Rev 4643 | Details | Compare with Previous | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 4600 | decky | 1 | /* |
| 2 | * Copyright (c) 2009 Martin Decky |
||
| 3 | * Copyright (c) 2009 Petr Tuma |
||
| 4 | * All rights reserved. |
||
| 5 | * |
||
| 6 | * Redistribution and use in source and binary forms, with or without |
||
| 7 | * modification, are permitted provided that the following conditions |
||
| 8 | * are met: |
||
| 9 | * |
||
| 10 | * - Redistributions of source code must retain the above copyright |
||
| 11 | * notice, this list of conditions and the following disclaimer. |
||
| 12 | * - Redistributions in binary form must reproduce the above copyright |
||
| 13 | * notice, this list of conditions and the following disclaimer in the |
||
| 14 | * documentation and/or other materials provided with the distribution. |
||
| 15 | * - The name of the author may not be used to endorse or promote products |
||
| 16 | * derived from this software without specific prior written permission. |
||
| 17 | * |
||
| 18 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
||
| 19 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
||
| 20 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
||
| 21 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
||
| 22 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
||
| 23 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
||
| 24 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
||
| 25 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
||
| 26 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
||
| 27 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
||
| 28 | */ |
||
| 29 | |||
| 30 | /** @addtogroup libc |
||
| 31 | * @{ |
||
| 32 | */ |
||
| 33 | /** @file |
||
| 34 | */ |
||
| 35 | |||
| 36 | #include <malloc.h> |
||
| 37 | #include <bool.h> |
||
| 38 | #include <as.h> |
||
| 39 | #include <align.h> |
||
| 40 | #include <macros.h> |
||
| 41 | #include <assert.h> |
||
| 42 | #include <errno.h> |
||
| 43 | #include <bitops.h> |
||
| 44 | #include <mem.h> |
||
| 45 | #include <adt/gcdlcm.h> |
||
| 46 | |||
| 47 | /* Magic used in heap headers. */ |
||
| 48 | #define HEAP_BLOCK_HEAD_MAGIC 0xBEEF0101 |
||
| 49 | |||
| 50 | /* Magic used in heap footers. */ |
||
| 51 | #define HEAP_BLOCK_FOOT_MAGIC 0xBEEF0202 |
||
| 52 | |||
| 53 | /** Allocation alignment (this also covers the alignment of fields |
||
| 54 | in the heap header and footer) */ |
||
| 55 | #define BASE_ALIGN 16 |
||
| 56 | |||
| 57 | /** |
||
| 58 | * Either 4 * 256M on 32-bit architecures or 16 * 256M on 64-bit architectures |
||
| 59 | */ |
||
| 60 | #define MAX_HEAP_SIZE (sizeof(uintptr_t) << 28) |
||
| 61 | |||
| 62 | /** |
||
| 63 | * |
||
| 64 | */ |
||
| 65 | #define STRUCT_OVERHEAD (sizeof(heap_block_head_t) + sizeof(heap_block_foot_t)) |
||
| 66 | |||
| 67 | /** |
||
| 68 | * Calculate real size of a heap block (with header and footer) |
||
| 69 | */ |
||
| 70 | #define GROSS_SIZE(size) ((size) + STRUCT_OVERHEAD) |
||
| 71 | |||
| 72 | /** |
||
| 73 | * Calculate net size of a heap block (without header and footer) |
||
| 74 | */ |
||
| 75 | #define NET_SIZE(size) ((size) - STRUCT_OVERHEAD) |
||
| 76 | |||
| 77 | |||
| 78 | /** Header of a heap block |
||
| 79 | * |
||
| 80 | */ |
||
| 81 | typedef struct { |
||
| 82 | /* Size of the block (including header and footer) */ |
||
| 83 | size_t size; |
||
| 84 | |||
| 85 | /* Indication of a free block */ |
||
| 86 | bool free; |
||
| 87 | |||
| 88 | /* A magic value to detect overwrite of heap header */ |
||
| 89 | uint32_t magic; |
||
