Rev 2450 | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
1 | jermar | 1 | /* |
2336 | mencl | 2 | * Copyright (C) 2001-2004 Jakub Jermar |
2450 | mencl | 3 | * Copyright (C) 2007 Vojtech Mencl |
1 | jermar | 4 | * All rights reserved. |
5 | * |
||
6 | * Redistribution and use in source and binary forms, with or without |
||
7 | * modification, are permitted provided that the following conditions |
||
8 | * are met: |
||
9 | * |
||
10 | * - Redistributions of source code must retain the above copyright |
||
11 | * notice, this list of conditions and the following disclaimer. |
||
12 | * - Redistributions in binary form must reproduce the above copyright |
||
13 | * notice, this list of conditions and the following disclaimer in the |
||
14 | * documentation and/or other materials provided with the distribution. |
||
15 | * - The name of the author may not be used to endorse or promote products |
||
16 | * derived from this software without specific prior written permission. |
||
17 | * |
||
18 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
||
19 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
||
20 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
||
21 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
||
22 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
||
23 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
||
24 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
||
25 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
||
26 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
||
27 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||
28 | */ |
||
29 | |||
1731 | jermar | 30 | /** @addtogroup time |
1702 | cejka | 31 | * @{ |
32 | */ |
||
33 | |||
1264 | jermar | 34 | /** |
1702 | cejka | 35 | * @file |
1264 | jermar | 36 | * @brief High-level clock interrupt handler. |
37 | * |
||
38 | * This file contains the clock() function which is the source |
||
39 | * of preemption. It is also responsible for executing expired |
||
40 | * timeouts. |
||
41 | */ |
||
42 | |||
1 | jermar | 43 | #include <time/clock.h> |
44 | #include <time/timeout.h> |
||
45 | #include <config.h> |
||
46 | #include <synch/spinlock.h> |
||
47 | #include <synch/waitq.h> |
||
48 | #include <func.h> |
||
49 | #include <proc/scheduler.h> |
||
50 | #include <cpu.h> |
||
51 | #include <arch.h> |
||
788 | jermar | 52 | #include <adt/list.h> |
1104 | jermar | 53 | #include <atomic.h> |
391 | jermar | 54 | #include <proc/thread.h> |
1434 | palkovsky | 55 | #include <sysinfo/sysinfo.h> |
56 | #include <arch/barrier.h> |
||
2015 | jermar | 57 | #include <mm/frame.h> |
58 | #include <ddi/ddi.h> |
||
2461 | mencl | 59 | |
60 | |||
2307 | hudecek | 61 | /* Pointer to variable with uptime */ |
62 | uptime_t *uptime; |
||
63 | |||
64 | /** Physical memory area of the real time clock */ |
||
2015 | jermar | 65 | static parea_t clock_parea; |
66 | |||
1434 | palkovsky | 67 | /* Variable holding fragment of second, so that we would update |
68 | * seconds correctly |
||
69 | */ |
||
1780 | jermar | 70 | static unative_t secfrag = 0; |
1434 | palkovsky | 71 | |
72 | /** Initialize realtime clock counter |
||
73 | * |
||
74 | * The applications (and sometimes kernel) need to access accurate |
||
75 | * information about realtime data. We allocate 1 page with these |
