Subversion Repositories HelenOS

Rev

Rev 3798 | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1 jermar 1
/*
2071 jermar 2
 * Copyright (c) 2001-2007 Jakub Jermar
1 jermar 3
 * All rights reserved.
4
 *
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
7
 * are met:
8
 *
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
28
 
1757 jermar 29
/** @addtogroup genericproc
1702 cejka 30
 * @{
31
 */
32
 
1248 jermar 33
/**
1702 cejka 34
 * @file
1248 jermar 35
 * @brief   Scheduler and load balancing.
36
 *
1264 jermar 37
 * This file contains the scheduler and kcpulb kernel thread which
1248 jermar 38
 * performs load-balancing of per-CPU run queues.
39
 */
40
 
1 jermar 41
#include <proc/scheduler.h>
42
#include <proc/thread.h>
43
#include <proc/task.h>
378 jermar 44
#include <mm/frame.h>
45
#include <mm/page.h>
703 jermar 46
#include <mm/as.h>
2089 decky 47
#include <time/timeout.h>
1571 jermar 48
#include <time/delay.h>
378 jermar 49
#include <arch/asm.h>
50
#include <arch/faddr.h>
2030 decky 51
#include <arch/cycle.h>
1104 jermar 52
#include <atomic.h>
378 jermar 53
#include <synch/spinlock.h>
1 jermar 54
#include <config.h>
55
#include <context.h>
2089 decky 56
#include <fpu_context.h>
1 jermar 57
#include <func.h>
58
#include <arch.h>
788 jermar 59
#include <adt/list.h>
68 decky 60
#include <panic.h>
378 jermar 61
#include <cpu.h>
195 vana 62
#include <print.h>
227 jermar 63
#include <debug.h>
4679 rimsky 64
#include <arch/smp/sun4v/smp.h>
1 jermar 65
 
1187 jermar 66
static void before_task_runs(void);
67
static void before_thread_runs(void);
68
static void after_thread_ran(void);
898 jermar 69
static void scheduler_separated_stack(void);
195 vana 70
 
898 jermar 71
atomic_t nrdy;  /**< Number of ready threads in the system. */
72
 
1187 jermar 73
/** Carry out actions before new task runs. */
74
void before_task_runs(void)
75
{
76
    before_task_runs_arch();
77
}
78
 
897 jermar 79
/** Take actions before new thread runs.
107 decky 80
 *
118 jermar 81
 * Perform actions that need to be
82
 * taken before the newly selected
83
 * tread is passed control.
107 decky 84
 *
827 palkovsky 85
 * THREAD->lock is locked on entry
86
 *
107 decky 87
 */
52 vana 88
void before_thread_runs(void)
89
{
309 palkovsky 90
    before_thread_runs_arch();
906 palkovsky 91
#ifdef CONFIG_FPU_LAZY
1882 jermar 92
    if(THREAD == CPU->fpu_owner)
309 palkovsky 93
        fpu_enable();
94
    else
95
        fpu_disable();
906 palkovsky 96
#else
309 palkovsky 97
    fpu_enable();
98
    if (THREAD->fpu_context_exists)
906 palkovsky 99
        fpu_context_restore(THREAD->saved_fpu_context);
309 palkovsky 100
    else {
906 palkovsky 101
        fpu_init();
1882 jermar 102
        THREAD->fpu_context_exists = 1;
309 palkovsky 103
    }
906 palkovsky 104
#endif
52 vana 105
}
106
 
898 jermar 107
/** Take actions after THREAD had run.
897 jermar 108
 *
109
 * Perform actions that need to be
110
 * taken after the running thread
898 jermar 111
 * had been preempted by the scheduler.
897 jermar 112
 *
113
 * THREAD->lock is locked on entry
114
 *
115
 */
116
void after_thread_ran(void)
117
{
118
    after_thread_ran_arch();
119
}
120
 
458 decky 121
#ifdef CONFIG_FPU_LAZY
309 palkovsky 122
void scheduler_fpu_lazy_request(void)
123
{
907 palkovsky 124
restart:
309 palkovsky 125
    fpu_enable();
827 palkovsky 126
    spinlock_lock(&CPU->lock);
127
 
