
46
 *
703 jermar 47
 */
48
 
49
#include <mm/as.h>
756 jermar 50
#include <arch/mm/as.h>
703 jermar 51
#include <mm/page.h>
52
#include <mm/frame.h>
814 palkovsky 53
#include <mm/slab.h>
703 jermar 54
#include <mm/tlb.h>
55
#include <arch/mm/page.h>
56
#include <genarch/mm/page_pt.h>
1108 jermar 57
#include <genarch/mm/page_ht.h>
727 jermar 58
#include <mm/asid.h>
703 jermar 59
#include <arch/mm/asid.h>
2183 jermar 60
#include <preemption.h>
703 jermar 61
#include <synch/spinlock.h>
1380 jermar 62
#include <synch/mutex.h>
788 jermar 63
#include <adt/list.h>
1147 jermar 64
#include <adt/btree.h>
1235 jermar 65
#include <proc/task.h>
1288 jermar 66
#include <proc/thread.h>
1235 jermar 67
#include <arch/asm.h>
703 jermar 68
#include <panic.h>
69
#include <debug.h>
1235 jermar 70
#include <print.h>
703 jermar 71
#include <memstr.h>
1070 jermar 72
#include <macros.h>
703 jermar 73
#include <arch.h>
1235 jermar 74
#include <errno.h>
75
#include <config.h>
1387 jermar 76
#include <align.h>
1235 jermar 77
#include <arch/types.h>
1288 jermar 78
#include <syscall/copy.h>
79
#include <arch/interrupt.h>
703 jermar 80
 
2009 jermar 81
#ifdef CONFIG_VIRT_IDX_DCACHE
82
#include <arch/mm/cache.h>
83
#endif /* CONFIG_VIRT_IDX_DCACHE */
84
 
1757 jermar 85
/**
86
 * Each architecture decides what functions will be used to carry out
87
 * address space operations such as creating or locking page tables.
88
 */
756 jermar 89
as_operations_t *as_operations = NULL;
703 jermar 90
 
1890 jermar 91
/**
92
 * Slab for as_t objects.
93
 */
94
static slab_cache_t *as_slab;
95
 
2087 jermar 96
/**
2170 jermar 97
 * This lock serializes access to the ASID subsystem.
98
 * It protects:
99
 * - inactive_as_with_asid_head list
100
 * - as->asid for each as of the as_t type
101
 * - asids_allocated counter
2087 jermar 102
 */
2170 jermar 103
SPINLOCK_INITIALIZE(asidlock);
823 jermar 104
 
105
/**
106
 * This list contains address spaces that are not active on any
107
 * processor and that have valid ASID.
108
 */
109
LIST_INITIALIZE(inactive_as_with_asid_head);
110
 
757 jermar 111
/** Kernel address space. */
112
as_t *AS_KERNEL = NULL;
113
 
3425 svoboda 114
static int area_flags_to_page_flags(int);
115
static as_area_t *find_area_and_lock(as_t *, uintptr_t);
116
static bool check_area_conflicts(as_t *, uintptr_t, size_t, as_area_t *);
117
static void sh_info_remove_reference(share_info_t *);
703 jermar 118
 
1891 jermar 119
static int as_constructor(void *obj, int flags)
120
{
121
    as_t *as = (as_t *) obj;
122
    int rc;
123
 
124
    link_initialize(&as->inactive_as_with_asid_link);
3425 svoboda 125
    mutex_initialize(&as->lock, MUTEX_PASSIVE);
1891 jermar 126
 
127
    rc = as_constructor_arch(as, flags);
128
 
129
    return rc;
130
}
131
 
132
static int as_destructor(void *obj)
133
{
134
    as_t *as = (as_t *) obj;
135
 
136
    return as_destructor_arch(as);
137
}
138
 
756 jermar 139
/** Initialize address space subsystem. */
140
void as_init(void)
141
{
142
    as_arch_init();
2126 decky 143
 
1891 jermar 144
    as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
2087 jermar 145
        as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
1890 jermar 146
 
789 palkovsky 147
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
1383 decky 148
    if (!AS_KERNEL)
149
        panic("can't create kernel address space\n");
150
 
756 jermar 151
}
152
 
757 jermar 153
/** Create address space.
154
 *
3425 svoboda 155
 * @param flags     Flags that influence the way in wich the address space
156
 *          is created.
757 jermar 157
 */
756 jermar 158
as_t *as_create(int flags)
703 jermar 159
{
160
    as_t *as;
161
 
1890 jermar 162
    as = (as_t *) slab_alloc(as_slab, 0);
1891 jermar 163
    (void) as_create_arch(as, 0);
164
 
1147 jermar 165
    btree_create(&as->as_area_btree);
822 palkovsky 166
 
167
    if (flags & FLAG_AS_KERNEL)
168
        as->asid = ASID_KERNEL;
169
    else
170
        as->asid = ASID_INVALID;
171
 
2183 jermar 172
    atomic_set(&as->refcount, 0);
1415 jermar 173
    as->cpu_refcount = 0;
2089 decky 174
#ifdef AS_PAGE_TABLE
2106 jermar 175
    as->genarch.page_table = page_table_create(flags);
2089 decky 176
#else
177
    page_table_create(flags);
178
#endif
703 jermar 179
 
180
    return as;
181
}
182
 
1468 jermar 183
/** Destroy adress space.
184
 *
2087 jermar 185
 * When there are no tasks referencing this address space (i.e. its refcount is
186
 * zero), the address space can be destroyed.
2183 jermar 187
 *
188
 * We know that we don't hold any spinlock.
3425 svoboda 189
 *
190
 * @param as        Address space to be destroyed.
1468 jermar 191
 */
192
void as_destroy(as_t *as)
973 palkovsky 193
{
1468 jermar 194
    ipl_t ipl;
1594 jermar 195
    bool cond;
2183 jermar 196
    DEADLOCK_PROBE_INIT(p_asidlock);
973 palkovsky 197
 
2183 jermar 198
    ASSERT(atomic_get(&as->refcount) == 0);
1468 jermar 199
 
200
    /*
201
     * Since there is no reference to this area,
202
     * it is safe not to lock its mutex.
203
     */
2170 jermar 204
 
2183 jermar 205
    /*
206
     * We need to avoid deadlock between TLB shootdown and asidlock.
207
     * We therefore try to take asid conditionally and if we don't succeed,
208
     * we enable interrupts and try again. This is done while preemption is
209
     * disabled to prevent nested context switches. We also depend on the
210
     * fact that so far no spinlocks are held.
211
     */
212
    preemption_disable();
213
    ipl = interrupts_read();
214
retry:
215
    interrupts_disable();
216
    if (!spinlock_trylock(&asidlock)) {
217
        interrupts_enable();
218
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
219
        goto retry;
220
    }
221
    preemption_enable();    /* Interrupts disabled, enable preemption */
1587 jermar 222
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
1594 jermar 223
        if (as != AS && as->cpu_refcount == 0)
1587 jermar 224
            list_remove(&as->inactive_as_with_asid_link);
1468 jermar 225
        asid_put(as->asid);
226
    }
2170 jermar 227
    spinlock_unlock(&asidlock);
1468 jermar 228
 
229
    /*
230
     * Destroy address space areas of the address space.
1954 jermar 231
     * The B+tree must be walked carefully because it is
1594 jermar 232
     * also being destroyed.
1468 jermar 233
     */
1594 jermar 234
    for (cond = true; cond; ) {
1468 jermar 235
        btree_node_t *node;
1594 jermar 236
 
237
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
2087 jermar 238
        node = list_get_instance(as->as_area_btree.leaf_head.next,
239
            btree_node_t, leaf_link);
1594 jermar 240
 
241
        if ((cond = node->keys)) {
242
            as_area_destroy(as, node->key[0]);
243
        }
1468 jermar 244
    }
1495 jermar 245
 
1483 jermar 246
    btree_destroy(&as->as_area_btree);
2089 decky 247
#ifdef AS_PAGE_TABLE
2106 jermar 248
    page_table_destroy(as->genarch.page_table);
2089 decky 249
#else
250
    page_table_destroy(NULL);
251
#endif
1468 jermar 252
 
253
    interrupts_restore(ipl);
2126 decky 254
 
1890 jermar 255
    slab_free(as_slab, as);
973 palkovsky 256
}
257
 
703 jermar 258
/** Create address space area of common attributes.
259
 *
260
 * The created address space area is added to the target address space.
261
 *
3425 svoboda 262
 * @param as        Target address space.
263
 * @param flags     Flags of the area memory.
264
 * @param size      Size of area.
265
 * @param base      Base address of area.
266
 * @param attrs     Attributes of the area.
267
 * @param backend   Address space area backend. NULL if no backend is used.
268
 * @param backend_data  NULL or a pointer to an array holding two void *.
703 jermar 269
 *
3425 svoboda 270
 * @return      Address space area on success or NULL on failure.
703 jermar 271
 */
2069 jermar 272
as_area_t *
273
as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
3425 svoboda 274
    mem_backend_t *backend, mem_backend_data_t *backend_data)
703 jermar 275
{
276
    ipl_t ipl;
277
    as_area_t *a;
278
 
279
    if (base % PAGE_SIZE)
1048 jermar 280
        return NULL;
281
 
1233 jermar 282
    if (!size)
283
        return NULL;
284
 
1048 jermar 285
    /* Writeable executable areas are not supported. */
286
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
287
        return NULL;
703 jermar 288
 
289
    ipl = interrupts_disable();
1380 jermar 290
    mutex_lock(&as->lock);
703 jermar 291
 
1048 jermar 292
    if (!check_area_conflicts(as, base, size, NULL)) {
1380 jermar 293
        mutex_unlock(&as->lock);
1048 jermar 294
        interrupts_restore(ipl);
295
        return NULL;
296
    }
703 jermar 297
 
822 palkovsky 298
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
703 jermar 299
 
3425 svoboda 300
    mutex_initialize(&a->lock, MUTEX_PASSIVE);
822 palkovsky 301
 
1424 jermar 302
    a->as = as;
1026 jermar 303
    a->flags = flags;
1239 jermar 304
    a->attributes = attrs;
1048 jermar 305
    a->pages = SIZE2FRAMES(size);
822 palkovsky 306
    a->base = base;
1409 jermar 307
    a->sh_info = NULL;
308
    a->backend = backend;
1424 jermar 309
    if (backend_data)
310
        a->backend_data = *backend_data;
311
    else
3424 svoboda 312
        memsetb(&a->backend_data, sizeof(a->backend_data), 0);
1424 jermar 313
 
