Rev 2216 | Rev 3424 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
1101 | jermar | 1 | /* |
2071 | jermar | 2 | * Copyright (c) 2006 Jakub Jermar |
1101 | jermar | 3 | * All rights reserved. |
4 | * |
||
5 | * Redistribution and use in source and binary forms, with or without |
||
6 | * modification, are permitted provided that the following conditions |
||
7 | * are met: |
||
8 | * |
||
9 | * - Redistributions of source code must retain the above copyright |
||
10 | * notice, this list of conditions and the following disclaimer. |
||
11 | * - Redistributions in binary form must reproduce the above copyright |
||
12 | * notice, this list of conditions and the following disclaimer in the |
||
13 | * documentation and/or other materials provided with the distribution. |
||
14 | * - The name of the author may not be used to endorse or promote products |
||
15 | * derived from this software without specific prior written permission. |
||
16 | * |
||
17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
||
18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
||
19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
||
20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
||
21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
||
22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
||
23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
||
24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
||
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
||
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||
27 | */ |
||
28 | |||
1757 | jermar | 29 | /** @addtogroup genericadt |
1702 | cejka | 30 | * @{ |
31 | */ |
||
32 | |||
1248 | jermar | 33 | /** |
1704 | cejka | 34 | * @file |
1248 | jermar | 35 | * @brief B+tree implementation. |
1101 | jermar | 36 | * |
1248 | jermar | 37 | * This file implements B+tree type and operations. |
38 | * |
||
39 | * The B+tree has the following properties: |
||
40 | * @li it is a ballanced 3-4-5 tree (i.e. BTREE_M = 5) |
||
41 | * @li values (i.e. pointers to values) are stored only in leaves |
||
42 | * @li leaves are linked in a list |
||
43 | * |
||
1134 | jermar | 44 | * Be carefull when using these trees. They need to allocate |
45 | * and deallocate memory for their index nodes and as such |
||
46 | * can sleep. |
||
1101 | jermar | 47 | */ |
48 | |||
49 | #include <adt/btree.h> |
||
50 | #include <adt/list.h> |
||
51 | #include <mm/slab.h> |
||
52 | #include <debug.h> |
||
53 | #include <panic.h> |
||
54 | #include <print.h> |
||
55 | |||
1483 | jermar | 56 | static void btree_destroy_subtree(btree_node_t *root); |
1177 | jermar | 57 | static void _btree_insert(btree_t *t, btree_key_t key, void *value, btree_node_t *rsubtree, btree_node_t *node); |
58 | static void _btree_remove(btree_t *t, btree_key_t key, btree_node_t *node); |
||
1101 | jermar | 59 | static void node_initialize(btree_node_t *node); |
1177 | jermar | 60 | static void node_insert_key_and_lsubtree(btree_node_t *node, btree_key_t key, void *value, btree_node_t *lsubtree); |
61 | static void node_insert_key_and_rsubtree(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree); |
||
62 | static void node_remove_key_and_lsubtree(btree_node_t *node, btree_key_t key); |
||
63 | static void node_remove_key_and_rsubtree(btree_node_t *node, btree_key_t key); |
||
64 | static btree_node_t *node_split(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree, btree_key_t *median); |
||
1142 | jermar | 65 | static btree_node_t *node_combine(btree_node_t *node); |
1136 | jermar | 66 | static index_t find_key_by_subtree(btree_node_t *node, btree_node_t *subtree, bool right); |
1142 | jermar | 67 | static void rotate_from_right(btree_node_t *lnode, btree_node_t *rnode, index_t idx); |
68 | static void rotate_from_left(btree_node_t *lnode, btree_node_t *rnode, index_t idx); |
||
1177 | jermar | 69 | static bool try_insert_by_rotation_to_left(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree); |
70 | static bool try_insert_by_rotation_to_right(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree); |
||
1142 | jermar | 71 | static bool try_rotation_from_left(btree_node_t *rnode); |
72 | static bool try_rotation_from_right(btree_node_t *lnode); |
||
1101 | jermar | 73 | |
74 | #define ROOT_NODE(n) (!(n)->parent) |
||
75 | #define INDEX_NODE(n) ((n)->subtree[0] != NULL) |
||
76 | #define LEAF_NODE(n) ((n)->subtree[0] == NULL) |
||
77 | |||
1140 | jermar | 78 | #define FILL_FACTOR ((BTREE_M-1)/2) |
79 | |||
1101 | jermar | 80 | #define MEDIAN_LOW_INDEX(n) (((n)->keys-1)/2) |
81 | #define MEDIAN_HIGH_INDEX(n) ((n)->keys/2) |
||
82 | #define MEDIAN_LOW(n) ((n)->key[MEDIAN_LOW_INDEX((n))]); |
||
83 | #define MEDIAN_HIGH(n) ((n)->key[MEDIAN_HIGH_INDEX((n))]); |
||
84 | |||
1164 | jermar | 85 | static slab_cache_t *btree_node_slab; |
86 | |||
87 | /** Initialize B-trees. */ |
||
88 | void btree_init(void) |
||
89 | { |
||
