Subversion Repositories HelenOS-historic

Rev

Rev 785 | Rev 787 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /*
  2.  * Copyright (C) 2006 Ondrej Palkovsky
  3.  * All rights reserved.
  4.  *
  5.  * Redistribution and use in source and binary forms, with or without
  6.  * modification, are permitted provided that the following conditions
  7.  * are met:
  8.  *
  9.  * - Redistributions of source code must retain the above copyright
  10.  *   notice, this list of conditions and the following disclaimer.
  11.  * - Redistributions in binary form must reproduce the above copyright
  12.  *   notice, this list of conditions and the following disclaimer in the
  13.  *   documentation and/or other materials provided with the distribution.
  14.  * - The name of the author may not be used to endorse or promote products
  15.  *   derived from this software without specific prior written permission.
  16.  *
  17.  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
  18.  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  19.  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  20.  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  21.  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  22.  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  23.  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  24.  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  25.  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  26.  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  27.  */
  28.  
  29. /*
  30.  * The SLAB allocator is closely modelled after OpenSolaris SLAB allocator
  31.  * http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/
  32.  *
  33.  * with the following exceptions:
  34.  *   - empty SLABS are deallocated immediately
  35.  *     (in Linux they are kept in linked list, in Solaris ???)
  36.  *   - empty magazines are deallocated when not needed
  37.  *     (in Solaris they are held in linked list in slab cache)
  38.  *
  39.  *   Following features are not currently supported but would be easy to do:
  40.  *   - cache coloring
  41.  *   - dynamic magazine growing (different magazine sizes are already
  42.  *     supported, but we would need to adjust allocating strategy)
  43.  *
  44.  * The SLAB allocator supports per-CPU caches ('magazines') to facilitate
  45.  * good SMP scaling.
  46.  *
  47.  * When a new object is being allocated, it is first checked, if it is
  48.  * available in CPU-bound magazine. If it is not found there, it is
  49.  * allocated from CPU-shared SLAB - if partial full is found, it is used,
  50.  * otherwise a new one is allocated.
  51.  *
  52.  * When an object is being deallocated, it is put to CPU-bound magazine.
  53.  * If there is no such magazine, new one is allocated (if it fails,
  54.  * the object is deallocated into SLAB). If the magazine is full, it is
  55.  * put into cpu-shared list of magazines and new one is allocated.
  56.  *
  57.  * The CPU-bound magazine is actually a pair of magazine to avoid
  58.  * thrashing when somebody is allocating/deallocating 1 item at the magazine
  59.  * size boundary. LIFO order is enforced, which should avoid fragmentation
  60.  * as much as possible.
  61.  *  
  62.  * Every cache contains list of full slabs and list of partialy full slabs.
  63.  * Empty SLABS are immediately freed (thrashing will be avoided because
  64.  * of magazines).
  65.  *
  66.  * The SLAB information structure is kept inside the data area, if possible.
  67.  * The cache can be marked that it should not use magazines. This is used
  68.  * only for SLAB related caches to avoid deadlocks and infinite recursion
  69.  * (the SLAB allocator uses itself for allocating all it's control structures).
  70.  *
  71.  * The SLAB allocator allocates lot of space and does not free it. When
  72.  * frame allocator fails to allocate the frame, it calls slab_reclaim().
  73.  * It tries 'light reclaim' first, then brutal reclaim. The light reclaim
  74.  * releases slabs from cpu-shared magazine-list, until at least 1 slab
  75.  * is deallocated in each cache (this algorithm should probably change).
  76.  * The brutal reclaim removes all cached objects, even from CPU-bound
  77.  * magazines.
  78.  *
  79.  * TODO: For better CPU-scaling the magazine allocation strategy should
  80.  * be extended. Currently, if the cache does not have magazine, it asks
  81.  * for non-cpu cached magazine cache to provide one. It might be feasible
  82.  * to add cpu-cached magazine cache (which would allocate it's magazines
  83.  * from non-cpu-cached mag. cache). This would provide a nice per-cpu
  84.  * buffer. The other possibility is to use the per-cache
  85.  * 'empty-magazine-list', which decreases competing for 1 per-system
  86.  * magazine cache.
  87.  *
  88.  * - it might be good to add granularity of locks even to slab level,
  89.  *   we could then try_spinlock over all partial slabs and thus improve
  90.  *   scalability even on slab level
  91.  */
  92.  
  93.  
  94. #include <synch/spinlock.h>
  95. #include <mm/slab.h>
  96. #include <list.h>
  97. #include <memstr.h>
  98. #include <align.h>
  99. #include <mm/heap.h>
  100. #include <mm/frame.h>
  101. #include <config.h>
  102. #include <print.h>
  103. #include <arch.h>
  104. #include <panic.h>
  105. #include <debug.h>
  106. #include <bitops.h>
  107.  
