Subversion Repositories HelenOS

Rev

Rev 2336 | Rev 2421 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1 jermar 1
/*
2336 mencl 2
 * Copyright (C) 2001-2004 Jakub Jermar
1 jermar 3
 * All rights reserved.
4
 *
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
7
 * are met:
8
 *
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
28
 
1731 jermar 29
/** @addtogroup time
1702 cejka 30
 * @{
31
 */
32
 
1264 jermar 33
/**
1702 cejka 34
 * @file
1264 jermar 35
 * @brief   High-level clock interrupt handler.
36
 *
37
 * This file contains the clock() function which is the source
38
 * of preemption. It is also responsible for executing expired
39
 * timeouts.
40
 */
41
 
1 jermar 42
#include <time/clock.h>
43
#include <time/timeout.h>
44
#include <config.h>
45
#include <synch/spinlock.h>
46
#include <synch/waitq.h>
47
#include <func.h>
48
#include <proc/scheduler.h>
49
#include <cpu.h>
50
#include <arch.h>
788 jermar 51
#include <adt/list.h>
1104 jermar 52
#include <atomic.h>
391 jermar 53
#include <proc/thread.h>
1434 palkovsky 54
#include <sysinfo/sysinfo.h>
55
#include <arch/barrier.h>
2015 jermar 56
#include <mm/frame.h>
57
#include <ddi/ddi.h>
1 jermar 58
 
2307 hudecek 59
/* Pointer to variable with uptime */
60
uptime_t *uptime;
61
 
62
/** Physical memory area of the real time clock */
2015 jermar 63
static parea_t clock_parea;
64
 
1434 palkovsky 65
/* Variable holding fragment of second, so that we would update
66
 * seconds correctly
67
 */
1780 jermar 68
static unative_t secfrag = 0;
1434 palkovsky 69
 
70
/** Initialize realtime clock counter
71
 *
72
 * The applications (and sometimes kernel) need to access accurate
73
 * information about realtime data. We allocate 1 page with these
74
 * data and update it periodically.
75
 */
76
void clock_counter_init(void)
77
{
78
    void *faddr;
79
 
2015 jermar 80
    faddr = frame_alloc(ONE_FRAME, FRAME_ATOMIC);
1434 palkovsky 81
    if (!faddr)
82
        panic("Cannot allocate page for clock");
83
 
2307 hudecek 84
    uptime = (uptime_t *) PA2KA(faddr);
85
 
86
    uptime->seconds1 = 0;
87
    uptime->seconds2 = 0;
88
    uptime->useconds = 0;
1434 palkovsky 89
 
2015 jermar 90
    clock_parea.pbase = (uintptr_t) faddr;
2307 hudecek 91
    clock_parea.vbase = (uintptr_t) uptime;
2015 jermar 92
    clock_parea.frames = 1;
93
    clock_parea.cacheable = true;
94
    ddi_parea_register(&clock_parea);
95
 
96
    /*
97
     * Prepare information for the userspace so that it can successfully
98
     * physmem_map() the clock_parea.
99
     */
100
    sysinfo_set_item_val("clock.cacheable", NULL, (unative_t) true);
101
    sysinfo_set_item_val("clock.faddr", NULL, (unative_t) faddr);
1434 palkovsky 102
}
103
 
104
 
105
/** Update public counters
106
 *
107
 * Update it only on first processor
108
 * TODO: Do we really need so many write barriers?
109
 */
110
static void clock_update_counters(void)
111
{
112
    if (CPU->id == 0) {
2307 hudecek 113
        secfrag += 1000000 / HZ;
1434 palkovsky 114
        if (secfrag >= 1000000) {
1438 palkovsky 115
            secfrag -= 1000000;
2307 hudecek 116
            uptime->seconds1++;
1434 palkovsky 117
            write_barrier();
2307 hudecek 118
            uptime->useconds = secfrag;
1438 palkovsky 119
            write_barrier();
2307 hudecek 120
            uptime->seconds2 = uptime->seconds1;
1434 palkovsky 121
        } else
2307 hudecek 122
            uptime->useconds += 1000000 / HZ;
1434 palkovsky 123
    }
124
}
125
 
2416 mencl 126
#if defined CONFIG_TIMEOUT_AVL_TREE || \
127
    defined CONFIG_TIMEOUT_EXTAVL_TREE
2336 mencl 128
 