90 | btree_node_slab = slab_cache_create("btree_node_slab", sizeof(btree_node_t), 0, NULL, NULL, SLAB_CACHE_MAGDEFERRED); |
||
91 | } |
||
92 | |||
1101 | jermar | 93 | /** Create empty B-tree. |
94 | * |
||
95 | * @param t B-tree. |
||
96 | */ |
||
97 | void btree_create(btree_t *t) |
||
98 | { |
||
99 | list_initialize(&t->leaf_head); |
||
1164 | jermar | 100 | t->root = (btree_node_t *) slab_alloc(btree_node_slab, 0); |
1101 | jermar | 101 | node_initialize(t->root); |
102 | list_append(&t->root->leaf_link, &t->leaf_head); |
||
103 | } |
||
104 | |||
105 | /** Destroy empty B-tree. */ |
||
106 | void btree_destroy(btree_t *t) |
||
107 | { |
||
1483 | jermar | 108 | btree_destroy_subtree(t->root); |
1101 | jermar | 109 | } |
110 | |||
111 | /** Insert key-value pair into B-tree. |
||
112 | * |
||
113 | * @param t B-tree. |
||
114 | * @param key Key to be inserted. |
||
115 | * @param value Value to be inserted. |
||
116 | * @param leaf_node Leaf node where the insertion should begin. |
||
117 | */ |
||
1177 | jermar | 118 | void btree_insert(btree_t *t, btree_key_t key, void *value, btree_node_t *leaf_node) |
1101 | jermar | 119 | { |
120 | btree_node_t *lnode; |
||
121 | |||
122 | ASSERT(value); |
||
123 | |||
124 | lnode = leaf_node; |
||
125 | if (!lnode) { |
||
126 | if (btree_search(t, key, &lnode)) { |
||
1221 | decky | 127 | panic("B-tree %p already contains key %d\n", t, key); |
1101 | jermar | 128 | } |
129 | } |
||
130 | |||
131 | _btree_insert(t, key, value, NULL, lnode); |
||
132 | } |
||
133 | |||
1483 | jermar | 134 | /** Destroy subtree rooted in a node. |
135 | * |
||
136 | * @param root Root of the subtree. |
||
137 | */ |
||
138 | void btree_destroy_subtree(btree_node_t *root) |
||
139 | { |
||
2111 | decky | 140 | count_t i; |
1483 | jermar | 141 | |
142 | if (root->keys) { |
||
143 | for (i = 0; i < root->keys + 1; i++) { |
||
144 | if (root->subtree[i]) |
||
145 | btree_destroy_subtree(root->subtree[i]); |
||
146 | } |
||
147 | } |
||
148 | slab_free(btree_node_slab, root); |
||
149 | } |
||
150 | |||
1101 | jermar | 151 | /** Recursively insert into B-tree. |
152 | * |
||
153 | * @param t B-tree. |
||
154 | * @param key Key to be inserted. |
||
155 | * @param value Value to be inserted. |
||
156 | * @param rsubtree Right subtree of the inserted key. |
||
157 | * @param node Start inserting into this node. |
||
158 | */ |
||
1177 | jermar | 159 | void _btree_insert(btree_t *t, btree_key_t key, void *value, btree_node_t *rsubtree, btree_node_t *node) |
1101 | jermar | 160 | { |
161 | if (node->keys < BTREE_MAX_KEYS) { |
||
162 | /* |
||
163 | * Node conatins enough space, the key can be stored immediately. |
||
164 | */ |
||
1142 | jermar | 165 | node_insert_key_and_rsubtree(node, key, value, rsubtree); |
166 | } else if (try_insert_by_rotation_to_left(node, key, value, rsubtree)) { |
||
1136 | jermar | 167 | /* |
168 | * The key-value-rsubtree triplet has been inserted because |
||
169 | * some keys could have been moved to the left sibling. |
||
170 | */ |
||
1142 | jermar | 171 | } else if (try_insert_by_rotation_to_right(node, key, value, rsubtree)) { |
1136 | jermar | 172 | /* |
173 | * The key-value-rsubtree triplet has been inserted because |
||
174 | * some keys could have been moved to the right sibling. |
||
175 | */ |
||
1101 | jermar | 176 | } else { |
177 | btree_node_t *rnode; |
||
1177 | jermar | 178 | btree_key_t median; |
1101 | jermar | 179 | |
180 | /* |
||
1136 | jermar | 181 | * Node is full and both siblings (if both exist) are full too. |
182 | * Split the node and insert the smallest key from the node containing |
||
183 | * bigger keys (i.e. the new node) into its parent. |
||
1101 | jermar | 184 | */ |
185 | |||
186 | rnode = node_split(node, key, value, rsubtree, &median); |
||
187 | |||
188 | if (LEAF_NODE(node)) { |
||
1144 | jermar | 189 | list_prepend(&rnode->leaf_link, &node->leaf_link); |
1101 | jermar | 190 | } |
191 | |||
192 | if (ROOT_NODE(node)) { |
||
193 | /* |
||
194 | * We split the root node. Create new root. |
||
195 | */ |
||
1164 | jermar | 196 | t->root = (btree_node_t *) slab_alloc(btree_node_slab, 0); |
1101 | jermar | 197 | node->parent = t->root; |
198 | rnode->parent = t->root; |
||
199 | node_initialize(t->root); |
||
200 | |||
201 | /* |
||
202 | * Left-hand side subtree will be the old root (i.e. node). |
||
203 | * Right-hand side subtree will be rnode. |
||
204 | */ |
||
205 | t->root->subtree[0] = node; |
||
206 | |||
207 | t->root->depth = node->depth + 1; |
||
208 | } |
||
209 | _btree_insert(t, median, NULL, rnode, node->parent); |
||
210 | } |
||
211 | |||
212 | } |
||
213 | |||
1140 | jermar | 214 | /** Remove B-tree node. |
215 | * |
||
1708 | jermar | 216 | * @param t B-tree. |
1140 | jermar | 217 | * @param key Key to be removed from the B-tree along with its associated value. |
218 | * @param leaf_node If not NULL, pointer to the leaf node where the key is found. |
||
219 | */ |
||