128
    /* Save old context */
309 palkovsky 129
    if (CPU->fpu_owner != NULL) {  
827 palkovsky 130
        spinlock_lock(&CPU->fpu_owner->lock);
906 palkovsky 131
        fpu_context_save(CPU->fpu_owner->saved_fpu_context);
309 palkovsky 132
        /* don't prevent migration */
1882 jermar 133
        CPU->fpu_owner->fpu_context_engaged = 0;
827 palkovsky 134
        spinlock_unlock(&CPU->fpu_owner->lock);
907 palkovsky 135
        CPU->fpu_owner = NULL;
309 palkovsky 136
    }
827 palkovsky 137
 
138
    spinlock_lock(&THREAD->lock);
898 jermar 139
    if (THREAD->fpu_context_exists) {
906 palkovsky 140
        fpu_context_restore(THREAD->saved_fpu_context);
898 jermar 141
    } else {
906 palkovsky 142
        /* Allocate FPU context */
143
        if (!THREAD->saved_fpu_context) {
144
            /* Might sleep */
145
            spinlock_unlock(&THREAD->lock);
907 palkovsky 146
            spinlock_unlock(&CPU->lock);
2067 jermar 147
            THREAD->saved_fpu_context =
2118 decky 148
                (fpu_context_t *) slab_alloc(fpu_context_slab, 0);
907 palkovsky 149
            /* We may have switched CPUs during slab_alloc */
150
            goto restart;
906 palkovsky 151
        }
152
        fpu_init();
1882 jermar 153
        THREAD->fpu_context_exists = 1;
309 palkovsky 154
    }
1882 jermar 155
    CPU->fpu_owner = THREAD;
309 palkovsky 156
    THREAD->fpu_context_engaged = 1;
898 jermar 157
    spinlock_unlock(&THREAD->lock);
827 palkovsky 158
 
159
    spinlock_unlock(&CPU->lock);
309 palkovsky 160
}
161
#endif
52 vana 162
 
107 decky 163
/** Initialize scheduler
164
 *
165
 * Initialize kernel scheduler.
166
 *
167
 */
1 jermar 168
void scheduler_init(void)
169
{
170
}
171
 
107 decky 172
/** Get thread to be scheduled
173
 *
174
 * Get the optimal thread to be scheduled
109 jermar 175
 * according to thread accounting and scheduler
107 decky 176
 * policy.
177
 *
178
 * @return Thread to be scheduled.
179
 *
180
 */
483 jermar 181
static thread_t *find_best_thread(void)
1 jermar 182
{
183
    thread_t *t;
184
    runq_t *r;
783 palkovsky 185
    int i;
1 jermar 186
 
227 jermar 187
    ASSERT(CPU != NULL);
188
 
1 jermar 189
loop:
413 jermar 190
    interrupts_enable();
1 jermar 191
 
783 palkovsky 192
    if (atomic_get(&CPU->nrdy) == 0) {
1 jermar 193
        /*
194
         * For there was nothing to run, the CPU goes to sleep
195
         * until a hardware interrupt or an IPI comes.
196
         * This improves energy saving and hyperthreading.
197
         */
785 jermar 198
 
199
        /*
200
         * An interrupt might occur right now and wake up a thread.
201
         * In such case, the CPU will continue to go to sleep
202
         * even though there is a runnable thread.
203
         */
204
 
1 jermar 205
         cpu_sleep();
206
         goto loop;
207
    }
208
 
413 jermar 209
    interrupts_disable();
114 jermar 210
 
2285 jermar 211
    for (i = 0; i < RQ_COUNT; i++) {
15 jermar 212
        r = &CPU->rq[i];
1 jermar 213
        spinlock_lock(&r->lock);
214
        if (r->n == 0) {
215
            /*
216
             * If this queue is empty, try a lower-priority queue.
217
             */
218
            spinlock_unlock(&r->lock);
219
            continue;
220
        }
213 jermar 221
 
783 palkovsky 222
        atomic_dec(&CPU->nrdy);
475 jermar 223
        atomic_dec(&nrdy);
4679 rimsky 224
        if (CPU->arch.exec_unit)
225
            atomic_dec(&(CPU->arch.exec_unit->nrdy));
1 jermar 226
        r->n--;
227
 
228
        /*
229
         * Take the first thread from the queue.
230
         */
231
        t = list_get_instance(r->rq_head.next, thread_t, rq_link);
232
        list_remove(&t->rq_link);
233
 
234
        spinlock_unlock(&r->lock);
235
 
236
        spinlock_lock(&t->lock);
15 jermar 237
        t->cpu = CPU;
1 jermar 238
 