  108. SPINLOCK_INITIALIZE(slab_cache_lock);
  109. static LIST_INITIALIZE(slab_cache_list);
  110.  
  111. /** Magazine cache */
  112. static slab_cache_t mag_cache;
  113. /** Cache for cache descriptors */
  114. static slab_cache_t slab_cache_cache;
  115.  
  116. /** Cache for external slab descriptors
  117.  * This time we want per-cpu cache, so do not make it static
  118.  * - using SLAB for internal SLAB structures will not deadlock,
  119.  *   as all slab structures are 'small' - control structures of
  120.  *   their caches do not require further allocation
  121.  */
  122. static slab_cache_t *slab_extern_cache;
  123. /** Caches for malloc */
  124. static slab_cache_t *malloc_caches[SLAB_MAX_MALLOC_W-SLAB_MIN_MALLOC_W+1];
  125. char *malloc_names[] =  {
  126.     "malloc-8","malloc-16","malloc-32","malloc-64","malloc-128",
  127.     "malloc-256","malloc-512","malloc-1K","malloc-2K",
  128.     "malloc-4K","malloc-8K","malloc-16K","malloc-32K",
  129.     "malloc-64K","malloc-128K"
  130. };
  131.  
  132. /** Slab descriptor */
  133. typedef struct {
  134.     slab_cache_t *cache; /**< Pointer to parent cache */
  135.     link_t link;       /* List of full/partial slabs */
  136.     void *start;       /**< Start address of first available item */
  137.     count_t available; /**< Count of available items in this slab */
  138.     index_t nextavail; /**< The index of next available item */
  139. }slab_t;
  140.  
  141. /**************************************/
  142. /* SLAB allocation functions          */
  143.  
  144. /**
  145.  * Allocate frames for slab space and initialize
  146.  *
  147.  */
  148. static slab_t * slab_space_alloc(slab_cache_t *cache, int flags)
  149. {
  150.     void *data;
  151.     slab_t *slab;
  152.     size_t fsize;
  153.     int i;
  154.     zone_t *zone = NULL;
  155.     int status;
  156.     frame_t *frame;
  157.  
  158.     data = (void *)frame_alloc_rc_zone(cache->order, FRAME_KA | flags, &status, &zone);
  159.     if (status != FRAME_OK) {
  160.         return NULL;
  161.     }
  162.     if (! (cache->flags & SLAB_CACHE_SLINSIDE)) {
  163.         slab = slab_alloc(slab_extern_cache, flags);
  164.         if (!slab) {
  165.             frame_free((__address)data);
  166.             return NULL;
  167.         }
  168.     } else {
  169.         fsize = (PAGE_SIZE << cache->order);
  170.         slab = data + fsize - sizeof(*slab);
  171.     }
  172.        
  173.     /* Fill in slab structures */
  174.     /* TODO: some better way of accessing the frame */
  175.     for (i=0; i < (1 << cache->order); i++) {
  176.         frame = ADDR2FRAME(zone, KA2PA((__address)(data+i*PAGE_SIZE)));
  177.         frame->parent = slab;
  178.     }
  179.  
  180.     slab->start = data;
  181.     slab->available = cache->objects;
  182.     slab->nextavail = 0;
  183.     slab->cache = cache;
  184.  
  185.     for (i=0; i<cache->objects;i++)
  186.         *((int *) (slab->start + i*cache->size)) = i+1;
  187.  
  188.     atomic_inc(&cache->allocated_slabs);
  189.     return slab;
  190. }
  191.  
  192. /**
  193.  * Deallocate space associated with SLAB
  194.  *
  195.  * @return number of freed frames
  196.  */
  197. static count_t slab_space_free(slab_cache_t *cache, slab_t *slab)
  198. {
  199.     frame_free((__address)slab->start);
  200.     if (! (cache->flags & SLAB_CACHE_SLINSIDE))
  201.         slab_free(slab_extern_cache, slab);
  202.  
  203.     atomic_dec(&cache->allocated_slabs);
  204.    
  205.     return 1 << cache->order;
  206. }
  207.  
  208. /** Map object to slab structure */
  209. static slab_t * obj2slab(void *obj)
  210. {
  211.     frame_t *frame;
  212.  
  213.     frame = frame_addr2frame((__address)obj);
  214.     return (slab_t *)frame->parent;
  215. }
  216.  
  217. /**************************************/
  218. /* SLAB functions */
  219.  
  220.  