1177 | jermar | 220 | void btree_remove(btree_t *t, btree_key_t key, btree_node_t *leaf_node) |
1101 | jermar | 221 | { |
1140 | jermar | 222 | btree_node_t *lnode; |
223 | |||
224 | lnode = leaf_node; |
||
225 | if (!lnode) { |
||
226 | if (!btree_search(t, key, &lnode)) { |
||
1221 | decky | 227 | panic("B-tree %p does not contain key %d\n", t, key); |
1140 | jermar | 228 | } |
229 | } |
||
230 | |||
1142 | jermar | 231 | _btree_remove(t, key, lnode); |
232 | } |
||
1140 | jermar | 233 | |
1142 | jermar | 234 | /** Recursively remove B-tree node. |
235 | * |
||
1708 | jermar | 236 | * @param t B-tree. |
1142 | jermar | 237 | * @param key Key to be removed from the B-tree along with its associated value. |
238 | * @param node Node where the key being removed resides. |
||
239 | */ |
||
1177 | jermar | 240 | void _btree_remove(btree_t *t, btree_key_t key, btree_node_t *node) |
1142 | jermar | 241 | { |
242 | if (ROOT_NODE(node)) { |
||
243 | if (node->keys == 1 && node->subtree[0]) { |
||
244 | /* |
||
245 | * Free the current root and set new root. |
||
246 | */ |
||
247 | t->root = node->subtree[0]; |
||
248 | t->root->parent = NULL; |
||
1164 | jermar | 249 | slab_free(btree_node_slab, node); |
1142 | jermar | 250 | } else { |
251 | /* |
||
252 | * Remove the key from the root node. |
||
253 | * Note that the right subtree is removed because when |
||
254 | * combining two nodes, the left-side sibling is preserved |
||
255 | * and the right-side sibling is freed. |
||
256 | */ |
||
257 | node_remove_key_and_rsubtree(node, key); |
||
258 | } |
||
259 | return; |
||
260 | } |
||
261 | |||
262 | if (node->keys <= FILL_FACTOR) { |
||
263 | /* |
||
264 | * If the node is below the fill factor, |
||
265 | * try to borrow keys from left or right sibling. |
||
266 | */ |
||
267 | if (!try_rotation_from_left(node)) |
||
268 | try_rotation_from_right(node); |
||
269 | } |
||
270 | |||
271 | if (node->keys > FILL_FACTOR) { |
||
2111 | decky | 272 | count_t i; |
1142 | jermar | 273 | |
274 | /* |
||
275 | * The key can be immediatelly removed. |
||
276 | * |
||
277 | * Note that the right subtree is removed because when |
||
278 | * combining two nodes, the left-side sibling is preserved |
||
279 | * and the right-side sibling is freed. |
||
280 | */ |
||
281 | node_remove_key_and_rsubtree(node, key); |
||
282 | for (i = 0; i < node->parent->keys; i++) { |
||
283 | if (node->parent->key[i] == key) |
||
284 | node->parent->key[i] = node->key[0]; |
||
285 | } |
||
286 | |||
287 | } else { |
||
288 | index_t idx; |
||
289 | btree_node_t *rnode, *parent; |
||
290 | |||
291 | /* |
||
292 | * The node is below the fill factor as well as its left and right sibling. |
||
293 | * Resort to combining the node with one of its siblings. |
||
294 | * The node which is on the left is preserved and the node on the right is |
||
295 | * freed. |
||
296 | */ |
||
297 | parent = node->parent; |
||
298 | node_remove_key_and_rsubtree(node, key); |
||
299 | rnode = node_combine(node); |
||
300 | if (LEAF_NODE(rnode)) |
||
301 | list_remove(&rnode->leaf_link); |
||
302 | idx = find_key_by_subtree(parent, rnode, true); |
||
303 | ASSERT((int) idx != -1); |
||
1164 | jermar | 304 | slab_free(btree_node_slab, rnode); |
1142 | jermar | 305 | _btree_remove(t, parent->key[idx], parent); |
306 | } |
||
1101 | jermar | 307 | } |
308 | |||
309 | /** Search key in a B-tree. |
||
310 | * |
||
311 | * @param t B-tree. |
||
312 | * @param key Key to be searched. |
||
313 | * @param leaf_node Address where to put pointer to visited leaf node. |
||
314 | * |
||
315 | * @return Pointer to value or NULL if there is no such key. |
||
316 | */ |
||
1177 | jermar | 317 | void *btree_search(btree_t *t, btree_key_t key, btree_node_t **leaf_node) |
1101 | jermar | 318 | { |
319 | btree_node_t *cur, *next; |
||
320 | |||
321 | /* |
||
1134 | jermar | 322 | * Iteratively descend to the leaf that can contain the searched key. |
1101 | jermar | 323 | */ |
324 | for (cur = t->root; cur; cur = next) { |
||
1134 | jermar | 325 | |
1101 | jermar | 326 | /* Last iteration will set this with proper leaf node address. */ |
327 | *leaf_node = cur; |
||
1134 | jermar | 328 | |
329 | /* |
||
330 | * The key can be in the leftmost subtree. |
||
331 | * Test it separately. |
||
332 | */ |
||
333 | if (key < cur->key[0]) { |
||
334 | next = cur->subtree[0]; |
||
335 | continue; |
||
336 | } else { |
||
337 | void *val; |
||
2111 | decky | 338 | count_t i; |
1134 | jermar | 339 | |
340 | /* |
||
341 | * Now if the key is smaller than cur->key[i] |
||
342 | * it can only mean that the value is in cur->subtree[i] |
||
343 | * or it is not in the tree at all. |
||
344 | */ |
||
345 | for (i = 1; i < cur->keys; i++) { |
||
346 | if (key < cur->key[i]) { |
||
347 | next = cur->subtree[i]; |
||
348 | val = cur->value[i - 1]; |
||
349 | |||
350 | if (LEAF_NODE(cur)) |
||
351 | return key == cur->key[i - 1] ? val : NULL; |
||
352 | |||
353 | goto descend; |
||
354 | } |
||