2067 jermar 239
        t->ticks = us2ticks((i + 1) * 10000);
898 jermar 240
        t->priority = i;    /* correct rq index */
1 jermar 241
 
242
        /*
1854 jermar 243
         * Clear the THREAD_FLAG_STOLEN flag so that t can be migrated
244
         * when load balancing needs emerge.
1 jermar 245
         */
1854 jermar 246
        t->flags &= ~THREAD_FLAG_STOLEN;
1 jermar 247
        spinlock_unlock(&t->lock);
248
 
249
        return t;
250
    }
251
    goto loop;
252
 
253
}
254
 
107 decky 255
/** Prevent rq starvation
256
 *
257
 * Prevent low priority threads from starving in rq's.
258
 *
259
 * When the function decides to relink rq's, it reconnects
260
 * respective pointers so that in result threads with 'pri'
1708 jermar 261
 * greater or equal start are moved to a higher-priority queue.
107 decky 262
 *
263
 * @param start Threshold priority.
264
 *
1 jermar 265
 */
452 decky 266
static void relink_rq(int start)
1 jermar 267
{
268
    link_t head;
269
    runq_t *r;
270
    int i, n;
271
 
272
    list_initialize(&head);
15 jermar 273
    spinlock_lock(&CPU->lock);
274
    if (CPU->needs_relink > NEEDS_RELINK_MAX) {
2067 jermar 275
        for (i = start; i < RQ_COUNT - 1; i++) {
1 jermar 276
            /* remember and empty rq[i + 1] */
15 jermar 277
            r = &CPU->rq[i + 1];
1 jermar 278
            spinlock_lock(&r->lock);
279
            list_concat(&head, &r->rq_head);
280
            n = r->n;
281
            r->n = 0;
282
            spinlock_unlock(&r->lock);
283
 
284
            /* append rq[i + 1] to rq[i] */
15 jermar 285
            r = &CPU->rq[i];
1 jermar 286
            spinlock_lock(&r->lock);
287
            list_concat(&r->rq_head, &head);
288
            r->n += n;
289
            spinlock_unlock(&r->lock);
290
        }
15 jermar 291
        CPU->needs_relink = 0;
1 jermar 292
    }
784 palkovsky 293
    spinlock_unlock(&CPU->lock);
1 jermar 294
 
295
}
296
 
898 jermar 297
/** The scheduler
298
 *
299
 * The thread scheduling procedure.
300
 * Passes control directly to
301
 * scheduler_separated_stack().
302
 *
303
 */
304
void scheduler(void)
305
{
306
    volatile ipl_t ipl;
107 decky 307
 
898 jermar 308
    ASSERT(CPU != NULL);
309
 
310
    ipl = interrupts_disable();
311
 
312
    if (atomic_get(&haltstate))
313
        halt();
1007 decky 314
 
898 jermar 315
    if (THREAD) {
316
        spinlock_lock(&THREAD->lock);
2030 decky 317
 
318
        /* Update thread accounting */
319
        THREAD->cycles += get_cycle() - THREAD->last_cycle;
320
 
906 palkovsky 321
#ifndef CONFIG_FPU_LAZY
322
        fpu_context_save(THREAD->saved_fpu_context);
323
#endif
898 jermar 324
        if (!context_save(&THREAD->saved_context)) {
325
            /*
326
             * This is the place where threads leave scheduler();
327
             */
2030 decky 328
 
329
            /* Save current CPU cycle */
330
            THREAD->last_cycle = get_cycle();
331
 
898 jermar 332
            spinlock_unlock(&THREAD->lock);
333
            interrupts_restore(THREAD->saved_context.ipl);
1007 decky 334
 
898 jermar 335
            return;
336
        }
337
 
338
        /*
2067 jermar 339
         * Interrupt priority level of preempted thread is recorded
340
         * here to facilitate scheduler() invocations from
341
         * interrupts_disable()'d code (e.g. waitq_sleep_timeout()).
898 jermar 342
         */
343
        THREAD->saved_context.ipl = ipl;
344
    }
345
 
346
    /*
347
     * Through the 'THE' structure, we keep track of THREAD, TASK, CPU, VM
348
     * and preemption counter. At this point THE could be coming either
349
     * from THREAD's or CPU's stack.
350
     */
351
    the_copy(THE, (the_t *) CPU->stack);
352
 