||
76 | * data and update it periodically. |
||
77 | */ |
||
78 | void clock_counter_init(void) |
||
79 | { |
||
80 | void *faddr; |
||
81 | |||
2015 | jermar | 82 | faddr = frame_alloc(ONE_FRAME, FRAME_ATOMIC); |
1434 | palkovsky | 83 | if (!faddr) |
84 | panic("Cannot allocate page for clock"); |
||
85 | |||
2307 | hudecek | 86 | uptime = (uptime_t *) PA2KA(faddr); |
87 | |||
88 | uptime->seconds1 = 0; |
||
89 | uptime->seconds2 = 0; |
||
90 | uptime->useconds = 0; |
||
1434 | palkovsky | 91 | |
2015 | jermar | 92 | clock_parea.pbase = (uintptr_t) faddr; |
2307 | hudecek | 93 | clock_parea.vbase = (uintptr_t) uptime; |
2015 | jermar | 94 | clock_parea.frames = 1; |
95 | clock_parea.cacheable = true; |
||
96 | ddi_parea_register(&clock_parea); |
||
97 | |||
98 | /* |
||
99 | * Prepare information for the userspace so that it can successfully |
||
100 | * physmem_map() the clock_parea. |
||
101 | */ |
||
102 | sysinfo_set_item_val("clock.cacheable", NULL, (unative_t) true); |
||
103 | sysinfo_set_item_val("clock.faddr", NULL, (unative_t) faddr); |
||
1434 | palkovsky | 104 | } |
105 | |||
106 | |||
107 | /** Update public counters |
||
108 | * |
||
109 | * Update it only on first processor |
||
110 | * TODO: Do we really need so many write barriers? |
||
111 | */ |
||
112 | static void clock_update_counters(void) |
||
113 | { |
||
114 | if (CPU->id == 0) { |
||
2307 | hudecek | 115 | secfrag += 1000000 / HZ; |
1434 | palkovsky | 116 | if (secfrag >= 1000000) { |
1438 | palkovsky | 117 | secfrag -= 1000000; |
2307 | hudecek | 118 | uptime->seconds1++; |
1434 | palkovsky | 119 | write_barrier(); |
2307 | hudecek | 120 | uptime->useconds = secfrag; |
1438 | palkovsky | 121 | write_barrier(); |
2307 | hudecek | 122 | uptime->seconds2 = uptime->seconds1; |
1434 | palkovsky | 123 | } else |
2307 | hudecek | 124 | uptime->useconds += 1000000 / HZ; |
1434 | palkovsky | 125 | } |
126 | } |
||
127 | |||
2421 | mencl | 128 | #if defined CONFIG_TIMEOUT_AVL_TREE |
2336 | mencl | 129 | |
107 | decky | 130 | /** Clock routine |
131 | * |
||
132 | * Clock routine executed from clock interrupt handler |
||
413 | jermar | 133 | * (assuming interrupts_disable()'d). Runs expired timeouts |
107 | decky | 134 | * and preemptive scheduling. |
135 | * |
||
1 | jermar | 136 | */ |
137 | void clock(void) |
||
138 | { |
||
2336 | mencl | 139 | timeout_t *h; |
140 | timeout_handler_t f; |
||
141 | void *arg; |
||
142 | count_t missed_clock_ticks = CPU->missed_clock_ticks; |
||
2450 | mencl | 143 | uint64_t i = CPU->timeout_active_tree.base; |
144 | uint64_t last_clock_tick = i + missed_clock_ticks; |
||
2416 | mencl | 145 | avltree_node_t *expnode; |
2421 | mencl | 146 | |
147 | /* |
||
148 | * To avoid lock ordering problems, |
||
149 | * run all expired timeouts as you visit them. |
||
150 | */ |
||
2450 | mencl | 151 | |
152 | for (; i <= last_clock_tick; i++) { |
||
2421 | mencl | 153 | clock_update_counters(); |
154 | spinlock_lock(&CPU->timeoutlock); |
||
155 | |||
156 | /* |
||
157 | * Check whether first timeout (with the smallest key in the tree) time out. If so perform |
||
158 | * callback function and try next timeout (more timeouts can have same timeout). |
||
159 | */ |
||
160 | while ((expnode = avltree_find_min(&CPU->timeout_active_tree)) != NULL) { |
||