1101 | jermar | 355 | } |
1134 | jermar | 356 | |
357 | /* |
||
358 | * Last possibility is that the key is in the rightmost subtree. |
||
359 | */ |
||
360 | next = cur->subtree[i]; |
||
361 | val = cur->value[i - 1]; |
||
362 | if (LEAF_NODE(cur)) |
||
363 | return key == cur->key[i - 1] ? val : NULL; |
||
1101 | jermar | 364 | } |
1134 | jermar | 365 | descend: |
366 | ; |
||
1101 | jermar | 367 | } |
368 | |||
369 | /* |
||
1134 | jermar | 370 | * The key was not found in the *leaf_node and is smaller than any of its keys. |
1101 | jermar | 371 | */ |
372 | return NULL; |
||
373 | } |
||
374 | |||
1150 | jermar | 375 | /** Return pointer to B-tree leaf node's left neighbour. |
1147 | jermar | 376 | * |
377 | * @param t B-tree. |
||
1150 | jermar | 378 | * @param node Node whose left neighbour will be returned. |
1147 | jermar | 379 | * |
1150 | jermar | 380 | * @return Left neighbour of the node or NULL if the node does not have the left neighbour. |
1147 | jermar | 381 | */ |
1150 | jermar | 382 | btree_node_t *btree_leaf_node_left_neighbour(btree_t *t, btree_node_t *node) |
1147 | jermar | 383 | { |
384 | ASSERT(LEAF_NODE(node)); |
||
385 | if (node->leaf_link.prev != &t->leaf_head) |
||
386 | return list_get_instance(node->leaf_link.prev, btree_node_t, leaf_link); |
||
387 | else |
||
388 | return NULL; |
||
389 | } |
||
390 | |||
1150 | jermar | 391 | /** Return pointer to B-tree leaf node's right neighbour. |
1147 | jermar | 392 | * |
393 | * @param t B-tree. |
||
1150 | jermar | 394 | * @param node Node whose right neighbour will be returned. |
1147 | jermar | 395 | * |
1150 | jermar | 396 | * @return Right neighbour of the node or NULL if the node does not have the right neighbour. |
1147 | jermar | 397 | */ |
1150 | jermar | 398 | btree_node_t *btree_leaf_node_right_neighbour(btree_t *t, btree_node_t *node) |
1147 | jermar | 399 | { |
400 | ASSERT(LEAF_NODE(node)); |
||
401 | if (node->leaf_link.next != &t->leaf_head) |
||
402 | return list_get_instance(node->leaf_link.next, btree_node_t, leaf_link); |
||
403 | else |
||
404 | return NULL; |
||
405 | } |
||
406 | |||
1101 | jermar | 407 | /** Initialize B-tree node. |
408 | * |
||
409 | * @param node B-tree node. |
||
410 | */ |
||
411 | void node_initialize(btree_node_t *node) |
||
412 | { |
||
413 | int i; |
||
414 | |||
415 | node->keys = 0; |
||
416 | |||
417 | /* Clean also space for the extra key. */ |
||
418 | for (i = 0; i < BTREE_MAX_KEYS + 1; i++) { |
||
419 | node->key[i] = 0; |
||
420 | node->value[i] = NULL; |
||
421 | node->subtree[i] = NULL; |
||
422 | } |
||
423 | node->subtree[i] = NULL; |
||
424 | |||
425 | node->parent = NULL; |
||
426 | |||
427 | link_initialize(&node->leaf_link); |
||
428 | |||
429 | link_initialize(&node->bfs_link); |
||
430 | node->depth = 0; |
||
431 | } |
||
432 | |||
1136 | jermar | 433 | /** Insert key-value-lsubtree triplet into B-tree node. |
1101 | jermar | 434 | * |
435 | * It is actually possible to have more keys than BTREE_MAX_KEYS. |
||
1136 | jermar | 436 | * This feature is used during insert by right rotation. |
437 | * |
||
438 | * @param node B-tree node into wich the new key is to be inserted. |
||
439 | * @param key The key to be inserted. |
||
440 | * @param value Pointer to value to be inserted. |
||
441 | * @param lsubtree Pointer to the left subtree. |
||
442 | */ |
||
1177 | jermar | 443 | void node_insert_key_and_lsubtree(btree_node_t *node, btree_key_t key, void *value, btree_node_t *lsubtree) |
1136 | jermar | 444 | { |
2111 | decky | 445 | count_t i; |
1136 | jermar | 446 | |
447 | for (i = 0; i < node->keys; i++) { |
||
448 | if (key < node->key[i]) { |
||
2111 | decky | 449 | count_t j; |
1136 | jermar | 450 | |
451 | for (j = node->keys; j > i; j--) { |
||
452 | node->key[j] = node->key[j - 1]; |
||
453 | node->value[j] = node->value[j - 1]; |
||
454 | node->subtree[j + 1] = node->subtree[j]; |
||
455 | } |
||
456 | node->subtree[j + 1] = node->subtree[j]; |
||
457 | break; |
||
458 | } |
||
459 | } |
||
460 | node->key[i] = key; |
||
461 | node->value[i] = value; |
||
462 | node->subtree[i] = lsubtree; |
||
463 | |||
464 | node->keys++; |
||
465 | } |
||
466 | |||
467 | /** Insert key-value-rsubtree triplet into B-tree node. |
||
468 | * |
||
469 | * It is actually possible to have more keys than BTREE_MAX_KEYS. |
||
1101 | jermar | 470 | * This feature is used during splitting the node when the |
1136 | jermar | 471 | * number of keys is BTREE_MAX_KEYS + 1. Insert by left rotation |
472 | * also makes use of this feature. |
||
1101 | jermar | 473 | * |
474 | * @param node B-tree node into wich the new key is to be inserted. |
||
475 | * @param key The key to be inserted. |
||
476 | * @param value Pointer to value to be inserted. |
||
477 | * @param rsubtree Pointer to the right subtree. |
||
478 | */ |
||
1177 | jermar | 479 | void node_insert_key_and_rsubtree(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree) |
1101 | jermar | 480 | { |