353
    /*
354
     * We may not keep the old stack.
355
     * Reason: If we kept the old stack and got blocked, for instance, in
356
     * find_best_thread(), the old thread could get rescheduled by another
357
     * CPU and overwrite the part of its own stack that was also used by
358
     * the scheduler on this CPU.
359
     *
360
     * Moreover, we have to bypass the compiler-generated POP sequence
361
     * which is fooled by SP being set to the very top of the stack.
362
     * Therefore the scheduler() function continues in
363
     * scheduler_separated_stack().
364
     */
365
    context_save(&CPU->saved_context);
1854 jermar 366
    context_set(&CPU->saved_context, FADDR(scheduler_separated_stack),
2087 jermar 367
        (uintptr_t) CPU->stack, CPU_STACK_SIZE);
898 jermar 368
    context_restore(&CPU->saved_context);
369
    /* not reached */
370
}
371
 
107 decky 372
/** Scheduler stack switch wrapper
373
 *
374
 * Second part of the scheduler() function
375
 * using new stack. Handling the actual context
376
 * switch to a new thread.
377
 *
787 palkovsky 378
 * Assume THREAD->lock is held.
107 decky 379
 */
898 jermar 380
void scheduler_separated_stack(void)
1 jermar 381
{
382
    int priority;
2183 jermar 383
    DEADLOCK_PROBE_INIT(p_joinwq);
384
 
227 jermar 385
    ASSERT(CPU != NULL);
3798 rimsky 386
 
15 jermar 387
    if (THREAD) {
898 jermar 388
        /* must be run after the switch to scheduler stack */
897 jermar 389
        after_thread_ran();
390
 
15 jermar 391
        switch (THREAD->state) {
1888 jermar 392
        case Running:
125 jermar 393
            spinlock_unlock(&THREAD->lock);
394
            thread_ready(THREAD);
395
            break;
1 jermar 396
 
1888 jermar 397
        case Exiting:
1571 jermar 398
repeat:
2040 decky 399
            if (THREAD->detached) {
1571 jermar 400
                thread_destroy(THREAD);
401
            } else {
402
                /*
2067 jermar 403
                 * The thread structure is kept allocated until
404
                 * somebody calls thread_detach() on it.
1571 jermar 405
                 */
406
                if (!spinlock_trylock(&THREAD->join_wq.lock)) {
407
                    /*
408
                     * Avoid deadlock.
409
                     */
410
                    spinlock_unlock(&THREAD->lock);
2446 jermar 411
                    delay(HZ);
1571 jermar 412
                    spinlock_lock(&THREAD->lock);
2183 jermar 413
                    DEADLOCK_PROBE(p_joinwq,
414
                        DEADLOCK_THRESHOLD);
1571 jermar 415
                    goto repeat;
416
                }
2310 jermar 417
                _waitq_wakeup_unsafe(&THREAD->join_wq,
418
                    WAKEUP_FIRST);
1571 jermar 419
                spinlock_unlock(&THREAD->join_wq.lock);
420
 
2451 jermar 421
                THREAD->state = Lingering;
1571 jermar 422
                spinlock_unlock(&THREAD->lock);
423
            }
125 jermar 424
            break;
787 palkovsky 425
 
1888 jermar 426
        case Sleeping:
125 jermar 427
            /*
428
             * Prefer the thread after it's woken up.
429
             */
413 jermar 430
            THREAD->priority = -1;
1 jermar 431
 
125 jermar 432
            /*
2067 jermar 433
             * We need to release wq->lock which we locked in
434
             * waitq_sleep(). Address of wq->lock is kept in
435
             * THREAD->sleep_queue.
125 jermar 436
             */
437
            spinlock_unlock(&THREAD->sleep_queue->lock);
1 jermar 438
 
125 jermar 439
            /*
2067 jermar 440
             * Check for possible requests for out-of-context
441
             * invocation.
125 jermar 442
             */
443
            if (THREAD->call_me) {
444
                THREAD->call_me(THREAD->call_me_with);
445
                THREAD->call_me = NULL;
446
                THREAD->call_me_with = NULL;
447
            }
1 jermar 448
 