161 | h = avltree_get_instance(expnode,timeout_t,node); |
||
162 | spinlock_lock(&h->lock); |
||
2450 | mencl | 163 | if (expnode->key != i) { |
164 | /* |
||
165 | * Base is increased every for cycle. |
||
166 | */ |
||
167 | (CPU->timeout_active_tree.base)++; |
||
2421 | mencl | 168 | spinlock_unlock(&h->lock); |
169 | break; |
||
170 | } |
||
171 | |||
172 | /* |
||
173 | * Delete minimal key from the tree and repair tree structure in |
||
174 | * logarithmic time. |
||
175 | */ |
||
176 | avltree_delete_min(&CPU->timeout_active_tree); |
||
177 | |||
178 | f = h->handler; |
||
179 | arg = h->arg; |
||
180 | timeout_reinitialize(h); |
||
181 | spinlock_unlock(&h->lock); |
||
182 | spinlock_unlock(&CPU->timeoutlock); |
||
183 | |||
184 | f(arg); |
||
185 | |||
186 | spinlock_lock(&CPU->timeoutlock); |
||
187 | } |
||
188 | spinlock_unlock(&CPU->timeoutlock); |
||
189 | } |
||
190 | |||
191 | CPU->missed_clock_ticks = 0; |
||
192 | |||
193 | /* |
||
194 | * Do CPU usage accounting and find out whether to preempt THREAD. |
||
195 | */ |
||
196 | if (THREAD) { |
||
197 | uint64_t ticks; |
||
198 | |||
199 | spinlock_lock(&CPU->lock); |
||
200 | CPU->needs_relink += 1 + missed_clock_ticks; |
||
201 | spinlock_unlock(&CPU->lock); |
||
202 | |||
203 | spinlock_lock(&THREAD->lock); |
||
204 | if ((ticks = THREAD->ticks)) { |
||
205 | if (ticks >= 1 + missed_clock_ticks) |
||
206 | THREAD->ticks -= 1 + missed_clock_ticks; |
||
207 | else |
||
208 | THREAD->ticks = 0; |
||
209 | } |
||
210 | spinlock_unlock(&THREAD->lock); |
||
211 | |||
212 | if (!ticks && !PREEMPTION_DISABLED) { |
||
213 | scheduler(); |
||
214 | } |
||
215 | } |
||
216 | } |
||
217 | |||
2461 | mencl | 218 | #elif defined CONFIG_TIMEOUT_FAVL_TREE |
219 | |||
220 | /** Clock routine |
||
221 | * |
||
222 | * Clock routine executed from clock interrupt handler |
||
223 | * (assuming interrupts_disable()'d). Runs expired timeouts |
||
224 | * and preemptive scheduling. |
||
225 | * |
||
226 | */ |
||
227 | void clock(void) |
||
228 | { |
||
229 | timeout_t *h; |
||
230 | timeout_handler_t f; |
||
231 | void *arg; |
||
232 | count_t missed_clock_ticks = CPU->missed_clock_ticks; |
||
233 | uint64_t i = CPU->timeout_active_tree.base; |
||
234 | uint64_t last_clock_tick = i + missed_clock_ticks; |
||
235 | favltree_node_t *expnode; |
||
236 | |||
237 | /* |
||
238 | * To avoid lock ordering problems, |
||
239 | * run all expired timeouts as you visit them. |
||
240 | */ |
||
241 | |||
242 | for (; i <= last_clock_tick; i++) { |
||
243 | clock_update_counters(); |
||
244 | spinlock_lock(&CPU->timeoutlock); |
||
245 | |||
246 | /* |
||
247 | * Check whether first timeout (with the smallest key in the tree) time out. If so perform |
||
248 | * callback function and try next timeout (more timeouts can have same timeout). |
||
249 | * Function favltree_find_min works in contant time. |
||
250 | */ |
||
251 | while ((expnode = favltree_find_min(&CPU->timeout_active_tree)) != NULL) { |
||
252 | h = favltree_get_instance(expnode,timeout_t,node); |
||
253 | spinlock_lock(&h->lock); |
||
254 | if (expnode->key != i) { |
||
255 | /* |
||
256 | * Base is increased every for cycle. |
||
257 | */ |
||
258 | (CPU->timeout_active_tree.base)++; |
||
259 | spinlock_unlock(&h->lock); |
||
260 | break; |
||
261 | } |
||
262 | |||