2111 | decky | 481 | count_t i; |
1101 | jermar | 482 | |
483 | for (i = 0; i < node->keys; i++) { |
||
484 | if (key < node->key[i]) { |
||
2111 | decky | 485 | count_t j; |
1101 | jermar | 486 | |
487 | for (j = node->keys; j > i; j--) { |
||
488 | node->key[j] = node->key[j - 1]; |
||
489 | node->value[j] = node->value[j - 1]; |
||
490 | node->subtree[j + 1] = node->subtree[j]; |
||
491 | } |
||
492 | break; |
||
493 | } |
||
494 | } |
||
495 | node->key[i] = key; |
||
496 | node->value[i] = value; |
||
497 | node->subtree[i + 1] = rsubtree; |
||
498 | |||
499 | node->keys++; |
||
500 | } |
||
501 | |||
1144 | jermar | 502 | /** Remove key and its left subtree pointer from B-tree node. |
503 | * |
||
504 | * Remove the key and eliminate gaps in node->key array. |
||
505 | * Note that the value pointer and the left subtree pointer |
||
506 | * is removed from the node as well. |
||
507 | * |
||
508 | * @param node B-tree node. |
||
509 | * @param key Key to be removed. |
||
510 | */ |
||
1177 | jermar | 511 | void node_remove_key_and_lsubtree(btree_node_t *node, btree_key_t key) |
1144 | jermar | 512 | { |
2111 | decky | 513 | count_t i, j; |
1144 | jermar | 514 | |
515 | for (i = 0; i < node->keys; i++) { |
||
516 | if (key == node->key[i]) { |
||
517 | for (j = i + 1; j < node->keys; j++) { |
||
518 | node->key[j - 1] = node->key[j]; |
||
519 | node->value[j - 1] = node->value[j]; |
||
520 | node->subtree[j - 1] = node->subtree[j]; |
||
521 | } |
||
522 | node->subtree[j - 1] = node->subtree[j]; |
||
523 | node->keys--; |
||
524 | return; |
||
525 | } |
||
526 | } |
||
1221 | decky | 527 | panic("node %p does not contain key %d\n", node, key); |
1144 | jermar | 528 | } |
529 | |||
530 | /** Remove key and its right subtree pointer from B-tree node. |
||
531 | * |
||
532 | * Remove the key and eliminate gaps in node->key array. |
||
533 | * Note that the value pointer and the right subtree pointer |
||
534 | * is removed from the node as well. |
||
535 | * |
||
536 | * @param node B-tree node. |
||
537 | * @param key Key to be removed. |
||
538 | */ |
||
1177 | jermar | 539 | void node_remove_key_and_rsubtree(btree_node_t *node, btree_key_t key) |
1144 | jermar | 540 | { |
2111 | decky | 541 | count_t i, j; |
1144 | jermar | 542 | |
543 | for (i = 0; i < node->keys; i++) { |
||
544 | if (key == node->key[i]) { |
||
545 | for (j = i + 1; j < node->keys; j++) { |
||
546 | node->key[j - 1] = node->key[j]; |
||
547 | node->value[j - 1] = node->value[j]; |
||
548 | node->subtree[j] = node->subtree[j + 1]; |
||
549 | } |
||
550 | node->keys--; |
||
551 | return; |
||
552 | } |
||
553 | } |
||
1221 | decky | 554 | panic("node %p does not contain key %d\n", node, key); |
1144 | jermar | 555 | } |
556 | |||
1134 | jermar | 557 | /** Split full B-tree node and insert new key-value-right-subtree triplet. |
1101 | jermar | 558 | * |
1757 | jermar | 559 | * This function will split a node and return a pointer to a newly created |
1134 | jermar | 560 | * node containing keys greater than or equal to the greater of medians |
561 | * (or median) of the old keys and the newly added key. It will also write |
||
562 | * the median key to a memory address supplied by the caller. |
||
1101 | jermar | 563 | * |
1134 | jermar | 564 | * If the node being split is an index node, the median will not be |
565 | * included in the new node. If the node is a leaf node, |
||
566 | * the median will be copied there. |
||
1101 | jermar | 567 | * |
568 | * @param node B-tree node wich is going to be split. |
||
569 | * @param key The key to be inserted. |
||
570 | * @param value Pointer to the value to be inserted. |
||
571 | * @param rsubtree Pointer to the right subtree of the key being added. |
||
572 | * @param median Address in memory, where the median key will be stored. |
||
573 | * |
||
574 | * @return Newly created right sibling of node. |
||
575 | */ |
||
1177 | jermar | 576 | btree_node_t *node_split(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree, btree_key_t *median) |
1101 | jermar | 577 | { |
578 | btree_node_t *rnode; |
||
2111 | decky | 579 | count_t i, j; |
1101 | jermar | 580 | |
581 | ASSERT(median); |
||
582 | ASSERT(node->keys == BTREE_MAX_KEYS); |
||
1136 | jermar | 583 | |
1101 | jermar | 584 | /* |
585 | * Use the extra space to store the extra node. |
||
586 | */ |
||
1142 | jermar | 587 | node_insert_key_and_rsubtree(node, key, value, rsubtree); |
1101 | jermar | 588 | |
589 | /* |
||
590 | * Compute median of keys. |
||
591 | */ |
||
1134 | jermar | 592 | *median = MEDIAN_HIGH(node); |
1101 | jermar | 593 | |
1134 | jermar | 594 | /* |
595 | * Allocate and initialize new right sibling. |
||
596 | */ |
||
1164 | jermar | 597 | rnode = (btree_node_t *) slab_alloc(btree_node_slab, 0); |
1101 | jermar | 598 | node_initialize(rnode); |
599 | rnode->parent = node->parent; |
||
600 | rnode->depth = node->depth; |
||
601 | |||
602 | /* |
||