| 90 | } heap_block_head_t; |
||
| 91 | |||
| 92 | /** Footer of a heap block |
||
| 93 | * |
||
| 94 | */ |
||
| 95 | typedef struct { |
||
| 96 | /* Size of the block (including header and footer) */ |
||
| 97 | size_t size; |
||
| 98 | |||
| 99 | /* A magic value to detect overwrite of heap footer */ |
||
| 100 | uint32_t magic; |
||
| 101 | } heap_block_foot_t; |
||
| 102 | |||
| 103 | /** Linker heap symbol */ |
||
| 104 | extern char _heap; |
||
| 105 | |||
| 106 | /** Address of heap start */ |
||
| 107 | static void *heap_start = 0; |
||
| 108 | |||
| 109 | /** Address of heap end */ |
||
| 110 | static void *heap_end = 0; |
||
| 111 | |||
| 112 | /** Maximum heap size */ |
||
| 113 | static size_t max_heap_size = (size_t) -1; |
||
| 114 | |||
| 115 | /** Current number of pages of heap area */ |
||
| 116 | static size_t heap_pages = 0; |
||
| 117 | |||
| 118 | /** Initialize a heap block |
||
| 119 | * |
||
| 120 | * Fills in the structures related to a heap block. |
||
| 121 | * |
||
| 122 | * @param addr Address of the block. |
||
| 123 | * @param size Size of the block including the header and the footer. |
||
| 124 | * @param free Indication of a free block. |
||
| 125 | * |
||
| 126 | */ |
||
| 127 | static void block_init(void *addr, size_t size, bool free) |
||
| 128 | { |
||
| 129 | /* Calculate the position of the header and the footer */ |
||
| 130 | heap_block_head_t *head = (heap_block_head_t *) addr; |
||
| 131 | heap_block_foot_t *foot = |
||
| 132 | (heap_block_foot_t *) (addr + size - sizeof(heap_block_foot_t)); |
||
| 133 | |||
| 134 | head->size = size; |
||
| 135 | head->free = free; |
||
| 136 | head->magic = HEAP_BLOCK_HEAD_MAGIC; |
||
| 137 | |||
| 138 | foot->size = size; |
||
| 139 | foot->magic = HEAP_BLOCK_FOOT_MAGIC; |
||
| 140 | } |
||
| 141 | |||
| 142 | /** Check a heap block |
||
| 143 | * |
||
| 144 | * Verifies that the structures related to a heap block still contain |
||
| 145 | * the magic constants. This helps detect heap corruption early on. |
||
| 146 | * |
||
| 147 | * @param addr Address of the block. |
||
| 148 | * |
||
| 149 | */ |
||
| 150 | static void block_check(void *addr) |
||
| 151 | { |
||
| 152 | heap_block_head_t *head = (heap_block_head_t *) addr; |
||
| 153 | |||
| 154 | assert(head->magic == HEAP_BLOCK_HEAD_MAGIC); |
||
| 155 | |||
| 156 | heap_block_foot_t *foot = |
||
| 157 | (heap_block_foot_t *) (addr + head->size - sizeof(heap_block_foot_t)); |
||
| 158 | |||
| 159 | assert(foot->magic == HEAP_BLOCK_FOOT_MAGIC); |
||
| 160 | assert(head->size == foot->size); |
||
| 161 | } |
||
| 162 | |||
| 163 | static bool grow_heap(size_t size) |
||
| 164 | { |
||
| 165 | if (size == 0) |
||
| 166 | return false; |
||
| 167 | |||
| 168 | size_t heap_size = (size_t) (heap_end - heap_start); |
||
| 169 | |||
| 170 | if ((max_heap_size != (size_t) -1) && (heap_size + size > max_heap_size)) |
||
| 171 | return false; |
||
| 172 | |||
| 173 | size_t pages = (size - 1) / PAGE_SIZE + 1; |
||
| 174 | |||
| 175 | if (as_area_resize((void *) &_heap, (heap_pages + pages) * PAGE_SIZE, 0) |
||
| 176 | == EOK) { |
||
| 177 | void *end = (void *) ALIGN_DOWN(((uintptr_t) &_heap) + |
||
| 178 | (heap_pages + pages) * PAGE_SIZE, BASE_ALIGN); |
||
| 179 | block_init(heap_end, end - heap_end, true); |
||
| 180 | heap_pages += pages; |
||
| 181 | heap_end = end; |
||
| 182 | return true; |
||
| 183 | } |
||
| 184 | |||
| 185 | return false; |
||
| 186 | } |
||
| 187 | |||
| 188 | static void shrink_heap(void) |
||
| 189 | { |
||
| 190 | // TODO |
||
| 191 | } |
||
| 192 | |||