263 | /* |
||
264 | * Delete minimal key from the tree and repair tree structure in |
||
265 | * logarithmic time. |
||
266 | */ |
||
267 | favltree_delete_min(&CPU->timeout_active_tree); |
||
268 | |||
269 | f = h->handler; |
||
270 | arg = h->arg; |
||
271 | timeout_reinitialize(h); |
||
272 | spinlock_unlock(&h->lock); |
||
273 | spinlock_unlock(&CPU->timeoutlock); |
||
274 | |||
275 | f(arg); |
||
276 | |||
277 | spinlock_lock(&CPU->timeoutlock); |
||
278 | } |
||
279 | spinlock_unlock(&CPU->timeoutlock); |
||
280 | } |
||
281 | |||
282 | CPU->missed_clock_ticks = 0; |
||
283 | |||
284 | /* |
||
285 | * Do CPU usage accounting and find out whether to preempt THREAD. |
||
286 | */ |
||
287 | if (THREAD) { |
||
288 | uint64_t ticks; |
||
289 | |||
290 | spinlock_lock(&CPU->lock); |
||
291 | CPU->needs_relink += 1 + missed_clock_ticks; |
||
292 | spinlock_unlock(&CPU->lock); |
||
293 | |||
294 | spinlock_lock(&THREAD->lock); |
||
295 | if ((ticks = THREAD->ticks)) { |
||
296 | if (ticks >= 1 + missed_clock_ticks) |
||
297 | THREAD->ticks -= 1 + missed_clock_ticks; |
||
298 | else |
||
299 | THREAD->ticks = 0; |
||
300 | } |
||
301 | spinlock_unlock(&THREAD->lock); |
||
302 | |||
303 | if (!ticks && !PREEMPTION_DISABLED) { |
||
304 | scheduler(); |
||
305 | } |
||
306 | } |
||
307 | } |
||
308 | |||
2416 | mencl | 309 | #elif defined CONFIG_TIMEOUT_EXTAVL_TREE |
2421 | mencl | 310 | |
311 | /** Clock routine |
||
312 | * |
||
313 | * Clock routine executed from clock interrupt handler |
||
314 | * (assuming interrupts_disable()'d). Runs expired timeouts |
||
315 | * and preemptive scheduling. |
||
316 | * |
||
317 | */ |
||
318 | void clock(void) |
||
319 | { |
||
320 | timeout_t *h; |
||
321 | timeout_handler_t f; |
||
322 | void *arg; |
||
323 | count_t missed_clock_ticks = CPU->missed_clock_ticks; |
||
2450 | mencl | 324 | uint64_t i = CPU->timeout_active_tree.base; |
325 | uint64_t last_clock_tick = i + missed_clock_ticks; |
||
2416 | mencl | 326 | extavltree_node_t *expnode; |
2450 | mencl | 327 | //ipl_t ipl; |
2416 | mencl | 328 | |
2336 | mencl | 329 | /* |
330 | * To avoid lock ordering problems, |
||
331 | * run all expired timeouts as you visit them. |
||
332 | */ |
||
333 | |||
2450 | mencl | 334 | for (; i <= last_clock_tick; i++) { |
2336 | mencl | 335 | clock_update_counters(); |
336 | spinlock_lock(&CPU->timeoutlock); |
||
2416 | mencl | 337 | |
338 | /* |
||
339 | * Check whether first timeout in list time out. If so perform callback function and try |
||
340 | * next timeout (more timeouts can have same timeout). |
||
2450 | mencl | 341 | */ |
2416 | mencl | 342 | while ((expnode = CPU->timeout_active_tree.head.next) != &(CPU->timeout_active_tree.head)) { |
2336 | mencl | 343 | h = extavltree_get_instance(expnode,timeout_t,node); |
2450 | mencl | 344 | spinlock_lock(&h->lock); |
345 | if (expnode->key != i) { |
||
346 | /* |
||
347 | * Base is increased every for cycle. |
||
348 | */ |
||
349 | (CPU->timeout_active_tree.base)++; |
||
2336 | mencl | 350 | spinlock_unlock(&h->lock); |
351 | break; |
||
352 | } |
||
353 | |||
2416 | mencl | 354 | /* |
355 | * Delete first node in the list and repair tree structure in |
||
356 | * constant time. |
||
357 | */ |
||
2336 | mencl | 358 | extavltree_delete_min(&CPU->timeout_active_tree); |
