Rev 3743 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
3743 | rimsky | 1 | # |
2 | # Copyright (c) 2005 Jakub Jermar |
||
3 | # All rights reserved. |
||
4 | # |
||
5 | # Redistribution and use in source and binary forms, with or without |
||
6 | # modification, are permitted provided that the following conditions |
||
7 | # are met: |
||
8 | # |
||
9 | # - Redistributions of source code must retain the above copyright |
||
10 | # notice, this list of conditions and the following disclaimer. |
||
11 | # - Redistributions in binary form must reproduce the above copyright |
||
12 | # notice, this list of conditions and the following disclaimer in the |
||
13 | # documentation and/or other materials provided with the distribution. |
||
14 | # - The name of the author may not be used to endorse or promote products |
||
15 | # derived from this software without specific prior written permission. |
||
16 | # |
||
17 | # THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
||
18 | # IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
||
19 | # OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
||
20 | # IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
||
21 | # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
||
22 | # NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
||
23 | # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
||
24 | # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
||
25 | # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
||
26 | # THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||
27 | # |
||
28 | |||
29 | #include <arch/arch.h> |
||
30 | #include <arch/sun4u/arch.h> |
||
3770 | rimsky | 31 | #include <arch/sun4u/cpu.h> |
3743 | rimsky | 32 | #include <arch/sun4u/regdef.h> |
33 | #include <arch/boot/boot.h> |
||
34 | #include <arch/stack.h> |
||
35 | |||
3770 | rimsky | 36 | #include <arch/mm/pagesize.h> |
3743 | rimsky | 37 | #include <arch/mm/sun4u/mmu.h> |
38 | #include <arch/mm/sun4u/tlb.h> |
||
39 | #include <arch/mm/sun4u/tte.h> |
||
40 | |||
41 | #ifdef CONFIG_SMP |
||
42 | #include <arch/context_offset.h> |
||
43 | #endif |
||
44 | |||
45 | .register %g2, #scratch |
||
46 | .register %g3, #scratch |
||
47 | |||
48 | .section K_TEXT_START, "ax" |
||
49 | |||
50 | #define BSP_FLAG 1 |
||
51 | |||
52 | /* |
||
53 | * 2^PHYSMEM_ADDR_SIZE is the size of the physical address space on |
||
54 | * a given processor. |
||
55 | */ |
||
56 | #if defined (US) |
||
57 | #define PHYSMEM_ADDR_SIZE 41 |
||
58 | #elif defined (US3) |
||
59 | #define PHYSMEM_ADDR_SIZE 43 |
||
60 | #endif |
||
61 | |||
62 | /* |
||
63 | * Here is where the kernel is passed control from the boot loader. |
||
64 | * |
||
65 | * The registers are expected to be in this state: |
||
66 | * - %o0 starting address of physical memory + bootstrap processor flag |
||
67 | * bits 63...1: physical memory starting address / 2 |
||