1387 jermar 314
    btree_create(&a->used_space);
822 palkovsky 315
 
1147 jermar 316
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
822 palkovsky 317
 
1380 jermar 318
    mutex_unlock(&as->lock);
703 jermar 319
    interrupts_restore(ipl);
704 jermar 320
 
703 jermar 321
    return a;
322
}
323
 
1235 jermar 324
/** Find address space area and change it.
325
 *
3425 svoboda 326
 * @param as        Address space.
327
 * @param address   Virtual address belonging to the area to be changed.
328
 *          Must be page-aligned.
329
 * @param size      New size of the virtual memory block starting at
330
 *          address.
331
 * @param flags     Flags influencing the remap operation. Currently unused.
1235 jermar 332
 *
3425 svoboda 333
 * @return      Zero on success or a value from @ref errno.h otherwise.
1235 jermar 334
 */
1780 jermar 335
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
1235 jermar 336
{
1306 jermar 337
    as_area_t *area;
1235 jermar 338
    ipl_t ipl;
339
    size_t pages;
340
 
341
    ipl = interrupts_disable();
1380 jermar 342
    mutex_lock(&as->lock);
1235 jermar 343
 
344
    /*
345
     * Locate the area.
346
     */
347
    area = find_area_and_lock(as, address);
348
    if (!area) {
1380 jermar 349
        mutex_unlock(&as->lock);
1235 jermar 350
        interrupts_restore(ipl);
1306 jermar 351
        return ENOENT;
1235 jermar 352
    }
353
 
1424 jermar 354
    if (area->backend == &phys_backend) {
1235 jermar 355
        /*
356
         * Remapping of address space areas associated
357
         * with memory mapped devices is not supported.
358
         */
1380 jermar 359
        mutex_unlock(&area->lock);
360
        mutex_unlock(&as->lock);
1235 jermar 361
        interrupts_restore(ipl);
1306 jermar 362
        return ENOTSUP;
1235 jermar 363
    }
1409 jermar 364
    if (area->sh_info) {
365
        /*
366
         * Remapping of shared address space areas
367
         * is not supported.
368
         */
369
        mutex_unlock(&area->lock);
370
        mutex_unlock(&as->lock);
371
        interrupts_restore(ipl);
372
        return ENOTSUP;
373
    }
1235 jermar 374
 
375
    pages = SIZE2FRAMES((address - area->base) + size);
376
    if (!pages) {
377
        /*
378
         * Zero size address space areas are not allowed.
379
         */
1380 jermar 380
        mutex_unlock(&area->lock);
381
        mutex_unlock(&as->lock);
1235 jermar 382
        interrupts_restore(ipl);
1306 jermar 383
        return EPERM;
1235 jermar 384
    }
385
 
386
    if (pages < area->pages) {
1403 jermar 387
        bool cond;
3425 svoboda 388
        uintptr_t start_free = area->base + pages * PAGE_SIZE;
1235 jermar 389
 
390
        /*
391
         * Shrinking the area.
392
         * No need to check for overlaps.
393
         */
1403 jermar 394
 
395
        /*
1436 jermar 396
         * Start TLB shootdown sequence.
397
         */
3425 svoboda 398
        tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base +
2087 jermar 399
            pages * PAGE_SIZE, area->pages - pages);
1436 jermar 400
 
401
        /*
1403 jermar 402
         * Remove frames belonging to used space starting from
403
         * the highest addresses downwards until an overlap with
404
         * the resized address space area is found. Note that this
405
         * is also the right way to remove part of the used_space
406
         * B+tree leaf list.
407
         */    
408
        for (cond = true; cond;) {
409
            btree_node_t *node;
410
 
411
            ASSERT(!list_empty(&area->used_space.leaf_head));
2087 jermar 412
            node =
413
                list_get_instance(area->used_space.leaf_head.prev,
414
                btree_node_t, leaf_link);
1403 jermar 415
            if ((cond = (bool) node->keys)) {
1780 jermar 416
                uintptr_t b = node->key[node->keys - 1];
2087 jermar 417
                count_t c =
418
                    (count_t) node->value[node->keys - 1];
2745 decky 419
                unsigned int i = 0;
1235 jermar 420
 
2087 jermar 421
                if (overlaps(b, c * PAGE_SIZE, area->base,
2133 jermar 422
                    pages * PAGE_SIZE)) {
1403 jermar 423
 
2087 jermar 424
                    if (b + c * PAGE_SIZE <= start_free) {
1403 jermar 425
                        /*
2087 jermar 426
                         * The whole interval fits
427
                         * completely in the resized
428
                         * address space area.
1403 jermar 429
                         */
430
                        break;
431
                    }
432
 
433
                    /*
2087 jermar 434
                     * Part of the interval corresponding
435
                     * to b and c overlaps with the resized
436
                     * address space area.
1403 jermar 437
                     */
438
 
439
                    cond = false;   /* we are almost done */
440
                    i = (start_free - b) >> PAGE_WIDTH;
3425 svoboda 441
                    if (!used_space_remove(area, start_free,
442
                        c - i))
443
                        panic("Could not remove used "
444
                            "space.\n");
1403 jermar 445
                } else {
446
                    /*
2087 jermar 447
                     * The interval of used space can be
448
                     * completely removed.
1403 jermar 449
                     */
450
                    if (!used_space_remove(area, b, c))
3425 svoboda 451
                        panic("Could not remove used "
452
                            "space.\n");
1403 jermar 453
                }
454
 
455
                for (; i < c; i++) {
456
                    pte_t *pte;
457
 
458
                    page_table_lock(as, false);
2087 jermar 459
                    pte = page_mapping_find(as, b +
460
                        i * PAGE_SIZE);
461
                    ASSERT(pte && PTE_VALID(pte) &&
462
                        PTE_PRESENT(pte));
463
                    if (area->backend &&
464
                        area->backend->frame_free) {
1424 jermar 465
                        area->backend->frame_free(area,
2087 jermar 466
                            b + i * PAGE_SIZE,
467
                            PTE_GET_FRAME(pte));
1409 jermar 468
                    }
2087 jermar 469
                    page_mapping_remove(as, b +
470
                        i * PAGE_SIZE);
1403 jermar 471
                    page_table_unlock(as, false);
472
                }
1235 jermar 473
            }
474
        }
1436 jermar 475
 
1235 jermar 476
        /*
1436 jermar 477
         * Finish TLB shootdown sequence.
1235 jermar 478
         */
2183 jermar 479
 
2087 jermar 480
        tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
481
            area->pages - pages);
1889 jermar 482
        /*
483
         * Invalidate software translation caches (e.g. TSB on sparc64).
484
         */
2087 jermar 485
        as_invalidate_translation_cache(as, area->base +
486
            pages * PAGE_SIZE, area->pages - pages);
2183 jermar 487
        tlb_shootdown_finalize();
488
 
1235 jermar 489
    } else {
490
        /*
491
         * Growing the area.
492
         * Check for overlaps with other address space areas.
493
         */
2087 jermar 494
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
495
            area)) {
1380 jermar 496
            mutex_unlock(&area->lock);
497
            mutex_unlock(&as->lock);       
1235 jermar 498
            interrupts_restore(ipl);
1306 jermar 499
            return EADDRNOTAVAIL;
1235 jermar 500
        }
501
    }
502
 
503
    area->pages = pages;
504
 
1380 jermar 505
    mutex_unlock(&area->lock);
506
    mutex_unlock(&as->lock);
1235 jermar 507
    interrupts_restore(ipl);
508
 
1306 jermar 509
    return 0;
1235 jermar 510
}
511
 
1306 jermar 512
/** Destroy address space area.
513
 *
3425 svoboda 514
 * @param as        Address space.
515
 * @param address   Address within the area to be deleted.
1306 jermar 516
 *
3425 svoboda 517
 * @return      Zero on success or a value from @ref errno.h on failure.
1306 jermar 518
 */
1780 jermar 519
int as_area_destroy(as_t *as, uintptr_t address)
1306 jermar 520
{
521
    as_area_t *area;
1780 jermar 522
    uintptr_t base;
1495 jermar 523
    link_t *cur;
1306 jermar 524
    ipl_t ipl;
525
 
526
    ipl = interrupts_disable();
1380 jermar 527
    mutex_lock(&as->lock);
1306 jermar 528
 
529
    area = find_area_and_lock(as, address);
530
    if (!area) {
1380 jermar 531
        mutex_unlock(&as->lock);
1306 jermar 532
        interrupts_restore(ipl);
533
        return ENOENT;
534
    }
535
 
1403 jermar 536
    base = area->base;
537
 
1411 jermar 538
    /*
1436 jermar 539
     * Start TLB shootdown sequence.
540
     */
1889 jermar 541
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
1436 jermar 542
 
543
    /*
1411 jermar 544
     * Visit only the pages mapped by used_space B+tree.
545
     */
2087 jermar 546
    for (cur = area->used_space.leaf_head.next;
547
        cur != &area->used_space.leaf_head; cur = cur->next) {
1411 jermar 548
        btree_node_t *node;
2745 decky 549
        unsigned int i;
1403 jermar 550
 
1495 jermar 551
        node = list_get_instance(cur, btree_node_t, leaf_link);
552
        for (i = 0; i < node->keys; i++) {
1780 jermar 553
            uintptr_t b = node->key[i];
1495 jermar 554
            count_t j;
1411 jermar 555
            pte_t *pte;
1403 jermar 556
 
1495 jermar 557
            for (j = 0; j < (count_t) node->value[i]; j++) {
1411 jermar 558
                page_table_lock(as, false);
2087 jermar 559
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
560
                ASSERT(pte && PTE_VALID(pte) &&
561
                    PTE_PRESENT(pte));
562
                if (area->backend &&
563
                    area->backend->frame_free) {
564
                    area->backend->frame_free(area, b +
2133 jermar 565
                        j * PAGE_SIZE, PTE_GET_FRAME(pte));
1403 jermar 566
                }
2087 jermar 567
                page_mapping_remove(as, b + j * PAGE_SIZE);            
1411 jermar 568
                page_table_unlock(as, false);
1306 jermar 569
            }
570
        }
571
    }
1403 jermar 572
 