| 193 | /** Initialize the heap allocator |
||
| 194 | * |
||
| 195 | * Finds how much physical memory we have and creates |
||
| 196 | * the heap management structures that mark the whole |
||
| 197 | * physical memory as a single free block. |
||
| 198 | * |
||
| 199 | */ |
||
| 200 | void __heap_init(void) |
||
| 201 | { |
||
| 202 | if (as_area_create((void *) &_heap, PAGE_SIZE, |
||
| 203 | AS_AREA_WRITE | AS_AREA_READ)) { |
||
| 204 | heap_pages = 1; |
||
| 205 | heap_start = (void *) ALIGN_UP((uintptr_t) &_heap, BASE_ALIGN); |
||
| 206 | heap_end = |
||
| 207 | (void *) ALIGN_DOWN(((uintptr_t) &_heap) + PAGE_SIZE, BASE_ALIGN); |
||
| 208 | |||
| 209 | /* Make the entire area one large block. */ |
||
| 210 | block_init(heap_start, heap_end - heap_start, true); |
||
| 211 | } |
||
| 212 | } |
||
| 213 | |||
| 214 | uintptr_t get_max_heap_addr(void) |
||
| 215 | { |
||
| 216 | if (max_heap_size == (size_t) -1) |
||
| 217 | max_heap_size = |
||
| 218 | max((size_t) (heap_end - heap_start), MAX_HEAP_SIZE); |
||
| 219 | |||
| 220 | return ((uintptr_t) heap_start + max_heap_size); |
||
| 221 | } |
||
| 222 | |||
| 223 | static void split_mark(heap_block_head_t *cur, const size_t size) |
||
| 224 | { |
||
| 225 | assert(cur->size >= size); |
||
| 226 | |||
| 227 | /* See if we should split the block. */ |
||
| 228 | size_t split_limit = GROSS_SIZE(size); |
||
| 229 | |||
| 230 | if (cur->size > split_limit) { |
||
| 231 | /* Block big enough -> split. */ |
||
| 232 | void *next = ((void *) cur) + size; |
||
| 233 | block_init(next, cur->size - size, true); |
||
| 234 | block_init(cur, size, false); |
||
| 235 | } else { |
||
| 236 | /* Block too small -> use as is. */ |
||
| 237 | cur->free = false; |
||
| 238 | } |
||
| 239 | } |
||
| 240 | |||
| 241 | /** Allocate a memory block |
||
| 242 | * |
||
| 243 | * @param size The size of the block to allocate. |
||
| 244 | * @param align Memory address alignment. |
||
| 245 | * |
||
| 246 | * @return the address of the block or NULL when not enough memory. |
||
| 247 | * |
||
| 248 | */ |
||
| 249 | static void *malloc_internal(const size_t size, const size_t align) |
||
| 250 | { |
||
| 251 | if (align == 0) |
||
| 252 | return NULL; |
||
| 253 | |||
| 254 | size_t falign = lcm(align, BASE_ALIGN); |
||
| 255 | size_t real_size = GROSS_SIZE(ALIGN_UP(size, falign)); |
||
| 256 | |||
| 257 | bool grown = false; |
||
| 258 | void *result; |
||
| 259 | |||
| 260 | loop: |
||
| 261 | result = NULL; |
||
| 262 | heap_block_head_t *cur = (heap_block_head_t *) heap_start; |
||
| 263 | |||
| 264 | while ((result == NULL) && ((void *) cur < heap_end)) { |
||
| 265 | block_check(cur); |
||
| 266 | |||
| 267 | /* Try to find a block that is free and large enough. */ |
||
| 268 | if ((cur->free) && (cur->size >= real_size)) { |
||
| 269 | /* We have found a suitable block. |
||
| 270 | Check for alignment properties. */ |
||
| 271 | void *addr = ((void *) cur) + sizeof(heap_block_head_t); |
||
| 272 | void *aligned = (void *) ALIGN_UP(addr, falign); |
||
| 273 | |||
| 274 | if (addr == aligned) { |
||
| 275 | /* Exact block start including alignment. */ |
||
| 276 | split_mark(cur, real_size); |
||
| 277 | result = addr; |
||
| 278 | } else { |
||
| 4606 | decky | 279 | /* Block start has to be aligned */ |
| 4600 | decky | 280 | size_t excess = (size_t) (aligned - addr); |
| 281 | |||
| 282 | if (cur->size >= real_size + excess) { |
||
| 4607 | jermar | 283 | /* The current block is large enough to fit |
| 4606 | decky | 284 | data in including alignment */ |
| 4600 | decky | 285 | if ((void *) cur > heap_start) { |