68 | * bit 0: non-zero on BSP processor, zero on AP processors |
||
69 | * - %o1 bootinfo structure address (BSP only) |
||
70 | * - %o2 bootinfo structure size (BSP only) |
||
71 | * |
||
72 | * Moreover, we depend on boot having established the following environment: |
||
73 | * - TLBs are on |
||
74 | * - identity mapping for the kernel image |
||
75 | */ |
||
76 | |||
77 | .global kernel_image_start |
||
78 | kernel_image_start: |
||
79 | mov BSP_FLAG, %l0 |
||
80 | and %o0, %l0, %l7 ! l7 <= bootstrap processor? |
||
81 | andn %o0, %l0, %l6 ! l6 <= start of physical memory |
||
82 | |||
83 | ! Get bits (PHYSMEM_ADDR_SIZE - 1):13 of physmem_base. |
||
84 | srlx %l6, 13, %l5 |
||
85 | |||
86 | ! l5 <= physmem_base[(PHYSMEM_ADDR_SIZE - 1):13] |
||
87 | sllx %l5, 13 + (63 - (PHYSMEM_ADDR_SIZE - 1)), %l5 |
||
88 | srlx %l5, 63 - (PHYSMEM_ADDR_SIZE - 1), %l5 |
||
89 | |||
90 | /* |
||
91 | * Setup basic runtime environment. |
||
92 | */ |
||
93 | |||
94 | wrpr %g0, NWINDOWS - 2, %cansave ! set maximum saveable windows |
||
95 | wrpr %g0, 0, %canrestore ! get rid of windows we will |
||
96 | ! never need again |
||
97 | wrpr %g0, 0, %otherwin ! make sure the window state is |
||
98 | ! consistent |
||
99 | wrpr %g0, NWINDOWS - 1, %cleanwin ! prevent needless clean_window |
||
100 | ! traps for kernel |
||
101 | |||
102 | wrpr %g0, 0, %wstate ! use default spill/fill trap |
||
103 | |||
104 | wrpr %g0, 0, %tl ! TL = 0, primary context |
||
105 | ! register is used |
||
106 | |||
107 | wrpr %g0, PSTATE_PRIV_BIT, %pstate ! disable interrupts and disable |
||
108 | ! 32-bit address masking |
||
109 | |||
110 | wrpr %g0, 0, %pil ! intialize %pil |
||
111 | |||
112 | /* |
||
113 | * Switch to kernel trap table. |
||
114 | */ |
||
115 | sethi %hi(trap_table), %g1 |
||
116 | wrpr %g1, %lo(trap_table), %tba |
||
117 | |||
118 | /* |
||
119 | * Take over the DMMU by installing locked TTE entry identically |
||
120 | * mapping the first 4M of memory. |
||
121 | * |
||
122 | * In case of DMMU, no FLUSH instructions need to be issued. Because of |
||
123 | * that, the old DTLB contents can be demapped pretty straightforwardly |
||
124 | * and without causing any traps. |
||
125 | */ |
||
126 | |||
127 | wr %g0, ASI_DMMU, %asi |
||
128 | |||
129 | #define SET_TLB_DEMAP_CMD(r1, context_id) \ |
||
130 | set (TLB_DEMAP_CONTEXT << TLB_DEMAP_TYPE_SHIFT) | (context_id << \ |
||
131 | TLB_DEMAP_CONTEXT_SHIFT), %r1 |
||
132 | |||
133 | ! demap context 0 |
||
134 | SET_TLB_DEMAP_CMD(g1, TLB_DEMAP_NUCLEUS) |
||
135 | stxa %g0, [%g1] ASI_DMMU_DEMAP |
||
136 | membar #Sync |
||
137 | |||
138 | #define SET_TLB_TAG(r1, context) \ |
||
139 | set VMA | (context << TLB_TAG_ACCESS_CONTEXT_SHIFT), %r1 |
||
140 | |||
141 | ! write DTLB tag |
||
142 | SET_TLB_TAG(g1, MEM_CONTEXT_KERNEL) |
||
143 | stxa %g1, [VA_DMMU_TAG_ACCESS] %asi |
||
144 | membar #Sync |
||
145 | |||
146 | #ifdef CONFIG_VIRT_IDX_DCACHE |