1306 jermar 573
    /*
1436 jermar 574
     * Finish TLB shootdown sequence.
1306 jermar 575
     */
2183 jermar 576
 
1889 jermar 577
    tlb_invalidate_pages(as->asid, area->base, area->pages);
578
    /*
2087 jermar 579
     * Invalidate potential software translation caches (e.g. TSB on
580
     * sparc64).
1889 jermar 581
     */
582
    as_invalidate_translation_cache(as, area->base, area->pages);
2183 jermar 583
    tlb_shootdown_finalize();
1889 jermar 584
 
1436 jermar 585
    btree_destroy(&area->used_space);
1306 jermar 586
 
1309 jermar 587
    area->attributes |= AS_AREA_ATTR_PARTIAL;
1409 jermar 588
 
589
    if (area->sh_info)
590
        sh_info_remove_reference(area->sh_info);
591
 
1380 jermar 592
    mutex_unlock(&area->lock);
1306 jermar 593
 
594
    /*
595
     * Remove the empty area from address space.
596
     */
1889 jermar 597
    btree_remove(&as->as_area_btree, base, NULL);
1306 jermar 598
 
1309 jermar 599
    free(area);
600
 
1889 jermar 601
    mutex_unlock(&as->lock);
1306 jermar 602
    interrupts_restore(ipl);
603
    return 0;
604
}
605
 
1413 jermar 606
/** Share address space area with another or the same address space.
1235 jermar 607
 *
1424 jermar 608
 * Address space area mapping is shared with a new address space area.
609
 * If the source address space area has not been shared so far,
610
 * a new sh_info is created. The new address space area simply gets the
611
 * sh_info of the source area. The process of duplicating the
612
 * mapping is done through the backend share function.
1413 jermar 613
 *
3425 svoboda 614
 * @param src_as    Pointer to source address space.
615
 * @param src_base  Base address of the source address space area.
616
 * @param acc_size  Expected size of the source area.
617
 * @param dst_as    Pointer to destination address space.
618
 * @param dst_base  Target base address.
1417 jermar 619
 * @param dst_flags_mask Destination address space area flags mask.
1235 jermar 620
 *
3425 svoboda 621
 * @return      Zero on success or ENOENT if there is no such task or if
622
 *          there is no such address space area, EPERM if there was
623
 *          a problem in accepting the area or ENOMEM if there was a
624
 *          problem in allocating destination address space area.
625
 *          ENOTSUP is returned if the address space area backend
626
 *          does not support sharing.
1235 jermar 627
 */
1780 jermar 628
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
2647 jermar 629
    as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
1235 jermar 630
{
631
    ipl_t ipl;
1239 jermar 632
    int src_flags;
633
    size_t src_size;
634
    as_area_t *src_area, *dst_area;
1413 jermar 635
    share_info_t *sh_info;
1424 jermar 636
    mem_backend_t *src_backend;
637
    mem_backend_data_t src_backend_data;
1434 palkovsky 638
 
1235 jermar 639
    ipl = interrupts_disable();
1380 jermar 640
    mutex_lock(&src_as->lock);
1329 palkovsky 641
    src_area = find_area_and_lock(src_as, src_base);
1239 jermar 642
    if (!src_area) {
1238 jermar 643
        /*
644
         * Could not find the source address space area.
645
         */
1380 jermar 646
        mutex_unlock(&src_as->lock);
1238 jermar 647
        interrupts_restore(ipl);
648
        return ENOENT;
649
    }
2007 jermar 650
 
1424 jermar 651
    if (!src_area->backend || !src_area->backend->share) {
1413 jermar 652
        /*
1851 jermar 653
         * There is no backend or the backend does not
1424 jermar 654
         * know how to share the area.
1413 jermar 655
         */
656
        mutex_unlock(&src_area->lock);
657
        mutex_unlock(&src_as->lock);
658
        interrupts_restore(ipl);
659
        return ENOTSUP;
660
    }
661
 
1239 jermar 662
    src_size = src_area->pages * PAGE_SIZE;
663
    src_flags = src_area->flags;
1424 jermar 664
    src_backend = src_area->backend;
665
    src_backend_data = src_area->backend_data;
1544 palkovsky 666
 
667
    /* Share the cacheable flag from the original mapping */
668
    if (src_flags & AS_AREA_CACHEABLE)
669
        dst_flags_mask |= AS_AREA_CACHEABLE;
670
 
2087 jermar 671
    if (src_size != acc_size ||
672
        (src_flags & dst_flags_mask) != dst_flags_mask) {
1413 jermar 673
        mutex_unlock(&src_area->lock);
674
        mutex_unlock(&src_as->lock);
1235 jermar 675
        interrupts_restore(ipl);
676
        return EPERM;
677
    }
1413 jermar 678
 
1235 jermar 679
    /*
1413 jermar 680
     * Now we are committed to sharing the area.
1954 jermar 681
     * First, prepare the area for sharing.
1413 jermar 682
     * Then it will be safe to unlock it.
683
     */
684
    sh_info = src_area->sh_info;
685
    if (!sh_info) {
686
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
3425 svoboda 687
        mutex_initialize(&sh_info->lock, MUTEX_PASSIVE);
1413 jermar 688
        sh_info->refcount = 2;
689
        btree_create(&sh_info->pagemap);
690
        src_area->sh_info = sh_info;
2647 jermar 691
        /*
692
         * Call the backend to setup sharing.
693
         */
694
        src_area->backend->share(src_area);
1413 jermar 695
    } else {
696
        mutex_lock(&sh_info->lock);
697
        sh_info->refcount++;
698
        mutex_unlock(&sh_info->lock);
699
    }
700
 
701
    mutex_unlock(&src_area->lock);
702
    mutex_unlock(&src_as->lock);
703
 
704
    /*
1239 jermar 705
     * Create copy of the source address space area.
706
     * The destination area is created with AS_AREA_ATTR_PARTIAL
707
     * attribute set which prevents race condition with
708
     * preliminary as_page_fault() calls.
1417 jermar 709
     * The flags of the source area are masked against dst_flags_mask
710
     * to support sharing in less privileged mode.
1235 jermar 711
     */
1461 palkovsky 712
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
2087 jermar 713
        AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
1239 jermar 714
    if (!dst_area) {
1235 jermar 715
        /*
716
         * Destination address space area could not be created.
717
         */
1413 jermar 718
        sh_info_remove_reference(sh_info);
719
 
1235 jermar 720
        interrupts_restore(ipl);
721
        return ENOMEM;
722
    }
2009 jermar 723
 
1235 jermar 724
    /*
1239 jermar 725
     * Now the destination address space area has been
726
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
1413 jermar 727
     * attribute and set the sh_info.
1239 jermar 728
     */
2009 jermar 729
    mutex_lock(&dst_as->lock); 
1380 jermar 730
    mutex_lock(&dst_area->lock);
1239 jermar 731
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
1413 jermar 732
    dst_area->sh_info = sh_info;
1380 jermar 733
    mutex_unlock(&dst_area->lock);
2009 jermar 734
    mutex_unlock(&dst_as->lock);   
735
 
1235 jermar 736
    interrupts_restore(ipl);
737
 
738
    return 0;
739
}
740
 
1423 jermar 741
/** Check access mode for address space area.
742
 *
743
 * The address space area must be locked prior to this call.
744
 *
3425 svoboda 745
 * @param area      Address space area.
746
 * @param access    Access mode.
1423 jermar 747
 *
3425 svoboda 748
 * @return      False if access violates area's permissions, true
749
 *          otherwise.
1423 jermar 750
 */
751
bool as_area_check_access(as_area_t *area, pf_access_t access)
752
{
753
    int flagmap[] = {
754
        [PF_ACCESS_READ] = AS_AREA_READ,
755
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
756
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
757
    };
758
 
759
    if (!(area->flags & flagmap[access]))
760
        return false;
761
 
762
    return true;
763
}
764
 
3425 svoboda 765
/** Change adress space area flags.
766
 *
767
 * The idea is to have the same data, but with a different access mode.
768
 * This is needed e.g. for writing code into memory and then executing it.
769
 * In order for this to work properly, this may copy the data
770
 * into private anonymous memory (unless it's already there).
771
 *
772
 * @param as        Address space.
773
 * @param flags     Flags of the area memory.
774
 * @param address   Address withing the area to be changed.
775
 *
776
 * @return      Zero on success or a value from @ref errno.h on failure.
777
 */
778
int as_area_change_flags(as_t *as, int flags, uintptr_t address)
779
{
780
    as_area_t *area;
781
    uintptr_t base;
782
    link_t *cur;
783
    ipl_t ipl;
784
    int page_flags;
785
    uintptr_t *old_frame;
786
    index_t frame_idx;
787
    count_t used_pages;
788
 
789
    /* Flags for the new memory mapping */
790
    page_flags = area_flags_to_page_flags(flags);
791
 
792
    ipl = interrupts_disable();
793
    mutex_lock(&as->lock);
794
 
795
    area = find_area_and_lock(as, address);
796
    if (!area) {
797
        mutex_unlock(&as->lock);
798
        interrupts_restore(ipl);
799
        return ENOENT;
800
    }
801
 
802
    if (area->sh_info || area->backend != &anon_backend) {
803
        /* Copying shared areas not supported yet */
804
        /* Copying non-anonymous memory not supported yet */
805
        mutex_unlock(&area->lock);
806
        mutex_unlock(&as->lock);
807
        interrupts_restore(ipl);
808
        return ENOTSUP;
809
    }
810
 
811
    base = area->base;
812
 
813
    /*
814
     * Compute total number of used pages in the used_space B+tree
815
     */
816
    used_pages = 0;
817
 
818
    for (cur = area->used_space.leaf_head.next;
819
        cur != &area->used_space.leaf_head; cur = cur->next) {
820
        btree_node_t *node;
821
        unsigned int i;
822
 
823
        node = list_get_instance(cur, btree_node_t, leaf_link);
824
        for (i = 0; i < node->keys; i++) {
825
            used_pages += (count_t) node->value[i];
826
        }
827
    }
828
 
829
    /* An array for storing frame numbers */
830
    old_frame = malloc(used_pages * sizeof(uintptr_t), 0);
831
 