359 | |||
360 | f = h->handler; |
||
361 | arg = h->arg; |
||
362 | timeout_reinitialize(h); |
||
363 | spinlock_unlock(&h->lock); |
||
364 | spinlock_unlock(&CPU->timeoutlock); |
||
365 | |||
366 | f(arg); |
||
367 | |||
368 | spinlock_lock(&CPU->timeoutlock); |
||
369 | } |
||
370 | spinlock_unlock(&CPU->timeoutlock); |
||
371 | } |
||
372 | |||
373 | CPU->missed_clock_ticks = 0; |
||
374 | |||
375 | /* |
||
376 | * Do CPU usage accounting and find out whether to preempt THREAD. |
||
377 | */ |
||
378 | if (THREAD) { |
||
379 | uint64_t ticks; |
||
380 | |||
381 | spinlock_lock(&CPU->lock); |
||
382 | CPU->needs_relink += 1 + missed_clock_ticks; |
||
383 | spinlock_unlock(&CPU->lock); |
||
384 | |||
385 | spinlock_lock(&THREAD->lock); |
||
386 | if ((ticks = THREAD->ticks)) { |
||
387 | if (ticks >= 1 + missed_clock_ticks) |
||
388 | THREAD->ticks -= 1 + missed_clock_ticks; |
||
389 | else |
||
390 | THREAD->ticks = 0; |
||
391 | } |
||
392 | spinlock_unlock(&THREAD->lock); |
||
393 | |||
394 | if (!ticks && !PREEMPTION_DISABLED) { |
||
395 | scheduler(); |
||
396 | } |
||
397 | } |
||
398 | } |
||
399 | |||
2416 | mencl | 400 | #elif defined CONFIG_TIMEOUT_EXTAVLREL_TREE |
2336 | mencl | 401 | |
2416 | mencl | 402 | /** Clock routine |
403 | * |
||
404 | * Clock routine executed from clock interrupt handler |
||
405 | * (assuming interrupts_disable()'d). Runs expired timeouts |
||
406 | * and preemptive scheduling. |
||
407 | * |
||
408 | */ |
||
409 | void clock(void) |
||
410 | { |
||
2421 | mencl | 411 | extavlreltree_node_t *expnode; |
2416 | mencl | 412 | timeout_t *h; |
413 | timeout_handler_t f; |
||
414 | void *arg; |
||
415 | count_t missed_clock_ticks = CPU->missed_clock_ticks; |
||
416 | int i; |
||
417 | |||
418 | /* |
||
419 | * To avoid lock ordering problems, |
||
420 | * run all expired timeouts as you visit them. |
||
421 | */ |
||
422 | for (i = 0; i <= missed_clock_ticks; i++) { |
||
423 | clock_update_counters(); |
||
424 | spinlock_lock(&CPU->timeoutlock); |
||
425 | |||
426 | /* |
||
427 | * Check whether first timeout in list time out. If so perform callback function and try |
||
428 | * next timeout (more timeouts can have same timeout). |
||
429 | */ |
||
430 | while ((expnode = CPU->timeout_active_tree.head.next) != &(CPU->timeout_active_tree.head)) { |
||
2421 | mencl | 431 | h = extavlreltree_get_instance(expnode,timeout_t,node); |
2416 | mencl | 432 | spinlock_lock(&h->lock); |
433 | if (expnode->key != 0) { |
||
434 | expnode->key--; |
||
435 | spinlock_unlock(&h->lock); |
||
436 | break; |
||
437 | } |
||
438 | |||
439 | /* |
||
440 | * Delete first node in the list and repair tree structure in |
||
441 | * constant time. Be careful of expnode's key, it must be 0! |
||
442 | */ |
||
2421 | mencl | 443 | extavlreltree_delete_min(&CPU->timeout_active_tree); |
2416 | mencl | 444 | |
445 | f = h->handler; |
||
446 | arg = h->arg; |
||
447 | timeout_reinitialize(h); |
||
448 | spinlock_unlock(&h->lock); |
||
449 | spinlock_unlock(&CPU->timeoutlock); |
||
450 | |||
451 | f(arg); |
||
452 | |||
453 | spinlock_lock(&CPU->timeoutlock); |
||
454 | } |
||
455 | spinlock_unlock(&CPU->timeoutlock); |
||
456 | } |
||
457 | CPU->missed_clock_ticks = 0; |
||
458 | |||
459 | /* |
||
460 | * Do CPU usage accounting and find out whether to preempt THREAD. |