603 | * Copy big keys, values and subtree pointers to the new right sibling. |
||
1134 | jermar | 604 | * If this is an index node, do not copy the median. |
1101 | jermar | 605 | */ |
2111 | decky | 606 | i = (count_t) INDEX_NODE(node); |
1134 | jermar | 607 | for (i += MEDIAN_HIGH_INDEX(node), j = 0; i < node->keys; i++, j++) { |
1101 | jermar | 608 | rnode->key[j] = node->key[i]; |
609 | rnode->value[j] = node->value[i]; |
||
610 | rnode->subtree[j] = node->subtree[i]; |
||
611 | |||
612 | /* |
||
613 | * Fix parent links in subtrees. |
||
614 | */ |
||
615 | if (rnode->subtree[j]) |
||
616 | rnode->subtree[j]->parent = rnode; |
||
617 | |||
618 | } |
||
619 | rnode->subtree[j] = node->subtree[i]; |
||
620 | if (rnode->subtree[j]) |
||
621 | rnode->subtree[j]->parent = rnode; |
||
1134 | jermar | 622 | |
623 | rnode->keys = j; /* Set number of keys of the new node. */ |
||
624 | node->keys /= 2; /* Shrink the old node. */ |
||
1101 | jermar | 625 | |
626 | return rnode; |
||
627 | } |
||
628 | |||
1142 | jermar | 629 | /** Combine node with any of its siblings. |
630 | * |
||
631 | * The siblings are required to be below the fill factor. |
||
632 | * |
||
633 | * @param node Node to combine with one of its siblings. |
||
634 | * |
||
635 | * @return Pointer to the rightmost of the two nodes. |
||
636 | */ |
||
637 | btree_node_t *node_combine(btree_node_t *node) |
||
638 | { |
||
639 | index_t idx; |
||
640 | btree_node_t *rnode; |
||
2111 | decky | 641 | count_t i; |
1142 | jermar | 642 | |
643 | ASSERT(!ROOT_NODE(node)); |
||
644 | |||
645 | idx = find_key_by_subtree(node->parent, node, false); |
||
646 | if (idx == node->parent->keys) { |
||
647 | /* |
||
648 | * Rightmost subtree of its parent, combine with the left sibling. |
||
649 | */ |
||
650 | idx--; |
||
651 | rnode = node; |
||
652 | node = node->parent->subtree[idx]; |
||
653 | } else { |
||
654 | rnode = node->parent->subtree[idx + 1]; |
||
655 | } |
||
656 | |||
657 | /* Index nodes need to insert parent node key in between left and right node. */ |
||
658 | if (INDEX_NODE(node)) |
||
659 | node->key[node->keys++] = node->parent->key[idx]; |
||
660 | |||
661 | /* Copy the key-value-subtree triplets from the right node. */ |
||
662 | for (i = 0; i < rnode->keys; i++) { |
||
663 | node->key[node->keys + i] = rnode->key[i]; |
||
664 | node->value[node->keys + i] = rnode->value[i]; |
||
665 | if (INDEX_NODE(node)) { |
||
666 | node->subtree[node->keys + i] = rnode->subtree[i]; |
||
667 | rnode->subtree[i]->parent = node; |
||
668 | } |
||
669 | } |
||
670 | if (INDEX_NODE(node)) { |
||
671 | node->subtree[node->keys + i] = rnode->subtree[i]; |
||
672 | rnode->subtree[i]->parent = node; |
||
673 | } |
||
674 | |||
675 | node->keys += rnode->keys; |
||
676 | |||
677 | return rnode; |
||
678 | } |
||
679 | |||
1136 | jermar | 680 | /** Find key by its left or right subtree. |
681 | * |
||
682 | * @param node B-tree node. |
||
683 | * @param subtree Left or right subtree of a key found in node. |
||
684 | * @param right If true, subtree is a right subtree. If false, subtree is a left subtree. |
||
685 | * |
||
686 | * @return Index of the key associated with the subtree. |
||
687 | */ |
||
688 | index_t find_key_by_subtree(btree_node_t *node, btree_node_t *subtree, bool right) |
||
689 | { |
||
2111 | decky | 690 | count_t i; |
1136 | jermar | 691 | |
692 | for (i = 0; i < node->keys + 1; i++) { |
||
693 | if (subtree == node->subtree[i]) |
||
694 | return i - (int) (right != false); |
||
695 | } |
||
1221 | decky | 696 | panic("node %p does not contain subtree %p\n", node, subtree); |
1136 | jermar | 697 | } |
698 | |||
1142 | jermar | 699 | /** Rotate one key-value-rsubtree triplet from the left sibling to the right sibling. |
700 | * |
||
701 | * The biggest key and its value and right subtree is rotated from the left node |
||
702 | * to the right. If the node is an index node, than the parent node key belonging to |
||
703 | * the left node takes part in the rotation. |
||
704 | * |
||
705 | * @param lnode Left sibling. |
||
706 | * @param rnode Right sibling. |
||
707 | * @param idx Index of the parent node key that is taking part in the rotation. |
||
708 | */ |
||
709 | void rotate_from_left(btree_node_t *lnode, btree_node_t *rnode, index_t idx) |
||
710 | { |
||
1177 | jermar | 711 | btree_key_t key; |
1142 | jermar | 712 | |
713 | key = lnode->key[lnode->keys - 1]; |
||
714 | |||
715 | if (LEAF_NODE(lnode)) { |
||
716 | void *value; |
||
717 | |||
718 | value = lnode->value[lnode->keys - 1]; |
||
719 | node_remove_key_and_rsubtree(lnode, key); |
||
720 | node_insert_key_and_lsubtree(rnode, key, value, NULL); |
||
721 | lnode->parent->key[idx] = key; |
||
722 | } else { |
||
723 | btree_node_t *rsubtree; |
||
724 | |||
725 | rsubtree = lnode->subtree[lnode->keys]; |
||
726 | node_remove_key_and_rsubtree(lnode, key); |
||
727 | node_insert_key_and_lsubtree(rnode, lnode->parent->key[idx], NULL, rsubtree); |
||
728 | lnode->parent->key[idx] = key; |