832
    /*
833
     * Start TLB shootdown sequence.
834
     */
835
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
836
 
837
    /*
838
     * Remove used pages from page tables and remember their frame
839
     * numbers.
840
     */
841
    frame_idx = 0;
842
 
843
    for (cur = area->used_space.leaf_head.next;
844
        cur != &area->used_space.leaf_head; cur = cur->next) {
845
        btree_node_t *node;
846
        unsigned int i;
847
 
848
        node = list_get_instance(cur, btree_node_t, leaf_link);
849
        for (i = 0; i < node->keys; i++) {
850
            uintptr_t b = node->key[i];
851
            count_t j;
852
            pte_t *pte;
853
 
854
            for (j = 0; j < (count_t) node->value[i]; j++) {
855
                page_table_lock(as, false);
856
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
857
                ASSERT(pte && PTE_VALID(pte) &&
858
                    PTE_PRESENT(pte));
859
                old_frame[frame_idx++] = PTE_GET_FRAME(pte);
860
 
861
                /* Remove old mapping */
862
                page_mapping_remove(as, b + j * PAGE_SIZE);
863
                page_table_unlock(as, false);
864
            }
865
        }
866
    }
867
 
868
    /*
869
     * Finish TLB shootdown sequence.
870
     */
871
 
872
    tlb_invalidate_pages(as->asid, area->base, area->pages);
873
    /*
874
     * Invalidate potential software translation caches (e.g. TSB on
875
     * sparc64).
876
     */
877
    as_invalidate_translation_cache(as, area->base, area->pages);
878
    tlb_shootdown_finalize();
879
 
880
    /*
881
     * Set the new flags.
882
     */
883
    area->flags = flags;
884
 
885
    /*
886
     * Map pages back in with new flags. This step is kept separate
887
     * so that the memory area could not be accesed with both the old and
888
     * the new flags at once.
889
     */
890
    frame_idx = 0;
891
 
892
    for (cur = area->used_space.leaf_head.next;
893
        cur != &area->used_space.leaf_head; cur = cur->next) {
894
        btree_node_t *node;
895
        unsigned int i;
896
 
897
        node = list_get_instance(cur, btree_node_t, leaf_link);
898
        for (i = 0; i < node->keys; i++) {
899
            uintptr_t b = node->key[i];
900
            count_t j;
901
 
902
            for (j = 0; j < (count_t) node->value[i]; j++) {
903
                page_table_lock(as, false);
904
 
905
                /* Insert the new mapping */
906
                page_mapping_insert(as, b + j * PAGE_SIZE,
907
                    old_frame[frame_idx++], page_flags);
908
 
909
                page_table_unlock(as, false);
910
            }
911
        }
912
    }
913
 
914
    free(old_frame);
915
 
916
    mutex_unlock(&area->lock);
917
    mutex_unlock(&as->lock);
918
    interrupts_restore(ipl);
919
 
920
    return 0;
921
}
922
 
923
 
703 jermar 924
/** Handle page fault within the current address space.
925
 *
3425 svoboda 926
 * This is the high-level page fault handler. It decides whether the page fault
927
 * can be resolved by any backend and if so, it invokes the backend to resolve
928
 * the page fault.
1409 jermar 929
 *
703 jermar 930
 * Interrupts are assumed disabled.
931
 *
3425 svoboda 932
 * @param page      Faulting page.
933
 * @param access    Access mode that caused the page fault (i.e.
934
 *          read/write/exec).
935
 * @param istate    Pointer to the interrupted state.
703 jermar 936
 *
3425 svoboda 937
 * @return      AS_PF_FAULT on page fault, AS_PF_OK on success or
938
 *          AS_PF_DEFER if the fault was caused by copy_to_uspace()
939
 *          or copy_from_uspace().
703 jermar 940
 */
1780 jermar 941
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
703 jermar 942
{
1044 jermar 943
    pte_t *pte;
977 jermar 944
    as_area_t *area;
703 jermar 945
 
1380 jermar 946
    if (!THREAD)
1409 jermar 947
        return AS_PF_FAULT;
1380 jermar 948
 
703 jermar 949
    ASSERT(AS);
1044 jermar 950
 
1380 jermar 951
    mutex_lock(&AS->lock);
977 jermar 952
    area = find_area_and_lock(AS, page);   
703 jermar 953
    if (!area) {
954
        /*
955
         * No area contained mapping for 'page'.
956
         * Signal page fault to low-level handler.
957
         */
1380 jermar 958
        mutex_unlock(&AS->lock);
1288 jermar 959
        goto page_fault;
703 jermar 960
    }
961
 
1239 jermar 962
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
963
        /*
964
         * The address space area is not fully initialized.
965
         * Avoid possible race by returning error.
966
         */
1380 jermar 967
        mutex_unlock(&area->lock);
968
        mutex_unlock(&AS->lock);
1288 jermar 969
        goto page_fault;       
1239 jermar 970
    }
971
 
1424 jermar 972
    if (!area->backend || !area->backend->page_fault) {
1409 jermar 973
        /*
974
         * The address space area is not backed by any backend
975
         * or the backend cannot handle page faults.
976
         */
977
        mutex_unlock(&area->lock);
978
        mutex_unlock(&AS->lock);
979
        goto page_fault;       
980
    }
1179 jermar 981
 
1044 jermar 982
    page_table_lock(AS, false);
983
 
703 jermar 984
    /*
3425 svoboda 985
     * To avoid race condition between two page faults on the same address,
986
     * we need to make sure the mapping has not been already inserted.
1044 jermar 987
     */
988
    if ((pte = page_mapping_find(AS, page))) {
989
        if (PTE_PRESENT(pte)) {
1423 jermar 990
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
2087 jermar 991
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
992
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
1423 jermar 993
                page_table_unlock(AS, false);
994
                mutex_unlock(&area->lock);
995
                mutex_unlock(&AS->lock);
996
                return AS_PF_OK;
997
            }
1044 jermar 998
        }
999
    }
1409 jermar 1000
 
1044 jermar 1001
    /*
1409 jermar 1002
     * Resort to the backend page fault handler.
703 jermar 1003
     */
1424 jermar 1004
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
1409 jermar 1005
        page_table_unlock(AS, false);
1006
        mutex_unlock(&area->lock);
1007
        mutex_unlock(&AS->lock);
1008
        goto page_fault;
1009
    }
703 jermar 1010
 
1044 jermar 1011
    page_table_unlock(AS, false);
1380 jermar 1012
    mutex_unlock(&area->lock);
1013
    mutex_unlock(&AS->lock);
1288 jermar 1014
    return AS_PF_OK;
1015
 
1016
page_fault:
1017
    if (THREAD->in_copy_from_uspace) {
1018
        THREAD->in_copy_from_uspace = false;
2087 jermar 1019
        istate_set_retaddr(istate,
1020
            (uintptr_t) &memcpy_from_uspace_failover_address);
1288 jermar 1021
    } else if (THREAD->in_copy_to_uspace) {
1022
        THREAD->in_copy_to_uspace = false;
2087 jermar 1023
        istate_set_retaddr(istate,
1024
            (uintptr_t) &memcpy_to_uspace_failover_address);
1288 jermar 1025
    } else {
1026
        return AS_PF_FAULT;
1027
    }
1028
 
1029
    return AS_PF_DEFER;
703 jermar 1030
}
1031
 
823 jermar 1032
/** Switch address spaces.
703 jermar 1033
 *
1380 jermar 1034
 * Note that this function cannot sleep as it is essentially a part of
2170 jermar 1035
 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
1036
 * thing which is forbidden in this context is locking the address space.
1380 jermar 1037
 *
2183 jermar 1038
 * When this function is enetered, no spinlocks may be held.
1039
 *
3425 svoboda 1040
 * @param old       Old address space or NULL.
1041
 * @param new       New address space.
703 jermar 1042
 */
2106 jermar 1043
void as_switch(as_t *old_as, as_t *new_as)
703 jermar 1044
{
2183 jermar 1045
    DEADLOCK_PROBE_INIT(p_asidlock);
1046
    preemption_disable();
1047
retry:
1048
    (void) interrupts_disable();
1049
    if (!spinlock_trylock(&asidlock)) {
1050
        /*
1051
         * Avoid deadlock with TLB shootdown.
1052
         * We can enable interrupts here because
1053
         * preemption is disabled. We should not be
1054
         * holding any other lock.
1055
         */
1056
        (void) interrupts_enable();
1057
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
1058
        goto retry;
1059
    }
1060
    preemption_enable();
703 jermar 1061
 
1062
    /*
823 jermar 1063
     * First, take care of the old address space.
1064
     */
2106 jermar 1065
    if (old_as) {
1066
        ASSERT(old_as->cpu_refcount);
1067
        if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
823 jermar 1068
            /*
1069
             * The old address space is no longer active on
1070
             * any processor. It can be appended to the
1071
             * list of inactive address spaces with assigned
1072
             * ASID.
1073
             */
2141 jermar 1074
            ASSERT(old_as->asid != ASID_INVALID);
1075
            list_append(&old_as->inactive_as_with_asid_link,
1076
                &inactive_as_with_asid_head);
823 jermar 1077
        }
1890 jermar 1078
 
1079
        /*
1080
         * Perform architecture-specific tasks when the address space
1081
         * is being removed from the CPU.
1082
         */
2106 jermar 1083
        as_deinstall_arch(old_as);
823 jermar 1084
    }
1085
 
1086
    /*
1087
     * Second, prepare the new address space.
1088
     */
2106 jermar 1089
    if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
2170 jermar 1090
        if (new_as->asid != ASID_INVALID)
2106 jermar 1091
            list_remove(&new_as->inactive_as_with_asid_link);
2170 jermar 1092
        else
1093
            new_as->asid = asid_get();
823 jermar 1094
    }
2106 jermar 1095
#ifdef AS_PAGE_TABLE
1096
    SET_PTL0_ADDRESS(new_as->genarch.page_table);
1097
#endif
823 jermar 1098
 
1099
    /*
703 jermar 1100
     * Perform architecture-specific steps.
727 jermar 1101
     * (e.g. write ASID to hardware register etc.)
703 jermar 1102
     */
2106 jermar 1103
    as_install_arch(new_as);
2170 jermar 1104
 