||
461 | */ |
||
462 | |||
463 | if (THREAD) { |
||
464 | uint64_t ticks; |
||
465 | |||
466 | spinlock_lock(&CPU->lock); |
||
467 | CPU->needs_relink += 1 + missed_clock_ticks; |
||
468 | spinlock_unlock(&CPU->lock); |
||
469 | |||
470 | spinlock_lock(&THREAD->lock); |
||
471 | if ((ticks = THREAD->ticks)) { |
||
472 | if (ticks >= 1 + missed_clock_ticks) |
||
473 | THREAD->ticks -= 1 + missed_clock_ticks; |
||
474 | else |
||
475 | THREAD->ticks = 0; |
||
476 | } |
||
477 | spinlock_unlock(&THREAD->lock); |
||
478 | |||
479 | if (!ticks && !PREEMPTION_DISABLED) { |
||
480 | scheduler(); |
||
481 | } |
||
482 | } |
||
483 | } |
||
484 | |||
485 | |||
486 | |||
2336 | mencl | 487 | #else |
488 | |||
489 | |||
490 | /** Clock routine |
||
491 | * |
||
492 | * Clock routine executed from clock interrupt handler |
||
493 | * (assuming interrupts_disable()'d). Runs expired timeouts |
||
494 | * and preemptive scheduling. |
||
495 | * |
||
496 | */ |
||
497 | void clock(void) |
||
498 | { |
||
1 | jermar | 499 | link_t *l; |
500 | timeout_t *h; |
||
411 | jermar | 501 | timeout_handler_t f; |
1 | jermar | 502 | void *arg; |
1457 | jermar | 503 | count_t missed_clock_ticks = CPU->missed_clock_ticks; |
1431 | jermar | 504 | int i; |
1 | jermar | 505 | |
506 | /* |
||
507 | * To avoid lock ordering problems, |
||
508 | * run all expired timeouts as you visit them. |
||
509 | */ |
||
1457 | jermar | 510 | for (i = 0; i <= missed_clock_ticks; i++) { |
1434 | palkovsky | 511 | clock_update_counters(); |
1431 | jermar | 512 | spinlock_lock(&CPU->timeoutlock); |
513 | while ((l = CPU->timeout_active_head.next) != &CPU->timeout_active_head) { |
||
514 | h = list_get_instance(l, timeout_t, link); |
||
515 | spinlock_lock(&h->lock); |
||
516 | if (h->ticks-- != 0) { |
||
517 | spinlock_unlock(&h->lock); |
||
518 | break; |
||
519 | } |
||
520 | list_remove(l); |
||
521 | f = h->handler; |
||
522 | arg = h->arg; |
||
523 | timeout_reinitialize(h); |
||
524 | spinlock_unlock(&h->lock); |
||
525 | spinlock_unlock(&CPU->timeoutlock); |
||
526 | |||
527 | f(arg); |
||
528 | |||
529 | spinlock_lock(&CPU->timeoutlock); |
||
1 | jermar | 530 | } |
15 | jermar | 531 | spinlock_unlock(&CPU->timeoutlock); |
1 | jermar | 532 | } |
1431 | jermar | 533 | CPU->missed_clock_ticks = 0; |
1 | jermar | 534 | |
535 | /* |
||
15 | jermar | 536 | * Do CPU usage accounting and find out whether to preempt THREAD. |
1 | jermar | 537 | */ |
538 | |||
15 | jermar | 539 | if (THREAD) { |
1780 | jermar | 540 | uint64_t ticks; |
221 | jermar | 541 | |
15 | jermar | 542 | spinlock_lock(&CPU->lock); |
1457 | jermar | 543 | CPU->needs_relink += 1 + missed_clock_ticks; |
15 | jermar | 544 | spinlock_unlock(&CPU->lock); |
1 | jermar | 545 | |
15 | jermar | 546 | spinlock_lock(&THREAD->lock); |
1457 | jermar | 547 | if ((ticks = THREAD->ticks)) { |
548 | if (ticks >= 1 + missed_clock_ticks) |
||
549 | THREAD->ticks -= 1 + missed_clock_ticks; |
||
550 | else |
||
551 | THREAD->ticks = 0; |
||
552 | } |
||
221 | jermar | 553 | spinlock_unlock(&THREAD->lock); |
554 | |||
555 | if (!ticks && !PREEMPTION_DISABLED) { |
||
1 | jermar | 556 | scheduler(); |
557 | } |
||
558 | } |
||
559 | } |
||
1702 | cejka | 560 | |
2336 | mencl | 561 | #endif |
1731 | jermar | 562 | /** @} |
1702 | cejka | 563 | */ |