||
147 | #define TTE_LOW_DATA(imm) (TTE_CP | TTE_CV | TTE_P | LMA | (imm)) |
||
148 | #else /* CONFIG_VIRT_IDX_DCACHE */ |
||
149 | #define TTE_LOW_DATA(imm) (TTE_CP | TTE_P | LMA | (imm)) |
||
150 | #endif /* CONFIG_VIRT_IDX_DCACHE */ |
||
151 | |||
152 | #define SET_TLB_DATA(r1, r2, imm) \ |
||
153 | set TTE_LOW_DATA(imm), %r1; \ |
||
154 | or %r1, %l5, %r1; \ |
||
155 | mov PAGESIZE_4M, %r2; \ |
||
156 | sllx %r2, TTE_SIZE_SHIFT, %r2; \ |
||
157 | or %r1, %r2, %r1; \ |
||
158 | mov 1, %r2; \ |
||
159 | sllx %r2, TTE_V_SHIFT, %r2; \ |
||
160 | or %r1, %r2, %r1; |
||
161 | |||
162 | ! write DTLB data and install the kernel mapping |
||
163 | SET_TLB_DATA(g1, g2, TTE_L | TTE_W) ! use non-global mapping |
||
164 | stxa %g1, [%g0] ASI_DTLB_DATA_IN_REG |
||
165 | membar #Sync |
||
166 | |||
167 | /* |
||
168 | * Because we cannot use global mappings (because we want to have |
||
169 | * separate 64-bit address spaces for both the kernel and the |
||
170 | * userspace), we prepare the identity mapping also in context 1. This |
||
171 | * step is required by the code installing the ITLB mapping. |
||
172 | */ |
||
173 | ! write DTLB tag of context 1 (i.e. MEM_CONTEXT_TEMP) |
||
174 | SET_TLB_TAG(g1, MEM_CONTEXT_TEMP) |
||
175 | stxa %g1, [VA_DMMU_TAG_ACCESS] %asi |
||
176 | membar #Sync |
||
177 | |||
178 | ! write DTLB data and install the kernel mapping in context 1 |
||
179 | SET_TLB_DATA(g1, g2, TTE_W) ! use non-global mapping |
||
180 | stxa %g1, [%g0] ASI_DTLB_DATA_IN_REG |
||
181 | membar #Sync |
||
182 | |||
183 | /* |
||
184 | * Now is time to take over the IMMU. Unfortunatelly, it cannot be done |
||
185 | * as easily as the DMMU, because the IMMU is mapping the code it |
||
186 | * executes. |
||
187 | * |
||
188 | * [ Note that brave experiments with disabling the IMMU and using the |
||
189 | * DMMU approach failed after a dozen of desparate days with only little |
||
190 | * success. ] |
||
191 | * |
||
192 | * The approach used here is inspired from OpenBSD. First, the kernel |
||
193 | * creates IMMU mapping for itself in context 1 (MEM_CONTEXT_TEMP) and |
||
194 | * switches to it. Context 0 (MEM_CONTEXT_KERNEL) can be demapped |
||
195 | * afterwards and replaced with the kernel permanent mapping. Finally, |
||
196 | * the kernel switches back to context 0 and demaps context 1. |
||
197 | * |
||
198 | * Moreover, the IMMU requires use of the FLUSH instructions. But that |
||
199 | * is OK because we always use operands with addresses already mapped by |
||
200 | * the taken over DTLB. |
||
201 | */ |
||
202 | |||
203 | set kernel_image_start, %g5 |
||
204 | |||
205 | ! write ITLB tag of context 1 |
||
206 | SET_TLB_TAG(g1, MEM_CONTEXT_TEMP) |
||
207 | mov VA_DMMU_TAG_ACCESS, %g2 |
||
208 | stxa %g1, [%g2] ASI_IMMU |
||
209 | flush %g5 |
||
210 | |||
211 | ! write ITLB data and install the temporary mapping in context 1 |
||