107 decky 129
/** Clock routine
130
 *
131
 * Clock routine executed from clock interrupt handler
413 jermar 132
 * (assuming interrupts_disable()'d). Runs expired timeouts
107 decky 133
 * and preemptive scheduling.
134
 *
1 jermar 135
 */
136
void clock(void)
137
{
2336 mencl 138
    timeout_t *h;
139
    timeout_handler_t f;
140
    void *arg;
141
    count_t missed_clock_ticks = CPU->missed_clock_ticks;
2416 mencl 142
    uint64_t *i = &(CPU->timeout_active_tree.base);
143
    uint64_t absolute_clock_ticks = *i + missed_clock_ticks;
144
#if defined CONFIG TIMEOUT_AVL_TREE
145
    avltree_node_t *expnode;
146
#elif defined CONFIG_TIMEOUT_EXTAVL_TREE
147
    extavltree_node_t *expnode;
148
#endif
149
 
2336 mencl 150
    /*
151
     * To avoid lock ordering problems,
152
     * run all expired timeouts as you visit them.
153
     */
154
 
155
    for (; *i <= absolute_clock_ticks; (*i)++) {
2416 mencl 156
        /*
157
         * Basetime is encreased by missed clock ticks + 1 !!
158
         */
159
 
2336 mencl 160
        clock_update_counters();
161
        spinlock_lock(&CPU->timeoutlock);
2416 mencl 162
 
163
        /*
164
         * Check whether first timeout in list time out. If so perform callback function and try
165
         * next timeout (more timeouts can have same timeout).
166
         */
167
        while ((expnode = CPU->timeout_active_tree.head.next) != &(CPU->timeout_active_tree.head)) {
2336 mencl 168
            h = extavltree_get_instance(expnode,timeout_t,node);
169
            spinlock_lock(&h->lock);
170
            if (expnode->key != *i) {
171
                spinlock_unlock(&h->lock);
172
                break;
173
            }
174
 
2416 mencl 175
            /*
176
             * Delete first node in the list and repair tree structure in
177
             * constant time.
178
             */
179
#if defined CONFIG TIMEOUT_AVL_TREE
180
            avltree_delete_min(&CPU->timeout_active_tree);
181
#elif defined CONFIG_TIMEOUT_EXTAVL_TREE
2336 mencl 182
            extavltree_delete_min(&CPU->timeout_active_tree);
2416 mencl 183
#endif
2336 mencl 184
 
185
            f = h->handler;
186
            arg = h->arg;
187
            timeout_reinitialize(h);
188
            spinlock_unlock(&h->lock); 
189
            spinlock_unlock(&CPU->timeoutlock);
190
 
191
            f(arg);
192
 
193
            spinlock_lock(&CPU->timeoutlock);
194
        }
195
        spinlock_unlock(&CPU->timeoutlock);
196
    }
197
 
198
    CPU->missed_clock_ticks = 0;
199
 
200
    /*
201
     * Do CPU usage accounting and find out whether to preempt THREAD.
202
     */
203
    if (THREAD) {
204
        uint64_t ticks;
205
 
206
        spinlock_lock(&CPU->lock);
207
        CPU->needs_relink += 1 + missed_clock_ticks;
208
        spinlock_unlock(&CPU->lock);   
209
 
210
        spinlock_lock(&THREAD->lock);
211
        if ((ticks = THREAD->ticks)) {
212
            if (ticks >= 1 + missed_clock_ticks)
213
                THREAD->ticks -= 1 + missed_clock_ticks;
214
            else
215
                THREAD->ticks = 0;
216
        }
217
        spinlock_unlock(&THREAD->lock);
218
 
219
        if (!ticks && !PREEMPTION_DISABLED) {
220
            scheduler();
221
        }
222
    }
223
}
224
 
2416 mencl 225
#elif defined CONFIG_TIMEOUT_EXTAVLREL_TREE
2336 mencl 226
 
2416 mencl 227
/** Clock routine
228
 *
229
 * Clock routine executed from clock interrupt handler
230
 * (assuming interrupts_disable()'d). Runs expired timeouts
231
 * and preemptive scheduling.
232
 *
233
 */
234
void clock(void)
235
{
236
    extavltree_node_t *expnode;
237
    timeout_t *h;
238
    timeout_handler_t f;
239
    void *arg;
240
    count_t missed_clock_ticks = CPU->missed_clock_ticks;
241
    int i;
242
 
243
    /*
244
     * To avoid lock ordering problems,
245
     * run all expired timeouts as you visit them.
246
     */
247
    for (i = 0; i <= missed_clock_ticks; i++) {
248
        clock_update_counters();
249
        spinlock_lock(&CPU->timeoutlock);
250
 
251
        /*
252
         * Check whether first timeout in list time out. If so perform callback function and try
253
         * next timeout (more timeouts can have same timeout).
254
         */
255
        while ((expnode = CPU->timeout_active_tree.head.next) != &(CPU->timeout_active_tree.head)) {
256
            h = list_get_instance(l, timeout_t, link);
257
            spinlock_lock(&h->lock);
258
            if (expnode->key != 0) {
259
                expnode->key--;
260
                spinlock_unlock(&h->lock);
261
                break;
262
            }
263
 