1105
    spinlock_unlock(&asidlock);
703 jermar 1106
 
2106 jermar 1107
    AS = new_as;
703 jermar 1108
}
754 jermar 1109
 
3013 svoboda 1110
/** Write directly into a page, bypassing area flags.
1111
 *
1112
 * This allows a debugger to write into a page that is mapped read-only
1113
 * (such as the text segment). Naturally, this is only possible if the
1114
 * correspoinding area is not shared and anonymous.
1115
 *
1116
 * FIXME: doesn't take into account that it isn't a good idea to write
1117
 * into the frame if the area is shared or isn't anonymous
1118
 */
1119
static int debug_write_inside_page(uintptr_t va, void *data, size_t n)
1120
{
1121
    uintptr_t page;
1122
    pte_t *pte;
1123
    as_area_t *area;
1124
    uintptr_t frame;
1125
    ipl_t ipl;
1126
    int rc;
1127
 
1128
    page = ALIGN_DOWN(va, PAGE_SIZE);
1129
    ASSERT(ALIGN_DOWN(va + n - 1, PAGE_SIZE) == page);
1130
 
1131
restart:
1132
    mutex_lock(&AS->lock);
1133
    ipl = interrupts_disable();
1134
    area = find_area_and_lock(AS, page);
3036 svoboda 1135
    if (area->backend != &anon_backend || area->sh_info != NULL) {
1136
        mutex_unlock(&area->lock);
1137
        mutex_unlock(&AS->lock);
1138
        interrupts_restore(ipl);
3013 svoboda 1139
 
3036 svoboda 1140
        rc = as_area_make_writeable(area->base);
1141
        if (rc != 0) return rc;
1142
 
1143
        goto restart;
1144
    }
1145
 
3013 svoboda 1146
    pte = page_mapping_find(AS, page);
1147
    if (! (pte && PTE_VALID(pte) && PTE_PRESENT(pte)) ) {
1148
        mutex_unlock(&area->lock);
1149
        mutex_unlock(&AS->lock);
1150
        interrupts_restore(ipl);
1151
 
1152
        rc = as_page_fault(page, PF_ACCESS_WRITE, NULL);
1153
        if (rc == AS_PF_FAULT) return EINVAL;
1154
 
1155
        goto restart;
1156
    }
1157
 
1158
    frame = PTE_GET_FRAME(pte);
1159
    memcpy((void *)(PA2KA(frame) + (va - page)), data, n);
1160
 
1161
    mutex_unlock(&area->lock);
1162
    mutex_unlock(&AS->lock);
1163
    interrupts_restore(ipl);
1164
 
1165
    return EOK;
1166
}
1167
 
1168
/** Write data bypassing area flags.
1169
 *
1170
 * See debug_write_inside_page().
1171
 */
1172
int as_debug_write(uintptr_t va, void *data, size_t n)
1173
{
1174
    size_t now;
1175
    int rc;
1176
 
1177
    while (n > 0) {
3127 svoboda 1178
        /* Number of bytes until the end of page */
1179
        now = ALIGN_DOWN(va, PAGE_SIZE) + PAGE_SIZE - va;
3013 svoboda 1180
        if (now > n) now = n;
1181
 
1182
        rc = debug_write_inside_page(va, data, now);
1183
        if (rc != EOK) return rc;
1184
 
1185
        va += now;
1186
        data += now;
1187
        n -= now;
1188
    }
1189
 
1190
    return EOK;
1191
}
1192
 
3036 svoboda 1193
/** Make sure area is private and anonymous.
1194
 *
1195
 * Not atomic atm.
1196
 * @param address   Virtual address in AS.
1197
 */
1198
int as_area_make_writeable(uintptr_t address)
1199
{
1200
    ipl_t ipl;
1201
    as_area_t *area;
1202
    uintptr_t base, page;
1203
    uintptr_t old_frame, frame;
1204
    size_t size;
1205
    int flags;
1206
    int page_flags;
1207
    pte_t *pte;
1208
    int rc;
1209
    uintptr_t *pagemap;
1210
 
1211
    ipl = interrupts_disable();
1212
    mutex_lock(&AS->lock);
1213
    area = find_area_and_lock(AS, address);
1214
    if (!area) {
1215
        /*
1216
         * Could not find the address space area.
1217
         */
1218
        mutex_unlock(&AS->lock);
1219
        interrupts_restore(ipl);
1220
        return ENOENT;
1221
    }
1222
 
1223
    if (area->backend == &anon_backend && !area->sh_info) {
1224
        /* Nothing to do */
1225
        mutex_unlock(&area->lock);
1226
        mutex_unlock(&AS->lock);
1227
        interrupts_restore(ipl);
1228
        return EOK;
1229
    }
1230
 
1231
    base = area->base;
1232
    size = area->pages * PAGE_SIZE;
1233
    flags = area->flags;
1234
    page_flags = as_area_get_flags(area);
1235
 
1236
    pagemap = malloc(area->pages * sizeof(uintptr_t), 0);
1237
    page_table_lock(AS, false);
1238
 
1239
    for (page = base; page < base + size; page += PAGE_SIZE) {
1240
        pte = page_mapping_find(AS, page);
1241
        if (!pte || !PTE_PRESENT(pte) || !PTE_READABLE(pte)) {
1242
            /* Fetch the missing page */
1243
            if (!area->backend || !area->backend->page_fault) {
1244
                page_table_unlock(AS, false);
1245
                mutex_unlock(&area->lock);
1246
                mutex_unlock(&AS->lock);
1247
                interrupts_restore(ipl);
1248
                return EINVAL;
1249
            }
1250
            if (area->backend->page_fault(area, page, PF_ACCESS_READ) != AS_PF_OK) {
1251
                page_table_unlock(AS, false);
1252
                mutex_unlock(&area->lock);
1253
                mutex_unlock(&AS->lock);
1254
                interrupts_restore(ipl);
1255
                return EINVAL;
1256
            }
1257
        }
1258
        ASSERT(PTE_VALID(pte));
1259
 
1260
        old_frame = PTE_GET_FRAME(pte);
1261
 
1262
        frame = (uintptr_t)frame_alloc(ONE_FRAME, 0);
1263
        memcpy((void *) PA2KA(frame), (void *)PA2KA(old_frame),
1264
            FRAME_SIZE);
1265
 
1266
        pagemap[(page - base) / PAGE_SIZE] = frame;
1267
    }
1268
 
1269
    page_table_unlock(AS, false);
1270
    mutex_unlock(&area->lock);
1271
    mutex_unlock(&AS->lock);
1272
    interrupts_restore(ipl);
1273
 
1274
    rc = as_area_destroy(AS, address);
1275
    if (rc < 0) {
1276
        free(pagemap);
1277
        return rc;
1278
    }
1279
 
1280
    area = as_area_create(AS, flags, size, base, AS_AREA_ATTR_PARTIAL,
1281
        &anon_backend, NULL);
1282
    if (area == NULL) {
1283
        free(pagemap);
1284
        return rc;
1285
    }
1286
 
1287
    mutex_lock(&AS->lock);
1288
    mutex_lock(&area->lock);
1289
    page_table_lock(AS, false);
1290
    for (page = base; page < base + size; page += PAGE_SIZE) {
1291
        frame = pagemap[(page - base) / PAGE_SIZE];
1292
 
1293
        page_mapping_insert(AS, page, frame, page_flags);
1294
        if (!used_space_insert(area, page, 1))
1295
            panic("Could not insert used space.\n");
1296
    }
1297
 
1298
    page_table_unlock(AS, false);
1299
 
1300
    area->attributes &= ~AS_AREA_ATTR_PARTIAL;
1301
 
1302
    mutex_unlock(&area->lock);
1303
    mutex_unlock(&AS->lock);
1304
 
1305
    free(pagemap);
1306
 
1307
    return EOK;
1308
}
1309
 
1235 jermar 1310
/** Convert address space area flags to page flags.
754 jermar 1311
 *
3425 svoboda 1312
 * @param aflags    Flags of some address space area.
754 jermar 1313
 *
3425 svoboda 1314
 * @return      Flags to be passed to page_mapping_insert().
754 jermar 1315
 */
1235 jermar 1316
int area_flags_to_page_flags(int aflags)
754 jermar 1317
{
1318
    int flags;
1319
 
1178 jermar 1320
    flags = PAGE_USER | PAGE_PRESENT;
754 jermar 1321
 
1235 jermar 1322
    if (aflags & AS_AREA_READ)
1026 jermar 1323
        flags |= PAGE_READ;
1324
 
1235 jermar 1325
    if (aflags & AS_AREA_WRITE)
1026 jermar 1326
        flags |= PAGE_WRITE;
1327
 
1235 jermar 1328
    if (aflags & AS_AREA_EXEC)
1026 jermar 1329
        flags |= PAGE_EXEC;
1330
 
1424 jermar 1331
    if (aflags & AS_AREA_CACHEABLE)
1178 jermar 1332
        flags |= PAGE_CACHEABLE;
1333
 
754 jermar 1334
    return flags;
1335
}
756 jermar 1336
 
1235 jermar 1337
/** Compute flags for virtual address translation subsytem.
1338
 *
1339
 * The address space area must be locked.
1340
 * Interrupts must be disabled.
1341
 *
3425 svoboda 1342
 * @param a     Address space area.
1235 jermar 1343
 *
3425 svoboda 1344
 * @return      Flags to be used in page_mapping_insert().
1235 jermar 1345
 */
1409 jermar 1346
int as_area_get_flags(as_area_t *a)
1235 jermar 1347
{
1348
    return area_flags_to_page_flags(a->flags);
1349
}
1350
 
756 jermar 1351
/** Create page table.
1352
 *
3425 svoboda 1353
 * Depending on architecture, create either address space private or global page
1354
 * table.
756 jermar 1355
 *
3425 svoboda 1356
 * @param flags     Flags saying whether the page table is for the kernel
1357
 *          address space.
756 jermar 1358
 *
3425 svoboda 1359
 * @return      First entry of the page table.
756 jermar 1360
 */
1361
pte_t *page_table_create(int flags)
1362
{
2125 decky 1363
    ASSERT(as_operations);
1364
    ASSERT(as_operations->page_table_create);
1365
 
1366
    return as_operations->page_table_create(flags);
756 jermar 1367
}
977 jermar 1368
 