212 | SET_TLB_DATA(g1, g2, 0) ! use non-global mapping |
||
213 | stxa %g1, [%g0] ASI_ITLB_DATA_IN_REG |
||
214 | flush %g5 |
||
215 | |||
216 | ! switch to context 1 |
||
217 | mov MEM_CONTEXT_TEMP, %g1 |
||
218 | stxa %g1, [VA_PRIMARY_CONTEXT_REG] %asi ! ASI_DMMU is correct here !!! |
||
219 | flush %g5 |
||
220 | |||
221 | ! demap context 0 |
||
222 | SET_TLB_DEMAP_CMD(g1, TLB_DEMAP_NUCLEUS) |
||
223 | stxa %g0, [%g1] ASI_IMMU_DEMAP |
||
224 | flush %g5 |
||
225 | |||
226 | ! write ITLB tag of context 0 |
||
227 | SET_TLB_TAG(g1, MEM_CONTEXT_KERNEL) |
||
228 | mov VA_DMMU_TAG_ACCESS, %g2 |
||
229 | stxa %g1, [%g2] ASI_IMMU |
||
230 | flush %g5 |
||
231 | |||
232 | ! write ITLB data and install the permanent kernel mapping in context 0 |
||
233 | SET_TLB_DATA(g1, g2, TTE_L) ! use non-global mapping |
||
234 | stxa %g1, [%g0] ASI_ITLB_DATA_IN_REG |
||
235 | flush %g5 |
||
236 | |||
237 | ! enter nucleus - using context 0 |
||
238 | wrpr %g0, 1, %tl |
||
239 | |||
240 | ! demap context 1 |
||
241 | SET_TLB_DEMAP_CMD(g1, TLB_DEMAP_PRIMARY) |
||
242 | stxa %g0, [%g1] ASI_IMMU_DEMAP |
||
243 | flush %g5 |
||
244 | |||
245 | ! set context 0 in the primary context register |
||
246 | stxa %g0, [VA_PRIMARY_CONTEXT_REG] %asi ! ASI_DMMU is correct here !!! |
||
247 | flush %g5 |
||
248 | |||
249 | ! leave nucleus - using primary context, i.e. context 0 |
||
250 | wrpr %g0, 0, %tl |
||
251 | |||
252 | brz %l7, 1f ! skip if you are not the bootstrap CPU |
||
253 | nop |
||
254 | |||
255 | /* |
||
256 | * Save physmem_base for use by the mm subsystem. |
||
257 | * %l6 contains starting physical address |
||
258 | */ |
||
259 | sethi %hi(physmem_base), %l4 |
||
260 | stx %l6, [%l4 + %lo(physmem_base)] |
||
261 | |||
262 | /* |
||
263 | * Precompute kernel 8K TLB data template. |
||
264 | * %l5 contains starting physical address |
||
265 | * bits [(PHYSMEM_ADDR_SIZE - 1):13] |
||
266 | */ |
||
267 | sethi %hi(kernel_8k_tlb_data_template), %l4 |
||
268 | ldx [%l4 + %lo(kernel_8k_tlb_data_template)], %l3 |
||
269 | or %l3, %l5, %l3 |
||
270 | stx %l3, [%l4 + %lo(kernel_8k_tlb_data_template)] |
||
271 | |||
272 | /* |
||
273 | * Flush D-Cache. |
||
274 | */ |
||
275 | call dcache_flush |
||
276 | nop |
||
277 | |||
278 | /* |
||
279 | * So far, we have not touched the stack. |
||
280 | * It is a good idea to set the kernel stack to a known state now. |
||
281 | */ |
||
282 | sethi %hi(temporary_boot_stack), %sp |
||
283 | or %sp, %lo(temporary_boot_stack), %sp |
||
284 | sub %sp, STACK_BIAS, %sp |
||
285 | |||
286 | sethi 0x42142, %g0 |
||
287 | sethi %hi(bootinfo), %o0 |
||
288 | call memcpy ! copy bootinfo |
||
289 | or %o0, %lo(bootinfo), %o0 |
||
290 | |||
291 | call arch_pre_main |
||
292 | nop |
||
293 | |||
294 | call main_bsp |
||
295 | nop |
||
296 | |||
297 | /* Not reached. */ |
||
298 | |||
299 | 0: |
||
300 | ba 0b |
||
301 | nop |
||
302 | |||
303 | |||
304 | 1: |
||
305 | #ifdef CONFIG_SMP |