125 jermar 449
            spinlock_unlock(&THREAD->lock);
1 jermar 450
 
125 jermar 451
            break;
452
 
1888 jermar 453
        default:
125 jermar 454
            /*
455
             * Entering state is unexpected.
456
             */
3181 jermar 457
            panic("tid%" PRIu64 ": unexpected state %s\n",
458
                THREAD->tid, thread_states[THREAD->state]);
125 jermar 459
            break;
1 jermar 460
        }
897 jermar 461
 
15 jermar 462
        THREAD = NULL;
1 jermar 463
    }
198 jermar 464
 
15 jermar 465
    THREAD = find_best_thread();
3798 rimsky 466
 
15 jermar 467
    spinlock_lock(&THREAD->lock);
413 jermar 468
    priority = THREAD->priority;
15 jermar 469
    spinlock_unlock(&THREAD->lock);
192 jermar 470
 
1 jermar 471
    relink_rq(priority);       
472
 
473
    /*
2067 jermar 474
     * If both the old and the new task are the same, lots of work is
475
     * avoided.
1 jermar 476
     */
15 jermar 477
    if (TASK != THREAD->task) {
703 jermar 478
        as_t *as1 = NULL;
479
        as_t *as2;
1 jermar 480
 
15 jermar 481
        if (TASK) {
482
            spinlock_lock(&TASK->lock);
703 jermar 483
            as1 = TASK->as;
15 jermar 484
            spinlock_unlock(&TASK->lock);
1 jermar 485
        }
486
 
15 jermar 487
        spinlock_lock(&THREAD->task->lock);
703 jermar 488
        as2 = THREAD->task->as;
15 jermar 489
        spinlock_unlock(&THREAD->task->lock);
1 jermar 490
 
491
        /*
2067 jermar 492
         * Note that it is possible for two tasks to share one address
493
         * space.
1 jermar 494
         */
703 jermar 495
        if (as1 != as2) {
1 jermar 496
            /*
703 jermar 497
             * Both tasks and address spaces are different.
1 jermar 498
             * Replace the old one with the new one.
499
             */
823 jermar 500
            as_switch(as1, as2);
1 jermar 501
        }
906 palkovsky 502
        TASK = THREAD->task;
1187 jermar 503
        before_task_runs();
1 jermar 504
    }
505
 
1380 jermar 506
    spinlock_lock(&THREAD->lock);  
15 jermar 507
    THREAD->state = Running;
1 jermar 508
 
906 palkovsky 509
#ifdef SCHEDULER_VERBOSE
3181 jermar 510
    printf("cpu%u: tid %" PRIu64 " (priority=%d, ticks=%" PRIu64
511
        ", nrdy=%ld)\n", CPU->id, THREAD->tid, THREAD->priority,
512
        THREAD->ticks, atomic_get(&CPU->nrdy));
906 palkovsky 513
#endif  
1 jermar 514
 
213 jermar 515
    /*
897 jermar 516
     * Some architectures provide late kernel PA2KA(identity)
517
     * mapping in a page fault handler. However, the page fault
518
     * handler uses the kernel stack of the running thread and
519
     * therefore cannot be used to map it. The kernel stack, if
520
     * necessary, is to be mapped in before_thread_runs(). This
521
     * function must be executed before the switch to the new stack.
522
     */
523
    before_thread_runs();
524
 
525
    /*
2067 jermar 526
     * Copy the knowledge of CPU, TASK, THREAD and preemption counter to
527
     * thread's stack.
213 jermar 528
     */
184 jermar 529
    the_copy(THE, (the_t *) THREAD->kstack);
530
 
15 jermar 531
    context_restore(&THREAD->saved_context);
1 jermar 532
    /* not reached */
533
}
534
 
458 decky 535
#ifdef CONFIG_SMP
107 decky 536
/** Load balancing thread
537
 *
538
 * SMP load balancing thread, supervising thread supplies
539
 * for the CPU it's wired to.
540
 *
541
 * @param arg Generic thread argument (unused).
542
 *
1 jermar 543
 */
544
void kcpulb(void *arg)
545
{
546
    thread_t *t;
2118 decky 547
    int count, average, j, k = 0;
548
    unsigned int i;
413 jermar 549
    ipl_t ipl;
1 jermar 550
 
1576 jermar 551
    /*
552
     * Detach kcpulb as nobody will call thread_join_timeout() on it.
553
     */
554
    thread_detach(THREAD);
555
 
1 jermar 556
loop:
557
    /*
779 jermar 558
     * Work in 1s intervals.
1 jermar 559
     */
779 jermar 560
    thread_sleep(1);
1 jermar 561
 