1468 jermar 1369
/** Destroy page table.
1370
 *
1371
 * Destroy page table in architecture specific way.
1372
 *
3425 svoboda 1373
 * @param page_table    Physical address of PTL0.
1468 jermar 1374
 */
1375
void page_table_destroy(pte_t *page_table)
1376
{
2125 decky 1377
    ASSERT(as_operations);
1378
    ASSERT(as_operations->page_table_destroy);
1379
 
1380
    as_operations->page_table_destroy(page_table);
1468 jermar 1381
}
1382
 
1044 jermar 1383
/** Lock page table.
1384
 *
1385
 * This function should be called before any page_mapping_insert(),
1386
 * page_mapping_remove() and page_mapping_find().
1387
 *
1388
 * Locking order is such that address space areas must be locked
1389
 * prior to this call. Address space can be locked prior to this
1390
 * call in which case the lock argument is false.
1391
 *
3425 svoboda 1392
 * @param as        Address space.
1393
 * @param lock      If false, do not attempt to lock as->lock.
1044 jermar 1394
 */
1395
void page_table_lock(as_t *as, bool lock)
1396
{
1397
    ASSERT(as_operations);
1398
    ASSERT(as_operations->page_table_lock);
2125 decky 1399
 
1044 jermar 1400
    as_operations->page_table_lock(as, lock);
1401
}
1402
 
1403
/** Unlock page table.
1404
 *
3425 svoboda 1405
 * @param as        Address space.
1406
 * @param unlock    If false, do not attempt to unlock as->lock.
1044 jermar 1407
 */
1408
void page_table_unlock(as_t *as, bool unlock)
1409
{
1410
    ASSERT(as_operations);
1411
    ASSERT(as_operations->page_table_unlock);
2125 decky 1412
 
1044 jermar 1413
    as_operations->page_table_unlock(as, unlock);
1414
}
1415
 
977 jermar 1416
 
1417
/** Find address space area and lock it.
1418
 *
1419
 * The address space must be locked and interrupts must be disabled.
1420
 *
3425 svoboda 1421
 * @param as        Address space.
1422
 * @param va        Virtual address.
977 jermar 1423
 *
3425 svoboda 1424
 * @return      Locked address space area containing va on success or
1425
 *          NULL on failure.
977 jermar 1426
 */
1780 jermar 1427
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
977 jermar 1428
{
1429
    as_area_t *a;
1147 jermar 1430
    btree_node_t *leaf, *lnode;
2745 decky 1431
    unsigned int i;
977 jermar 1432
 
1147 jermar 1433
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1434
    if (a) {
1435
        /* va is the base address of an address space area */
1380 jermar 1436
        mutex_lock(&a->lock);
1147 jermar 1437
        return a;
1438
    }
1439
 
1440
    /*
1150 jermar 1441
     * Search the leaf node and the righmost record of its left neighbour
1147 jermar 1442
     * to find out whether this is a miss or va belongs to an address
1443
     * space area found there.
1444
     */
1445
 
1446
    /* First, search the leaf node itself. */
1447
    for (i = 0; i < leaf->keys; i++) {
1448
        a = (as_area_t *) leaf->value[i];
1380 jermar 1449
        mutex_lock(&a->lock);
1147 jermar 1450
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1451
            return a;
1452
        }
1380 jermar 1453
        mutex_unlock(&a->lock);
1147 jermar 1454
    }
977 jermar 1455
 
1147 jermar 1456
    /*
1150 jermar 1457
     * Second, locate the left neighbour and test its last record.
1148 jermar 1458
     * Because of its position in the B+tree, it must have base < va.
1147 jermar 1459
     */
2087 jermar 1460
    lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1461
    if (lnode) {
1147 jermar 1462
        a = (as_area_t *) lnode->value[lnode->keys - 1];
1380 jermar 1463
        mutex_lock(&a->lock);
1147 jermar 1464
        if (va < a->base + a->pages * PAGE_SIZE) {
1048 jermar 1465
            return a;
1147 jermar 1466
        }
1380 jermar 1467
        mutex_unlock(&a->lock);
977 jermar 1468
    }
1469
 
1470
    return NULL;
1471
}
1048 jermar 1472
 
1473
/** Check area conflicts with other areas.
1474
 *
1475
 * The address space must be locked and interrupts must be disabled.
1476
 *
3425 svoboda 1477
 * @param as        Address space.
1478
 * @param va        Starting virtual address of the area being tested.
1479
 * @param size      Size of the area being tested.
1480
 * @param avoid_area    Do not touch this area.
1048 jermar 1481
 *
3425 svoboda 1482
 * @return      True if there is no conflict, false otherwise.
1048 jermar 1483
 */
3425 svoboda 1484
bool
1485
check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area)
1048 jermar 1486
{
1487
    as_area_t *a;
1147 jermar 1488
    btree_node_t *leaf, *node;
2745 decky 1489
    unsigned int i;
1048 jermar 1490
 
1070 jermar 1491
    /*
1492
     * We don't want any area to have conflicts with NULL page.
1493
     */
1494
    if (overlaps(va, size, NULL, PAGE_SIZE))
1495
        return false;
1496
 
1147 jermar 1497
    /*
1498
     * The leaf node is found in O(log n), where n is proportional to
1499
     * the number of address space areas belonging to as.
1500
     * The check for conflicts is then attempted on the rightmost
1150 jermar 1501
     * record in the left neighbour, the leftmost record in the right
1502
     * neighbour and all records in the leaf node itself.
1147 jermar 1503
     */
1048 jermar 1504
 
1147 jermar 1505
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1506
        if (a != avoid_area)
1507
            return false;
1508
    }
1509
 
1510
    /* First, check the two border cases. */
1150 jermar 1511
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1147 jermar 1512
        a = (as_area_t *) node->value[node->keys - 1];
1380 jermar 1513
        mutex_lock(&a->lock);
1147 jermar 1514
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 1515
            mutex_unlock(&a->lock);
1147 jermar 1516
            return false;
1517
        }
1380 jermar 1518
        mutex_unlock(&a->lock);
1147 jermar 1519
    }
2087 jermar 1520
    node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1521
    if (node) {
1147 jermar 1522
        a = (as_area_t *) node->value[0];
1380 jermar 1523
        mutex_lock(&a->lock);
1147 jermar 1524
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 1525
            mutex_unlock(&a->lock);
1147 jermar 1526
            return false;
1527
        }
1380 jermar 1528
        mutex_unlock(&a->lock);
1147 jermar 1529
    }
1530
 
1531
    /* Second, check the leaf node. */
1532
    for (i = 0; i < leaf->keys; i++) {
1533
        a = (as_area_t *) leaf->value[i];
1534
 
1048 jermar 1535
        if (a == avoid_area)
1536
            continue;
1147 jermar 1537
 
1380 jermar 1538
        mutex_lock(&a->lock);
1147 jermar 1539
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1380 jermar 1540
            mutex_unlock(&a->lock);
1147 jermar 1541
            return false;
1542
        }
1380 jermar 1543
        mutex_unlock(&a->lock);
1048 jermar 1544
    }
1545
 
1070 jermar 1546
    /*
1547
     * So far, the area does not conflict with other areas.
1548
     * Check if it doesn't conflict with kernel address space.
1549
     */  
1550
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1551
        return !overlaps(va, size,
2087 jermar 1552
            KERNEL_ADDRESS_SPACE_START,
1553
            KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1070 jermar 1554
    }
1555
 
1048 jermar 1556
    return true;
1557
}
1235 jermar 1558
 
2556 jermar 1559
/** Return size of the address space area with given base.
1560
 *
1561
 * @param base      Arbitrary address insede the address space area.
1562
 *
1563
 * @return      Size of the address space area in bytes or zero if it
1564
 *          does not exist.
1565
 */
1566
size_t as_area_get_size(uintptr_t base)
1329 palkovsky 1567
{
1568
    ipl_t ipl;
1569
    as_area_t *src_area;
1570
    size_t size;
1571
 
1572
    ipl = interrupts_disable();
1573
    src_area = find_area_and_lock(AS, base);
3425 svoboda 1574
    if (src_area) {
1329 palkovsky 1575
        size = src_area->pages * PAGE_SIZE;
1380 jermar 1576
        mutex_unlock(&src_area->lock);
1329 palkovsky 1577
    } else {
1578
        size = 0;
1579
    }
1580
    interrupts_restore(ipl);
1581
    return size;
1582
}
1583
 
1387 jermar 1584
/** Mark portion of address space area as used.
1585
 *
1586
 * The address space area must be already locked.
1587
 *
3425 svoboda 1588
 * @param a     Address space area.
1589
 * @param page      First page to be marked.
1590
 * @param count     Number of page to be marked.
1387 jermar 1591
 *
3425 svoboda 1592
 * @return      Zero on failure and non-zero on success.
1387 jermar 1593
 */
1780 jermar 1594
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1387 jermar 1595
{
1596
    btree_node_t *leaf, *node;
1597
    count_t pages;
2745 decky 1598
    unsigned int i;
1387 jermar 1599
 
1600
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1601
    ASSERT(count);
1602
 
1603
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1604
    if (pages) {
1605
        /*
1606
         * We hit the beginning of some used space.
1607
         */
1608
        return 0;
1609
    }
1610
 
1437 jermar 1611
    if (!leaf->keys) {
1612
        btree_insert(&a->used_space, page, (void *) count, leaf);
1613
        return 1;
1614
    }
1615
 
1387 jermar 1616
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1617
    if (node) {
2087 jermar 1618
        uintptr_t left_pg = node->key[node->keys - 1];
1619
        uintptr_t right_pg = leaf->key[0];
1620
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1621
        count_t right_cnt = (count_t) leaf->value[0];
1387 jermar 1622
 
1623
        /*
1624
         * Examine the possibility that the interval fits
1625
         * somewhere between the rightmost interval of
1626
         * the left neigbour and the first interval of the leaf.
1627
         */
1628
 