||
306 | /* |
||
307 | * Determine the width of the MID and save its mask to %g3. The width |
||
308 | * is |
||
309 | * * 5 for US and US-IIIi, |
||
310 | * * 10 for US3 except US-IIIi. |
||
311 | */ |
||
312 | #if defined(US) |
||
313 | mov 0x1f, %g3 |
||
314 | #elif defined(US3) |
||
315 | mov 0x3ff, %g3 |
||
316 | rdpr %ver, %g2 |
||
317 | sllx %g2, 16, %g2 |
||
318 | srlx %g2, 48, %g2 |
||
319 | cmp %g2, IMPL_ULTRASPARCIII_I |
||
320 | move %xcc, 0x1f, %g3 |
||
321 | #endif |
||
322 | |||
323 | /* |
||
324 | * Read MID from the processor. |
||
325 | */ |
||
326 | ldxa [%g0] ASI_ICBUS_CONFIG, %g1 |
||
327 | srlx %g1, ICBUS_CONFIG_MID_SHIFT, %g1 |
||
328 | and %g1, %g3, %g1 |
||
329 | |||
330 | /* |
||
331 | * Active loop for APs until the BSP picks them up. A processor cannot |
||
332 | * leave the loop until the global variable 'waking_up_mid' equals its |
||
333 | * MID. |
||
334 | */ |
||
335 | set waking_up_mid, %g2 |
||
336 | 2: |
||
337 | ldx [%g2], %g3 |
||
338 | cmp %g3, %g1 |
||
339 | bne 2b |
||
340 | nop |
||
341 | |||
342 | /* |
||
343 | * Configure stack for the AP. |
||
344 | * The AP is expected to use the stack saved |
||
345 | * in the ctx global variable. |
||
346 | */ |
||
347 | set ctx, %g1 |
||
348 | add %g1, OFFSET_SP, %g1 |
||
349 | ldx [%g1], %o6 |
||
350 | |||
351 | call main_ap |
||
352 | nop |
||
353 | |||
354 | /* Not reached. */ |
||
355 | #endif |
||
356 | |||
357 | 0: |
||
358 | ba 0b |
||
359 | nop |
||
360 | |||
361 | |||
362 | .section K_DATA_START, "aw", @progbits |
||
363 | |||
364 | /* |
||
365 | * Create small stack to be used by the bootstrap processor. It is going to be |
||
366 | * used only for a very limited period of time, but we switch to it anyway, |
||
367 | * just to be sure we are properly initialized. |
||
368 | */ |
||
369 | |||
370 | #define INITIAL_STACK_SIZE 1024 |
||
371 | |||
372 | .align STACK_ALIGNMENT |
||
373 | .space INITIAL_STACK_SIZE |
||
374 | .align STACK_ALIGNMENT |
||
375 | temporary_boot_stack: |
||
376 | .space STACK_WINDOW_SAVE_AREA_SIZE |
||
377 | |||
378 | |||
379 | .data |
||
380 | |||
381 | .align 8 |
||
382 | .global physmem_base ! copy of the physical memory base address |
||
383 | physmem_base: |
||
384 | .quad 0 |
||
385 | |||
386 | /* |
||
387 | * This variable is used by the fast_data_MMU_miss trap handler. In runtime, it |
||
388 | * is further modified to reflect the starting address of physical memory. |
||
389 | */ |
||
390 | .global kernel_8k_tlb_data_template |
||
391 | kernel_8k_tlb_data_template: |
||
392 | #ifdef CONFIG_VIRT_IDX_DCACHE |
||
393 | .quad ((1 << TTE_V_SHIFT) | (PAGESIZE_8K << TTE_SIZE_SHIFT) | TTE_CP | \ |
||
394 | TTE_CV | TTE_P | TTE_W) |
||
395 | #else /* CONFIG_VIRT_IDX_DCACHE */ |
||
396 | .quad ((1 << TTE_V_SHIFT) | (PAGESIZE_8K << TTE_SIZE_SHIFT) | TTE_CP | \ |
||
397 | TTE_P | TTE_W) |
||
398 | #endif /* CONFIG_VIRT_IDX_DCACHE */ |
||
399 |