562
not_satisfied:
563
    /*
564
     * Calculate the number of threads that will be migrated/stolen from
565
     * other CPU's. Note that situation can have changed between two
566
     * passes. Each time get the most up to date counts.
567
     */
784 palkovsky 568
    average = atomic_get(&nrdy) / config.cpu_active + 1;
783 palkovsky 569
    count = average - atomic_get(&CPU->nrdy);
1 jermar 570
 
4679 rimsky 571
    /* calculate number of threads to be stolen from other exec. units */
572
    spinlock_lock(&(CPU->arch.exec_unit->proposed_nrdy_lock));
573
    bool eu_busy = calculate_optimal_nrdy(CPU->arch.exec_unit);
574
    unsigned int count_other_eus = CPU->arch.proposed_nrdy
575
        - atomic_get(&(CPU->nrdy));
576
    spinlock_unlock(&(CPU->arch.exec_unit->proposed_nrdy_lock));
577
 
578
    /*
579
     * If the CPU's parent core is overloaded, do not do the load
580
     * balancing, otherwise we would migrate threads which should be
581
     * migrated to other cores and since a thread cannot be migrated
582
     * multiple times, it would not be migrated to the other core
583
     * in the future.
584
     */
585
    if (eu_busy)
586
        return;
587
 
588
    /*
589
     * get the maximum - stole enough threads to satisfy both the need to
590
     * have all virtual CPUs equally busy and the need to have all the
591
     * cores equally busy
592
     */
593
    if (((int) count_other_eus) > count)
594
        count = count_other_eus;
595
 
784 palkovsky 596
    if (count <= 0)
1 jermar 597
        goto satisfied;
598
 
599
    /*
2067 jermar 600
     * Searching least priority queues on all CPU's first and most priority
601
     * queues on all CPU's last.
1 jermar 602
     */
2285 jermar 603
    for (j = RQ_COUNT - 1; j >= 0; j--) {
2067 jermar 604
        for (i = 0; i < config.cpu_active; i++) {
1 jermar 605
            link_t *l;
606
            runq_t *r;
607
            cpu_t *cpu;
608
 
609
            cpu = &cpus[(i + k) % config.cpu_active];
610
 
611
            /*
612
             * Not interested in ourselves.
2067 jermar 613
             * Doesn't require interrupt disabling for kcpulb has
614
             * THREAD_FLAG_WIRED.
1 jermar 615
             */
15 jermar 616
            if (CPU == cpu)
783 palkovsky 617
                continue;
618
            if (atomic_get(&cpu->nrdy) <= average)
619
                continue;
1 jermar 620
 
784 palkovsky 621
            ipl = interrupts_disable();
115 jermar 622
            r = &cpu->rq[j];
1 jermar 623
            spinlock_lock(&r->lock);
624
            if (r->n == 0) {
625
                spinlock_unlock(&r->lock);
413 jermar 626
                interrupts_restore(ipl);
1 jermar 627
                continue;
628
            }
629
 
630
            t = NULL;
631
            l = r->rq_head.prev;    /* search rq from the back */
632
            while (l != &r->rq_head) {
633
                t = list_get_instance(l, thread_t, rq_link);
634
                /*
2067 jermar 635
                 * We don't want to steal CPU-wired threads
636
                 * neither threads already stolen. The latter
637
                 * prevents threads from migrating between CPU's
638
                 * without ever being run. We don't want to
639
                 * steal threads whose FPU context is still in
640
                 * CPU.
73 vana 641
                 */
1 jermar 642
                spinlock_lock(&t->lock);
2067 jermar 643
                if ((!(t->flags & (THREAD_FLAG_WIRED |
2285 jermar 644
                    THREAD_FLAG_STOLEN))) &&
645
                    (!(t->fpu_context_engaged))) {
1 jermar 646
                    /*
647
                     * Remove t from r.
648
                     */
649
                    spinlock_unlock(&t->lock);
650
 
783 palkovsky 651
                    atomic_dec(&cpu->nrdy);
475 jermar 652
                    atomic_dec(&nrdy);
4679 rimsky 653
                    if (cpu->arch.exec_unit)
654
                        atomic_dec(&(cpu->arch.exec_unit->nrdy));
1 jermar 655
 