| 4606 | decky | 286 | /* There is a block before the current block. |
| 287 | This previous block can be enlarged to compensate |
||
| 288 | for the alignment excess */ |
||
| 4600 | decky | 289 | heap_block_foot_t *prev_foot = |
| 290 | ((void *) cur) - sizeof(heap_block_foot_t); |
||
| 291 | |||
| 292 | heap_block_head_t *prev_head = |
||
| 293 | (heap_block_head_t *) (((void *) cur) - prev_foot->size); |
||
| 294 | |||
| 295 | block_check(prev_head); |
||
| 296 | |||
| 297 | size_t reduced_size = cur->size - excess; |
||
| 4606 | decky | 298 | heap_block_head_t *next_head = ((void *) cur) + excess; |
| 4600 | decky | 299 | |
| 4606 | decky | 300 | if ((!prev_head->free) && (excess >= STRUCT_OVERHEAD)) { |
| 4607 | jermar | 301 | /* The previous block is not free and there is enough |
| 4606 | decky | 302 | space to fill in a new free block between the previous |
| 303 | and current block */ |
||
| 304 | block_init(cur, excess, true); |
||
| 305 | } else { |
||
| 306 | /* The previous block is free (thus there is no need to |
||
| 307 | induce additional fragmentation to the heap) or the |
||
| 308 | excess is small, thus just enlarge the previous block */ |
||
| 309 | block_init(prev_head, prev_head->size + excess, prev_head->free); |
||
| 310 | } |
||
| 311 | |||
| 312 | block_init(next_head, reduced_size, true); |
||
| 313 | split_mark(next_head, real_size); |
||
| 4600 | decky | 314 | result = aligned; |
| 4606 | decky | 315 | cur = next_head; |
| 4600 | decky | 316 | } else { |
| 4606 | decky | 317 | /* The current block is the first block on the heap. |
| 318 | We have to make sure that the alignment excess |
||
| 4607 | jermar | 319 | is large enough to fit a new free block just |
| 4606 | decky | 320 | before the current block */ |
| 4600 | decky | 321 | while (excess < STRUCT_OVERHEAD) { |
| 322 | aligned += falign; |
||
| 323 | excess += falign; |
||
| 324 | } |
||
| 325 | |||
| 4606 | decky | 326 | /* Check for current block size again */ |
| 4600 | decky | 327 | if (cur->size >= real_size + excess) { |
| 328 | size_t reduced_size = cur->size - excess; |
||
| 329 | cur = (heap_block_head_t *) (heap_start + excess); |
||
| 330 | |||
| 331 | block_init(heap_start, excess, true); |
||
| 332 | block_init(cur, reduced_size, true); |
||
| 333 | split_mark(cur, real_size); |
||
| 334 | result = aligned; |
||
| 335 | } |
||
| 336 | } |
||
| 337 | } |
||
| 338 | } |
||
| 339 | } |
||
| 340 | |||
| 341 | /* Advance to the next block. */ |
||
| 342 | cur = (heap_block_head_t *) (((void *) cur) + cur->size); |
||
| 343 | } |
||
| 344 | |||
| 345 | if ((result == NULL) && (!grown)) { |
||
| 346 | if (grow_heap(real_size)) { |
||
| 347 | grown = true; |
||
| 348 | goto loop; |
||
| 349 | } |
||
| 350 | } |
||
| 351 | |||
| 352 | return result; |
||
| 353 | } |
||
| 354 | |||
| 355 | void *malloc(const size_t size) |
||
| 356 | { |
||
| 357 | return malloc_internal(size, BASE_ALIGN); |
||
| 358 | } |
||
| 359 | |||
| 360 | void *memalign(const size_t align, const size_t size) |
||
| 361 | { |
||
| 362 | if (align == 0) |
||
| 363 | return NULL; |
||
| 364 | |||
| 365 | size_t palign = |
||
| 366 | 1 << (fnzb(max(sizeof(void *), align) - 1) + 1); |
||
| 367 | |||
| 368 | return malloc_internal(size, palign); |
||
| 369 | } |
||
| 370 | |||
| 371 | void *realloc(const void *addr, const size_t size) |
||
| 372 | { |
||
| 373 | if (addr == NULL) |
||
| 374 | return malloc(size); |
||
| 375 | |||
| 376 | /* Calculate the position of the header. */ |
||
| 377 | heap_block_head_t *head = |
||
| 378 | (heap_block_head_t *) (addr - sizeof(heap_block_head_t)); |