||
729 | |||
730 | /* Fix parent link of the reconnected right subtree. */ |
||
731 | rsubtree->parent = rnode; |
||
732 | } |
||
733 | |||
734 | } |
||
735 | |||
736 | /** Rotate one key-value-lsubtree triplet from the right sibling to the left sibling. |
||
737 | * |
||
738 | * The smallest key and its value and left subtree is rotated from the right node |
||
739 | * to the left. If the node is an index node, than the parent node key belonging to |
||
740 | * the right node takes part in the rotation. |
||
741 | * |
||
742 | * @param lnode Left sibling. |
||
743 | * @param rnode Right sibling. |
||
744 | * @param idx Index of the parent node key that is taking part in the rotation. |
||
745 | */ |
||
746 | void rotate_from_right(btree_node_t *lnode, btree_node_t *rnode, index_t idx) |
||
747 | { |
||
1177 | jermar | 748 | btree_key_t key; |
1142 | jermar | 749 | |
750 | key = rnode->key[0]; |
||
751 | |||
752 | if (LEAF_NODE(rnode)) { |
||
753 | void *value; |
||
754 | |||
755 | value = rnode->value[0]; |
||
756 | node_remove_key_and_lsubtree(rnode, key); |
||
757 | node_insert_key_and_rsubtree(lnode, key, value, NULL); |
||
758 | rnode->parent->key[idx] = rnode->key[0]; |
||
759 | } else { |
||
760 | btree_node_t *lsubtree; |
||
761 | |||
762 | lsubtree = rnode->subtree[0]; |
||
763 | node_remove_key_and_lsubtree(rnode, key); |
||
764 | node_insert_key_and_rsubtree(lnode, rnode->parent->key[idx], NULL, lsubtree); |
||
765 | rnode->parent->key[idx] = key; |
||
766 | |||
767 | /* Fix parent link of the reconnected left subtree. */ |
||
768 | lsubtree->parent = lnode; |
||
769 | } |
||
770 | |||
771 | } |
||
772 | |||
1136 | jermar | 773 | /** Insert key-value-rsubtree triplet and rotate the node to the left, if this operation can be done. |
774 | * |
||
775 | * Left sibling of the node (if it exists) is checked for free space. |
||
776 | * If there is free space, the key is inserted and the smallest key of |
||
777 | * the node is moved there. The index node which is the parent of both |
||
778 | * nodes is fixed. |
||
779 | * |
||
780 | * @param node B-tree node. |
||
781 | * @param inskey Key to be inserted. |
||
782 | * @param insvalue Value to be inserted. |
||
783 | * @param rsubtree Right subtree of inskey. |
||
784 | * |
||
785 | * @return True if the rotation was performed, false otherwise. |
||
786 | */ |
||
1177 | jermar | 787 | bool try_insert_by_rotation_to_left(btree_node_t *node, btree_key_t inskey, void *insvalue, btree_node_t *rsubtree) |
1136 | jermar | 788 | { |
789 | index_t idx; |
||
790 | btree_node_t *lnode; |
||
791 | |||
792 | /* |
||
793 | * If this is root node, the rotation can not be done. |
||
794 | */ |
||
795 | if (ROOT_NODE(node)) |
||
796 | return false; |
||
797 | |||
798 | idx = find_key_by_subtree(node->parent, node, true); |
||
799 | if ((int) idx == -1) { |
||
800 | /* |
||
801 | * If this node is the leftmost subtree of its parent, |
||
802 | * the rotation can not be done. |
||
803 | */ |
||
804 | return false; |
||
805 | } |
||
806 | |||
807 | lnode = node->parent->subtree[idx]; |
||
808 | if (lnode->keys < BTREE_MAX_KEYS) { |
||
809 | /* |
||
810 | * The rotaion can be done. The left sibling has free space. |
||
811 | */ |
||
1142 | jermar | 812 | node_insert_key_and_rsubtree(node, inskey, insvalue, rsubtree); |
813 | rotate_from_right(lnode, node, idx); |
||
1136 | jermar | 814 | return true; |
815 | } |
||
816 | |||
817 | return false; |
||
818 | } |
||
819 | |||
820 | /** Insert key-value-rsubtree triplet and rotate the node to the right, if this operation can be done. |
||
821 | * |
||
822 | * Right sibling of the node (if it exists) is checked for free space. |
||
823 | * If there is free space, the key is inserted and the biggest key of |
||
824 | * the node is moved there. The index node which is the parent of both |
||
825 | * nodes is fixed. |
||
826 | * |
||
827 | * @param node B-tree node. |
||
828 | * @param inskey Key to be inserted. |
||
829 | * @param insvalue Value to be inserted. |
||
830 | * @param rsubtree Right subtree of inskey. |
||
831 | * |
||
832 | * @return True if the rotation was performed, false otherwise. |
||
833 | */ |
||
1177 | jermar | 834 | bool try_insert_by_rotation_to_right(btree_node_t *node, btree_key_t inskey, void *insvalue, btree_node_t *rsubtree) |
1136 | jermar | 835 | { |
836 | index_t idx; |
||
837 | btree_node_t *rnode; |
||
838 | |||
839 | /* |
||
840 | * If this is root node, the rotation can not be done. |
||
841 | */ |
||
842 | if (ROOT_NODE(node)) |
||
843 | return false; |
||
844 | |||
845 | idx = find_key_by_subtree(node->parent, node, false); |
||
846 | if (idx == node->parent->keys) { |
||
847 | /* |
||
848 | * If this node is the rightmost subtree of its parent, |
||
849 | * the rotation can not be done. |
||
850 | */ |
||
851 | return false; |
||
852 | } |
||
853 | |||
854 | rnode = node->parent->subtree[idx + 1]; |
||
855 | if (rnode->keys < BTREE_MAX_KEYS) { |