1629
        if (page >= right_pg) {
1630
            /* Do nothing. */
2087 jermar 1631
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1632
            left_cnt * PAGE_SIZE)) {
1387 jermar 1633
            /* The interval intersects with the left interval. */
1634
            return 0;
2087 jermar 1635
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1636
            right_cnt * PAGE_SIZE)) {
1387 jermar 1637
            /* The interval intersects with the right interval. */
1638
            return 0;          
2087 jermar 1639
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1640
            (page + count * PAGE_SIZE == right_pg)) {
1641
            /*
1642
             * The interval can be added by merging the two already
1643
             * present intervals.
1644
             */
1403 jermar 1645
            node->value[node->keys - 1] += count + right_cnt;
1387 jermar 1646
            btree_remove(&a->used_space, right_pg, leaf);
1647
            return 1;
2087 jermar 1648
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1649
            /*
1650
             * The interval can be added by simply growing the left
1651
             * interval.
1652
             */
1403 jermar 1653
            node->value[node->keys - 1] += count;
1387 jermar 1654
            return 1;
2087 jermar 1655
        } else if (page + count * PAGE_SIZE == right_pg) {
1387 jermar 1656
            /*
2087 jermar 1657
             * The interval can be addded by simply moving base of
1658
             * the right interval down and increasing its size
1659
             * accordingly.
1387 jermar 1660
             */
1403 jermar 1661
            leaf->value[0] += count;
1387 jermar 1662
            leaf->key[0] = page;
1663
            return 1;
1664
        } else {
1665
            /*
1666
             * The interval is between both neigbouring intervals,
1667
             * but cannot be merged with any of them.
1668
             */
2087 jermar 1669
            btree_insert(&a->used_space, page, (void *) count,
1670
                leaf);
1387 jermar 1671
            return 1;
1672
        }
1673
    } else if (page < leaf->key[0]) {
1780 jermar 1674
        uintptr_t right_pg = leaf->key[0];
1387 jermar 1675
        count_t right_cnt = (count_t) leaf->value[0];
1676
 
1677
        /*
2087 jermar 1678
         * Investigate the border case in which the left neighbour does
1679
         * not exist but the interval fits from the left.
1387 jermar 1680
         */
1681
 
2087 jermar 1682
        if (overlaps(page, count * PAGE_SIZE, right_pg,
1683
            right_cnt * PAGE_SIZE)) {
1387 jermar 1684
            /* The interval intersects with the right interval. */
1685
            return 0;
2087 jermar 1686
        } else if (page + count * PAGE_SIZE == right_pg) {
1387 jermar 1687
            /*
2087 jermar 1688
             * The interval can be added by moving the base of the
1689
             * right interval down and increasing its size
1690
             * accordingly.
1387 jermar 1691
             */
1692
            leaf->key[0] = page;
1403 jermar 1693
            leaf->value[0] += count;
1387 jermar 1694
            return 1;
1695
        } else {
1696
            /*
1697
             * The interval doesn't adjoin with the right interval.
1698
             * It must be added individually.
1699
             */
2087 jermar 1700
            btree_insert(&a->used_space, page, (void *) count,
1701
                leaf);
1387 jermar 1702
            return 1;
1703
        }
1704
    }
1705
 
1706
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1707
    if (node) {
2087 jermar 1708
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1709
        uintptr_t right_pg = node->key[0];
1710
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1711
        count_t right_cnt = (count_t) node->value[0];
1387 jermar 1712
 
1713
        /*
1714
         * Examine the possibility that the interval fits
1715
         * somewhere between the leftmost interval of
1716
         * the right neigbour and the last interval of the leaf.
1717
         */
1718
 
1719
        if (page < left_pg) {
1720
            /* Do nothing. */
2087 jermar 1721
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1722
            left_cnt * PAGE_SIZE)) {
1387 jermar 1723
            /* The interval intersects with the left interval. */
1724
            return 0;
2087 jermar 1725
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1726
            right_cnt * PAGE_SIZE)) {
1387 jermar 1727
            /* The interval intersects with the right interval. */
1728
            return 0;          
2087 jermar 1729
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1730
            (page + count * PAGE_SIZE == right_pg)) {
1731
            /*
1732
             * The interval can be added by merging the two already
1733
             * present intervals.
1734
             * */
1403 jermar 1735
            leaf->value[leaf->keys - 1] += count + right_cnt;
1387 jermar 1736
            btree_remove(&a->used_space, right_pg, node);
1737
            return 1;
2087 jermar 1738
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1739
            /*
1740
             * The interval can be added by simply growing the left
1741
             * interval.
1742
             * */
1403 jermar 1743
            leaf->value[leaf->keys - 1] +=  count;
1387 jermar 1744
            return 1;
2087 jermar 1745
        } else if (page + count * PAGE_SIZE == right_pg) {
1387 jermar 1746
            /*
2087 jermar 1747
             * The interval can be addded by simply moving base of
1748
             * the right interval down and increasing its size
1749
             * accordingly.
1387 jermar 1750
             */
1403 jermar 1751
            node->value[0] += count;
1387 jermar 1752
            node->key[0] = page;
1753
            return 1;
1754
        } else {
1755
            /*
1756
             * The interval is between both neigbouring intervals,
1757
             * but cannot be merged with any of them.
1758
             */
2087 jermar 1759
            btree_insert(&a->used_space, page, (void *) count,
1760
                leaf);
1387 jermar 1761
            return 1;
1762
        }
1763
    } else if (page >= leaf->key[leaf->keys - 1]) {
1780 jermar 1764
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1387 jermar 1765
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1766
 
1767
        /*
2087 jermar 1768
         * Investigate the border case in which the right neighbour
1769
         * does not exist but the interval fits from the right.
1387 jermar 1770
         */
1771
 
2087 jermar 1772
        if (overlaps(page, count * PAGE_SIZE, left_pg,
1773
            left_cnt * PAGE_SIZE)) {
1403 jermar 1774
            /* The interval intersects with the left interval. */
1387 jermar 1775
            return 0;
2087 jermar 1776
        } else if (left_pg + left_cnt * PAGE_SIZE == page) {
1777
            /*
1778
             * The interval can be added by growing the left
1779
             * interval.
1780
             */
1403 jermar 1781
            leaf->value[leaf->keys - 1] += count;
1387 jermar 1782
            return 1;
1783
        } else {
1784
            /*
1785
             * The interval doesn't adjoin with the left interval.
1786
             * It must be added individually.
1787
             */
2087 jermar 1788
            btree_insert(&a->used_space, page, (void *) count,
1789
                leaf);
1387 jermar 1790
            return 1;
1791
        }
1792
    }
1793
 
1794
    /*
2087 jermar 1795
     * Note that if the algorithm made it thus far, the interval can fit
1796
     * only between two other intervals of the leaf. The two border cases
1797
     * were already resolved.
1387 jermar 1798
     */
1799
    for (i = 1; i < leaf->keys; i++) {
1800
        if (page < leaf->key[i]) {
2087 jermar 1801
            uintptr_t left_pg = leaf->key[i - 1];
1802
            uintptr_t right_pg = leaf->key[i];
1803
            count_t left_cnt = (count_t) leaf->value[i - 1];
1804
            count_t right_cnt = (count_t) leaf->value[i];
1387 jermar 1805
 
1806
            /*
1807
             * The interval fits between left_pg and right_pg.
1808
             */
1809
 
2087 jermar 1810
            if (overlaps(page, count * PAGE_SIZE, left_pg,
1811
                left_cnt * PAGE_SIZE)) {
1812
                /*
1813
                 * The interval intersects with the left
1814
                 * interval.
1815
                 */
1387 jermar 1816
                return 0;
2087 jermar 1817
            } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1818
                right_cnt * PAGE_SIZE)) {
1819
                /*
1820
                 * The interval intersects with the right
1821
                 * interval.
1822
                 */
1387 jermar 1823
                return 0;          
2087 jermar 1824
            } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1825
                (page + count * PAGE_SIZE == right_pg)) {
1826
                /*
1827
                 * The interval can be added by merging the two
1828
                 * already present intervals.
1829
                 */
1403 jermar 1830
                leaf->value[i - 1] += count + right_cnt;
1387 jermar 1831
                btree_remove(&a->used_space, right_pg, leaf);
1832
                return 1;
2087 jermar 1833
            } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1834
                /*
1835
                 * The interval can be added by simply growing
1836
                 * the left interval.
1837
                 */
1403 jermar 1838
                leaf->value[i - 1] += count;
1387 jermar 1839
                return 1;
2087 jermar 1840
            } else if (page + count * PAGE_SIZE == right_pg) {
1387 jermar 1841
                /*
2087 jermar 1842
                     * The interval can be addded by simply moving
1843
                 * base of the right interval down and
1844
                 * increasing its size accordingly.
1387 jermar 1845
                 */
1403 jermar 1846
                leaf->value[i] += count;
1387 jermar 1847
                leaf->key[i] = page;
1848
                return 1;
1849
            } else {
1850
                /*
2087 jermar 1851
                 * The interval is between both neigbouring
1852
                 * intervals, but cannot be merged with any of
1853
                 * them.
1387 jermar 1854
                 */
2087 jermar 1855
                btree_insert(&a->used_space, page,
1856
                    (void *) count, leaf);
1387 jermar 1857
                return 1;
1858
            }
1859
        }
1860
    }
1861
 
3425 svoboda 1862
    panic("Inconsistency detected while adding %" PRIc " pages of used "
1863
        "space at %p.\n", count, page);
1387 jermar 1864
}
1865
 
1866
/** Mark portion of address space area as unused.
1867
 *
1868
 * The address space area must be already locked.
1869
 *
3425 svoboda 1870
 * @param a     Address space area.
1871
 * @param page      First page to be marked.
1872
 * @param count     Number of page to be marked.
1387 jermar 1873
 *
3425 svoboda 1874
 * @return      Zero on failure and non-zero on success.
1387 jermar 1875
 */
1780 jermar 1876
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1387 jermar 1877
{
1878
    btree_node_t *leaf, *node;
1879
    count_t pages;
2745 decky 1880
    unsigned int i;
1387 jermar 1881
 
1882
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1883
    ASSERT(count);
1884
 
1885
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1886
    if (pages) {
1887
        /*
1888
         * We are lucky, page is the beginning of some interval.
1889
         */
1890
        if (count > pages) {
1891
            return 0;
1892
        } else if (count == pages) {
1893
            btree_remove(&a->used_space, page, leaf);
1403 jermar 1894
            return 1;
1387 jermar 1895
        } else {
1896
            /*
1897
             * Find the respective interval.
1898
             * Decrease its size and relocate its start address.
1899
             */
1900
            for (i = 0; i < leaf->keys; i++) {
1901
                if (leaf->key[i] == page) {
2087 jermar 1902
                    leaf->key[i] += count * PAGE_SIZE;
1403 jermar 1903
                    leaf->value[i] -= count;
1387 jermar 1904
                    return 1;
1905
                }
1906
            }
1907
            goto error;
1908
        }
1909
    }
1910
 