||
| 379 | |||
| 380 | assert((void *) head >= heap_start); |
||
| 381 | assert((void *) head < heap_end); |
||
| 382 | |||
| 383 | block_check(head); |
||
| 384 | assert(!head->free); |
||
| 385 | |||
| 386 | void *ptr = NULL; |
||
| 4642 | svoboda | 387 | size_t real_size = GROSS_SIZE(ALIGN_UP(size, BASE_ALIGN)); |
| 4600 | decky | 388 | size_t orig_size = head->size; |
| 389 | |||
| 390 | if (orig_size > real_size) { |
||
| 391 | /* Shrink */ |
||
| 392 | if (orig_size - real_size >= STRUCT_OVERHEAD) { |
||
| 393 | /* Split the original block to a full block |
||
| 394 | and a tailing free block */ |
||
| 395 | block_init((void *) head, real_size, false); |
||
| 396 | block_init((void *) head + real_size, |
||
| 397 | orig_size - real_size, true); |
||
| 398 | shrink_heap(); |
||
| 399 | } |
||
| 400 | |||
| 401 | ptr = ((void *) head) + sizeof(heap_block_head_t); |
||
| 402 | } else { |
||
| 403 | /* Look at the next block. If it is free and the size is |
||
| 404 | sufficient then merge the two. */ |
||
| 405 | heap_block_head_t *next_head = |
||
| 406 | (heap_block_head_t *) (((void *) head) + head->size); |
||
| 407 | |||
| 4643 | jermar | 408 | if (((void *) next_head < heap_end) && |
| 409 | (head->size + next_head->size >= real_size) && |
||
| 410 | (next_head->free)) { |
||
| 4600 | decky | 411 | block_check(next_head); |
| 412 | block_init(head, head->size + next_head->size, false); |
||
| 4642 | svoboda | 413 | split_mark(head, ALIGN_UP(size, BASE_ALIGN)); |
| 4600 | decky | 414 | |
| 415 | ptr = ((void *) head) + sizeof(heap_block_head_t); |
||
| 416 | } else { |
||
| 417 | ptr = malloc(size); |
||
| 418 | if (ptr != NULL) { |
||
| 419 | memcpy(ptr, addr, NET_SIZE(orig_size)); |
||
| 420 | free(addr); |
||
| 421 | } |
||
| 422 | } |
||
| 423 | } |
||
| 424 | |||
| 425 | return ptr; |
||
| 426 | } |
||
| 427 | |||
| 428 | /** Free a memory block |
||
| 429 | * |
||
| 430 | * @param addr The address of the block. |
||
| 431 | */ |
||
| 432 | void free(const void *addr) |
||
| 433 | { |
||
| 434 | /* Calculate the position of the header. */ |
||
| 435 | heap_block_head_t *head |
||
| 436 | = (heap_block_head_t *) (addr - sizeof(heap_block_head_t)); |
||
| 437 | |||
| 438 | assert((void *) head >= heap_start); |
||
| 439 | assert((void *) head < heap_end); |
||
| 440 | |||
| 441 | block_check(head); |
||
| 442 | assert(!head->free); |
||
| 443 | |||
| 444 | /* Mark the block itself as free. */ |
||
| 445 | head->free = true; |
||
| 446 | |||
| 447 | /* Look at the next block. If it is free, merge the two. */ |
||
| 448 | heap_block_head_t *next_head |
||
| 449 | = (heap_block_head_t *) (((void *) head) + head->size); |
||
| 450 | |||
| 451 | if ((void *) next_head < heap_end) { |
||
| 452 | block_check(next_head); |
||
| 453 | if (next_head->free) |
||
| 454 | block_init(head, head->size + next_head->size, true); |
||
| 455 | } |
||
| 456 | |||
| 457 | /* Look at the previous block. If it is free, merge the two. */ |
||
| 458 | if ((void *) head > heap_start) { |
||
| 459 | heap_block_foot_t *prev_foot = |
||
| 460 | (heap_block_foot_t *) (((void *) head) - sizeof(heap_block_foot_t)); |
||
| 461 | |||
| 462 | heap_block_head_t *prev_head = |
||
| 463 | (heap_block_head_t *) (((void *) head) - prev_foot->size); |
||
| 464 | |||
| 465 | block_check(prev_head); |
||
| 466 | |||
| 467 | if (prev_head->free) |
||
| 468 | block_init(prev_head, prev_head->size + head->size, true); |
||
| 469 | } |
||
| 470 | |||
| 471 | shrink_heap(); |
||
| 472 | } |
||
| 473 | |||
| 474 | /** @} |
||
| 475 | */ |