125 jermar 656
                    r->n--;
1 jermar 657
                    list_remove(&t->rq_link);
658
 
659
                    break;
660
                }
661
                spinlock_unlock(&t->lock);
662
                l = l->prev;
663
                t = NULL;
664
            }
665
            spinlock_unlock(&r->lock);
666
 
667
            if (t) {
668
                /*
669
                 * Ready t on local CPU
670
                 */
671
                spinlock_lock(&t->lock);
906 palkovsky 672
#ifdef KCPULB_VERBOSE
3181 jermar 673
                printf("kcpulb%u: TID %" PRIu64 " -> cpu%u, "
674
                    "nrdy=%ld, avg=%ld\n", CPU->id, t->tid,
675
                    CPU->id, atomic_get(&CPU->nrdy),
2087 jermar 676
                    atomic_get(&nrdy) / config.cpu_active);
906 palkovsky 677
#endif
1854 jermar 678
                t->flags |= THREAD_FLAG_STOLEN;
1115 jermar 679
                t->state = Entering;
1 jermar 680
                spinlock_unlock(&t->lock);
681
 
682
                thread_ready(t);
683
 
413 jermar 684
                interrupts_restore(ipl);
1 jermar 685
 
686
                if (--count == 0)
687
                    goto satisfied;
688
 
689
                /*
2067 jermar 690
                 * We are not satisfied yet, focus on another
691
                 * CPU next time.
1 jermar 692
                 */
693
                k++;
694
 
695
                continue;
696
            }
413 jermar 697
            interrupts_restore(ipl);
1 jermar 698
        }
699
    }
700
 
783 palkovsky 701
    if (atomic_get(&CPU->nrdy)) {
1 jermar 702
        /*
703
         * Be a little bit light-weight and let migrated threads run.
704
         */
705
        scheduler();
779 jermar 706
    } else {
1 jermar 707
        /*
708
         * We failed to migrate a single thread.
779 jermar 709
         * Give up this turn.
1 jermar 710
         */
779 jermar 711
        goto loop;
1 jermar 712
    }
713
 
714
    goto not_satisfied;
125 jermar 715
 
1 jermar 716
satisfied:
717
    goto loop;
718
}
719
 
458 decky 720
#endif /* CONFIG_SMP */
775 palkovsky 721
 
722
 
723
/** Print information about threads & scheduler queues */
724
void sched_print_list(void)
725
{
726
    ipl_t ipl;
2118 decky 727
    unsigned int cpu, i;
775 palkovsky 728
    runq_t *r;
729
    thread_t *t;
730
    link_t *cur;
731
 
732
    /* We are going to mess with scheduler structures,
733
     * let's not be interrupted */
734
    ipl = interrupts_disable();
2118 decky 735
    for (cpu = 0; cpu < config.cpu_count; cpu++) {
898 jermar 736
 
775 palkovsky 737
        if (!cpus[cpu].active)
738
            continue;
898 jermar 739
 
775 palkovsky 740
        spinlock_lock(&cpus[cpu].lock);
3062 decky 741
        printf("cpu%u: address=%p, nrdy=%ld, needs_relink=%" PRIc "\n",
2087 jermar 742
            cpus[cpu].id, &cpus[cpu], atomic_get(&cpus[cpu].nrdy),
743
            cpus[cpu].needs_relink);
775 palkovsky 744
 
2067 jermar 745
        for (i = 0; i < RQ_COUNT; i++) {
775 palkovsky 746
            r = &cpus[cpu].rq[i];
747
            spinlock_lock(&r->lock);
748
            if (!r->n) {
749
                spinlock_unlock(&r->lock);
750
                continue;
751
            }
3062 decky 752
            printf("\trq[%u]: ", i);
2067 jermar 753
            for (cur = r->rq_head.next; cur != &r->rq_head;
754
                cur = cur->next) {
775 palkovsky 755
                t = list_get_instance(cur, thread_t, rq_link);
3062 decky 756
                printf("%" PRIu64 "(%s) ", t->tid,
2087 jermar 757
                    thread_states[t->state]);
775 palkovsky 758
            }
759
            printf("\n");
760
            spinlock_unlock(&r->lock);
761
        }
762
        spinlock_unlock(&cpus[cpu].lock);
763
    }
764
 
765
    interrupts_restore(ipl);
766
}
1702 cejka 767
 
1757 jermar 768
/** @}
1702 cejka 769
 */