||
856 | /* |
||
857 | * The rotaion can be done. The right sibling has free space. |
||
858 | */ |
||
1142 | jermar | 859 | node_insert_key_and_rsubtree(node, inskey, insvalue, rsubtree); |
860 | rotate_from_left(node, rnode, idx); |
||
861 | return true; |
||
862 | } |
||
1136 | jermar | 863 | |
1142 | jermar | 864 | return false; |
865 | } |
||
1136 | jermar | 866 | |
1142 | jermar | 867 | /** Rotate in a key from the left sibling or from the index node, if this operation can be done. |
868 | * |
||
869 | * @param rnode Node into which to add key from its left sibling or from the index node. |
||
870 | * |
||
871 | * @return True if the rotation was performed, false otherwise. |
||
872 | */ |
||
873 | bool try_rotation_from_left(btree_node_t *rnode) |
||
874 | { |
||
875 | index_t idx; |
||
876 | btree_node_t *lnode; |
||
1136 | jermar | 877 | |
1142 | jermar | 878 | /* |
879 | * If this is root node, the rotation can not be done. |
||
880 | */ |
||
881 | if (ROOT_NODE(rnode)) |
||
882 | return false; |
||
883 | |||
884 | idx = find_key_by_subtree(rnode->parent, rnode, true); |
||
885 | if ((int) idx == -1) { |
||
886 | /* |
||
887 | * If this node is the leftmost subtree of its parent, |
||
888 | * the rotation can not be done. |
||
889 | */ |
||
890 | return false; |
||
891 | } |
||
892 | |||
893 | lnode = rnode->parent->subtree[idx]; |
||
894 | if (lnode->keys > FILL_FACTOR) { |
||
895 | rotate_from_left(lnode, rnode, idx); |
||
1136 | jermar | 896 | return true; |
897 | } |
||
1142 | jermar | 898 | |
899 | return false; |
||
900 | } |
||
1136 | jermar | 901 | |
1142 | jermar | 902 | /** Rotate in a key from the right sibling or from the index node, if this operation can be done. |
903 | * |
||
1708 | jermar | 904 | * @param lnode Node into which to add key from its right sibling or from the index node. |
1142 | jermar | 905 | * |
906 | * @return True if the rotation was performed, false otherwise. |
||
907 | */ |
||
908 | bool try_rotation_from_right(btree_node_t *lnode) |
||
909 | { |
||
910 | index_t idx; |
||
911 | btree_node_t *rnode; |
||
912 | |||
913 | /* |
||
914 | * If this is root node, the rotation can not be done. |
||
915 | */ |
||
916 | if (ROOT_NODE(lnode)) |
||
917 | return false; |
||
918 | |||
919 | idx = find_key_by_subtree(lnode->parent, lnode, false); |
||
920 | if (idx == lnode->parent->keys) { |
||
921 | /* |
||
922 | * If this node is the rightmost subtree of its parent, |
||
923 | * the rotation can not be done. |
||
924 | */ |
||
925 | return false; |
||
926 | } |
||
927 | |||
928 | rnode = lnode->parent->subtree[idx + 1]; |
||
929 | if (rnode->keys > FILL_FACTOR) { |
||
930 | rotate_from_right(lnode, rnode, idx); |
||
931 | return true; |
||
932 | } |
||
933 | |||
1136 | jermar | 934 | return false; |
935 | } |
||
936 | |||
1101 | jermar | 937 | /** Print B-tree. |
938 | * |
||
939 | * @param t Print out B-tree. |
||
940 | */ |
||
941 | void btree_print(btree_t *t) |
||
942 | { |
||
2111 | decky | 943 | count_t i; |
944 | int depth = t->root->depth; |
||
1144 | jermar | 945 | link_t head, *cur; |
946 | |||
947 | printf("Printing B-tree:\n"); |
||
1101 | jermar | 948 | list_initialize(&head); |
949 | list_append(&t->root->bfs_link, &head); |
||
950 | |||
951 | /* |
||
952 | * Use BFS search to print out the tree. |
||
953 | * Levels are distinguished from one another by node->depth. |
||
954 | */ |
||
955 | while (!list_empty(&head)) { |
||
956 | link_t *hlp; |
||
957 | btree_node_t *node; |
||
958 | |||
959 | hlp = head.next; |
||
960 | ASSERT(hlp != &head); |
||
961 | node = list_get_instance(hlp, btree_node_t, bfs_link); |
||
962 | list_remove(hlp); |
||
963 | |||
964 | ASSERT(node); |
||
965 | |||
966 | if (node->depth != depth) { |
||
967 | printf("\n"); |
||
968 | depth = node->depth; |
||
969 | } |
||
970 | |||
971 | printf("("); |
||
972 | for (i = 0; i < node->keys; i++) { |
||
2216 | decky | 973 | printf("%llu%s", node->key[i], i < node->keys - 1 ? "," : ""); |
1101 | jermar | 974 | if (node->depth && node->subtree[i]) { |
975 | list_append(&node->subtree[i]->bfs_link, &head); |
||
976 | } |
||
977 | } |
||
978 | if (node->depth && node->subtree[i]) { |
||
979 | list_append(&node->subtree[i]->bfs_link, &head); |
||
980 | } |
||
981 | printf(")"); |
||
982 | } |
||
983 | printf("\n"); |
||
1144 | jermar | 984 | |
985 | printf("Printing list of leaves:\n"); |
||
986 | for (cur = t->leaf_head.next; cur != &t->leaf_head; cur = cur->next) { |
||
987 | btree_node_t *node; |
||
988 | |||
989 | node = list_get_instance(cur, btree_node_t, leaf_link); |
||
990 | |||
991 | ASSERT(node); |
||
992 | |||
993 | printf("("); |
||
994 | for (i = 0; i < node->keys; i++) |
||
2216 | decky | 995 | printf("%llu%s", node->key[i], i < node->keys - 1 ? "," : ""); |
1144 | jermar | 996 | printf(")"); |
997 | } |
||
998 | printf("\n"); |
||
1101 | jermar | 999 | } |
1702 | cejka | 1000 | |
1757 | jermar | 1001 | /** @} |
1702 | cejka | 1002 | */ |