1911
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1912
    if (node && page < leaf->key[0]) {
1780 jermar 1913
        uintptr_t left_pg = node->key[node->keys - 1];
1387 jermar 1914
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1915
 
2087 jermar 1916
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1917
            count * PAGE_SIZE)) {
1918
            if (page + count * PAGE_SIZE ==
1919
                left_pg + left_cnt * PAGE_SIZE) {
1387 jermar 1920
                /*
2087 jermar 1921
                 * The interval is contained in the rightmost
1922
                 * interval of the left neighbour and can be
1923
                 * removed by updating the size of the bigger
1924
                 * interval.
1387 jermar 1925
                 */
1403 jermar 1926
                node->value[node->keys - 1] -= count;
1387 jermar 1927
                return 1;
2087 jermar 1928
            } else if (page + count * PAGE_SIZE <
1929
                left_pg + left_cnt*PAGE_SIZE) {
1403 jermar 1930
                count_t new_cnt;
1387 jermar 1931
 
1932
                /*
2087 jermar 1933
                 * The interval is contained in the rightmost
1934
                 * interval of the left neighbour but its
1935
                 * removal requires both updating the size of
1936
                 * the original interval and also inserting a
1937
                 * new interval.
1387 jermar 1938
                 */
2087 jermar 1939
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1940
                    (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1403 jermar 1941
                node->value[node->keys - 1] -= count + new_cnt;
2087 jermar 1942
                btree_insert(&a->used_space, page +
1943
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1387 jermar 1944
                return 1;
1945
            }
1946
        }
1947
        return 0;
1948
    } else if (page < leaf->key[0]) {
1949
        return 0;
1950
    }
1951
 
1952
    if (page > leaf->key[leaf->keys - 1]) {
1780 jermar 1953
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1387 jermar 1954
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1955
 
2087 jermar 1956
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1957
            count * PAGE_SIZE)) {
1958
            if (page + count * PAGE_SIZE ==
1959
                left_pg + left_cnt * PAGE_SIZE) {
1387 jermar 1960
                /*
2087 jermar 1961
                 * The interval is contained in the rightmost
1962
                 * interval of the leaf and can be removed by
1963
                 * updating the size of the bigger interval.
1387 jermar 1964
                 */
1403 jermar 1965
                leaf->value[leaf->keys - 1] -= count;
1387 jermar 1966
                return 1;
2087 jermar 1967
            } else if (page + count * PAGE_SIZE < left_pg +
1968
                left_cnt * PAGE_SIZE) {
1403 jermar 1969
                count_t new_cnt;
1387 jermar 1970
 
1971
                /*
2087 jermar 1972
                 * The interval is contained in the rightmost
1973
                 * interval of the leaf but its removal
1974
                 * requires both updating the size of the
1975
                 * original interval and also inserting a new
1976
                 * interval.
1387 jermar 1977
                 */
2087 jermar 1978
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1979
                    (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1403 jermar 1980
                leaf->value[leaf->keys - 1] -= count + new_cnt;
2087 jermar 1981
                btree_insert(&a->used_space, page +
1982
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1387 jermar 1983
                return 1;
1984
            }
1985
        }
1986
        return 0;
1987
    }  
1988
 
1989
    /*
1990
     * The border cases have been already resolved.
1991
     * Now the interval can be only between intervals of the leaf.
1992
     */
1993
    for (i = 1; i < leaf->keys - 1; i++) {
1994
        if (page < leaf->key[i]) {
1780 jermar 1995
            uintptr_t left_pg = leaf->key[i - 1];
1387 jermar 1996
            count_t left_cnt = (count_t) leaf->value[i - 1];
1997
 
1998
            /*
2087 jermar 1999
             * Now the interval is between intervals corresponding
2000
             * to (i - 1) and i.
1387 jermar 2001
             */
2087 jermar 2002
            if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
2003
                count * PAGE_SIZE)) {
2004
                if (page + count * PAGE_SIZE ==
2005
                    left_pg + left_cnt*PAGE_SIZE) {
1387 jermar 2006
                    /*
2087 jermar 2007
                     * The interval is contained in the
2008
                     * interval (i - 1) of the leaf and can
2009
                     * be removed by updating the size of
2010
                     * the bigger interval.
1387 jermar 2011
                     */
1403 jermar 2012
                    leaf->value[i - 1] -= count;
1387 jermar 2013
                    return 1;
2087 jermar 2014
                } else if (page + count * PAGE_SIZE <
2015
                    left_pg + left_cnt * PAGE_SIZE) {
1403 jermar 2016
                    count_t new_cnt;
1387 jermar 2017
 
2018
                    /*
2087 jermar 2019
                     * The interval is contained in the
2020
                     * interval (i - 1) of the leaf but its
2021
                     * removal requires both updating the
2022
                     * size of the original interval and
1387 jermar 2023
                     * also inserting a new interval.
2024
                     */
2087 jermar 2025
                    new_cnt = ((left_pg +
2026
                        left_cnt * PAGE_SIZE) -
2027
                        (page + count * PAGE_SIZE)) >>
2028
                        PAGE_WIDTH;
1403 jermar 2029
                    leaf->value[i - 1] -= count + new_cnt;
2087 jermar 2030
                    btree_insert(&a->used_space, page +
2031
                        count * PAGE_SIZE, (void *) new_cnt,
2032
                        leaf);
1387 jermar 2033
                    return 1;
2034
                }
2035
            }
2036
            return 0;
2037
        }
2038
    }
2039
 
2040
error:
3425 svoboda 2041
    panic("Inconsistency detected while removing %" PRIc " pages of used "
2042
        "space from %p.\n", count, page);
1387 jermar 2043
}
2044
 
1409 jermar 2045
/** Remove reference to address space area share info.
2046
 *
2047
 * If the reference count drops to 0, the sh_info is deallocated.
2048
 *
3425 svoboda 2049
 * @param sh_info   Pointer to address space area share info.
1409 jermar 2050
 */
2051
void sh_info_remove_reference(share_info_t *sh_info)
2052
{
2053
    bool dealloc = false;
2054
 
2055
    mutex_lock(&sh_info->lock);
2056
    ASSERT(sh_info->refcount);
2057
    if (--sh_info->refcount == 0) {
2058
        dealloc = true;
1495 jermar 2059
        link_t *cur;
1409 jermar 2060
 
2061
        /*
2062
         * Now walk carefully the pagemap B+tree and free/remove
2063
         * reference from all frames found there.
2064
         */
2087 jermar 2065
        for (cur = sh_info->pagemap.leaf_head.next;
2066
            cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1409 jermar 2067
            btree_node_t *node;
2745 decky 2068
            unsigned int i;
1409 jermar 2069
 
1495 jermar 2070
            node = list_get_instance(cur, btree_node_t, leaf_link);
2071
            for (i = 0; i < node->keys; i++)
1780 jermar 2072
                frame_free((uintptr_t) node->value[i]);
1409 jermar 2073
        }
2074
 
2075
    }
2076
    mutex_unlock(&sh_info->lock);
2077
 
2078
    if (dealloc) {
2079
        btree_destroy(&sh_info->pagemap);
2080
        free(sh_info);
2081
    }
2082
}
2083
 
1235 jermar 2084
/*
2085
 * Address space related syscalls.
2086
 */
2087
 
2088
/** Wrapper for as_area_create(). */
1780 jermar 2089
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1235 jermar 2090
{
2087 jermar 2091
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
2092
        AS_AREA_ATTR_NONE, &anon_backend, NULL))
1780 jermar 2093
        return (unative_t) address;
1235 jermar 2094
    else
1780 jermar 2095
        return (unative_t) -1;
1235 jermar 2096
}
2097
 
1793 jermar 2098
/** Wrapper for as_area_resize(). */
1780 jermar 2099
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1235 jermar 2100
{
1780 jermar 2101
    return (unative_t) as_area_resize(AS, address, size, 0);
1235 jermar 2102
}
2103
 
3425 svoboda 2104
/** Wrapper for as_area_change_flags(). */
2105
unative_t sys_as_area_change_flags(uintptr_t address, int flags)
2106
{
2107
    return (unative_t) as_area_change_flags(AS, flags, address);
2108
}
2109
 
1793 jermar 2110
/** Wrapper for as_area_destroy(). */
1780 jermar 2111
unative_t sys_as_area_destroy(uintptr_t address)
1306 jermar 2112
{
1780 jermar 2113
    return (unative_t) as_area_destroy(AS, address);
1306 jermar 2114
}
1702 cejka 2115
 
1914 jermar 2116
/** Print out information about address space.
2117
 *
3425 svoboda 2118
 * @param as        Address space.
1914 jermar 2119
 */
2120
void as_print(as_t *as)
2121
{
2122
    ipl_t ipl;
2123
 
2124
    ipl = interrupts_disable();
2125
    mutex_lock(&as->lock);
2126
 
2127
    /* print out info about address space areas */
2128
    link_t *cur;
2087 jermar 2129
    for (cur = as->as_area_btree.leaf_head.next;
2130
        cur != &as->as_area_btree.leaf_head; cur = cur->next) {
2131
        btree_node_t *node;
1914 jermar 2132
 
2087 jermar 2133
        node = list_get_instance(cur, btree_node_t, leaf_link);
2134
 
2745 decky 2135
        unsigned int i;
1914 jermar 2136
        for (i = 0; i < node->keys; i++) {
1915 jermar 2137
            as_area_t *area = node->value[i];
1914 jermar 2138
 
2139
            mutex_lock(&area->lock);
3425 svoboda 2140
            printf("as_area: %p, base=%p, pages=%" PRIc
2141
                " (%p - %p)\n", area, area->base, area->pages,
2142
                area->base, area->base + FRAMES2SIZE(area->pages));
1914 jermar 2143
            mutex_unlock(&area->lock);
2144
        }
2145
    }
2146
 
2147
    mutex_unlock(&as->lock);
2148
    interrupts_restore(ipl);
2149
}
2150
 
1757 jermar 2151
/** @}
1702 cejka 2152
 */