264
            /*
265
             * Delete first node in the list and repair tree structure in
266
             * constant time. Be careful of expnode's key, it must be 0!
267
             */
268
            extavltree_delete_min(&CPU->timeout_active_tree);
269
 
270
            f = h->handler;
271
            arg = h->arg;
272
            timeout_reinitialize(h);
273
            spinlock_unlock(&h->lock); 
274
            spinlock_unlock(&CPU->timeoutlock);
275
 
276
            f(arg);
277
 
278
            spinlock_lock(&CPU->timeoutlock);
279
        }
280
        spinlock_unlock(&CPU->timeoutlock);
281
    }
282
    CPU->missed_clock_ticks = 0;
283
 
284
    /*
285
     * Do CPU usage accounting and find out whether to preempt THREAD.
286
     */
287
 
288
    if (THREAD) {
289
        uint64_t ticks;
290
 
291
        spinlock_lock(&CPU->lock);
292
        CPU->needs_relink += 1 + missed_clock_ticks;
293
        spinlock_unlock(&CPU->lock);   
294
 
295
        spinlock_lock(&THREAD->lock);
296
        if ((ticks = THREAD->ticks)) {
297
            if (ticks >= 1 + missed_clock_ticks)
298
                THREAD->ticks -= 1 + missed_clock_ticks;
299
            else
300
                THREAD->ticks = 0;
301
        }
302
        spinlock_unlock(&THREAD->lock);
303
 
304
        if (!ticks && !PREEMPTION_DISABLED) {
305
            scheduler();
306
        }
307
    }
308
}
309
 
310
 
311
 
2336 mencl 312
#else
313
 
314
 
315
/** Clock routine
316
 *
317
 * Clock routine executed from clock interrupt handler
318
 * (assuming interrupts_disable()'d). Runs expired timeouts
319
 * and preemptive scheduling.
320
 *
321
 */
322
void clock(void)
323
{
1 jermar 324
    link_t *l;
325
    timeout_t *h;
411 jermar 326
    timeout_handler_t f;
1 jermar 327
    void *arg;
1457 jermar 328
    count_t missed_clock_ticks = CPU->missed_clock_ticks;
1431 jermar 329
    int i;
1 jermar 330
 
331
    /*
332
     * To avoid lock ordering problems,
333
     * run all expired timeouts as you visit them.
334
     */
1457 jermar 335
    for (i = 0; i <= missed_clock_ticks; i++) {
1434 palkovsky 336
        clock_update_counters();
1431 jermar 337
        spinlock_lock(&CPU->timeoutlock);
338
        while ((l = CPU->timeout_active_head.next) != &CPU->timeout_active_head) {
339
            h = list_get_instance(l, timeout_t, link);
340
            spinlock_lock(&h->lock);
341
            if (h->ticks-- != 0) {
342
                spinlock_unlock(&h->lock);
343
                break;
344
            }
345
            list_remove(l);
346
            f = h->handler;
347
            arg = h->arg;
348
            timeout_reinitialize(h);
349
            spinlock_unlock(&h->lock); 
350
            spinlock_unlock(&CPU->timeoutlock);
351
 
352
            f(arg);
353
 
354
            spinlock_lock(&CPU->timeoutlock);
1 jermar 355
        }
15 jermar 356
        spinlock_unlock(&CPU->timeoutlock);
1 jermar 357
    }
1431 jermar 358
    CPU->missed_clock_ticks = 0;
1 jermar 359
 
360
    /*
15 jermar 361
     * Do CPU usage accounting and find out whether to preempt THREAD.
1 jermar 362
     */
363
 
15 jermar 364
    if (THREAD) {
1780 jermar 365
        uint64_t ticks;
221 jermar 366
 
15 jermar 367
        spinlock_lock(&CPU->lock);
1457 jermar 368
        CPU->needs_relink += 1 + missed_clock_ticks;
15 jermar 369
        spinlock_unlock(&CPU->lock);   
1 jermar 370
 
15 jermar 371
        spinlock_lock(&THREAD->lock);
1457 jermar 372
        if ((ticks = THREAD->ticks)) {
373
            if (ticks >= 1 + missed_clock_ticks)
374
                THREAD->ticks -= 1 + missed_clock_ticks;
375
            else
376
                THREAD->ticks = 0;
377
        }
221 jermar 378
        spinlock_unlock(&THREAD->lock);
379
 
380
        if (!ticks && !PREEMPTION_DISABLED) {
1 jermar 381
            scheduler();
382
        }
383
    }
384
}
1702 cejka 385
 
2336 mencl 386
#endif
1731 jermar 387
/** @}
1702 cejka 388
 */