  221. /**
  222.  * Return object to slab and call a destructor
  223.  *
  224.  * @param slab If the caller knows directly slab of the object, otherwise NULL
  225.  *
  226.  * @return Number of freed pages
  227.  */
  228. static count_t slab_obj_destroy(slab_cache_t *cache, void *obj,
  229.                 slab_t *slab)
  230. {
  231.     if (!slab)
  232.         slab = obj2slab(obj);
  233.  
  234.     ASSERT(slab->cache == cache);
  235.     ASSERT(slab->available < cache->objects);
  236.  
  237.     spinlock_lock(&cache->slablock);
  238.  
  239.     *((int *)obj) = slab->nextavail;
  240.     slab->nextavail = (obj - slab->start)/cache->size;
  241.     slab->available++;
  242.  
  243.     /* Move it to correct list */
  244.     if (slab->available == cache->objects) {
  245.         /* Free associated memory */
  246.         list_remove(&slab->link);
  247.         spinlock_unlock(&cache->slablock);
  248.  
  249.         return slab_space_free(cache, slab);
  250.  
  251.     } else if (slab->available == 1) {
  252.         /* It was in full, move to partial */
  253.         list_remove(&slab->link);
  254.         list_prepend(&slab->link, &cache->partial_slabs);
  255.     }
  256.     spinlock_unlock(&cache->slablock);
  257.     return 0;
  258. }
  259.  
  260. /**
  261.  * Take new object from slab or create new if needed
  262.  *
  263.  * @return Object address or null
  264.  */
  265. static void * slab_obj_create(slab_cache_t *cache, int flags)
  266. {
  267.     slab_t *slab;
  268.     void *obj;
  269.  
  270.     spinlock_lock(&cache->slablock);
  271.  
  272.     if (list_empty(&cache->partial_slabs)) {
  273.         /* Allow recursion and reclaiming
  274.          * - this should work, as the SLAB control structures
  275.          *   are small and do not need to allocte with anything
  276.          *   other ten frame_alloc when they are allocating,
  277.          *   that's why we should get recursion at most 1-level deep
  278.          */
  279.         spinlock_unlock(&cache->slablock);
  280.         slab = slab_space_alloc(cache, flags);
  281.         if (!slab)
  282.             return NULL;
  283.         spinlock_lock(&cache->slablock);
  284.     } else {
  285.         slab = list_get_instance(cache->partial_slabs.next,
  286.                      slab_t,
  287.                      link);
  288.         list_remove(&slab->link);
  289.     }
  290.     obj = slab->start + slab->nextavail * cache->size;
  291.     slab->nextavail = *((int *)obj);
  292.     slab->available--;
  293.     if (! slab->available)
  294.         list_prepend(&slab->link, &cache->full_slabs);
  295.     else
  296.         list_prepend(&slab->link, &cache->partial_slabs);
  297.  
  298.     spinlock_unlock(&cache->slablock);
  299.     return obj;
  300. }
  301.  
  302. /**************************************/
  303. /* CPU-Cache slab functions */
  304.  
  305. /**
  306.  * Finds a full magazine in cache, takes it from list
  307.  * and returns it
  308.  *
  309.  * @param first If true, return first, else last mag
  310.  */
  311. static slab_magazine_t * get_mag_from_cache(slab_cache_t *cache,
  312.                         int first)
  313. {
  314.     slab_magazine_t *mag = NULL;
  315.     link_t *cur;
  316.  
  317.     spinlock_lock(&cache->maglock);
  318.     if (!list_empty(&cache->magazines)) {
  319.         if (first)
  320.             cur = cache->magazines.next;
  321.         else
  322.             cur = cache->magazines.prev;
  323.         mag = list_get_instance(cur, slab_magazine_t, link);
  324.         list_remove(&mag->link);
  325.         atomic_dec(&cache->magazine_counter);
  326.     }
  327.     spinlock_unlock(&cache->maglock);
  328.     return mag;
  329. }
  330.  
  331. /** Prepend magazine to magazine list in cache */
  332. static void put_mag_to_cache(slab_cache_t *cache, slab_magazine_t *mag)
  333. {
  334.     spinlock_lock(&cache->maglock);
  335.  
  336.     list_prepend(&mag->link, &cache->magazines);
  337.     atomic_inc(&cache->magazine_counter);
  338.    
  339.     spinlock_unlock(&cache->maglock);
  340. }
  341.  
  342. /**
  343.  * Free all objects in magazine and free memory associated with magazine
  344.  *
  345.  * @return Number of freed pages
  346.  */
  347. static count_t magazine_destroy(slab_cache_t *cache,
  348.                 slab_magazine_t *mag)
  349. {
  350.     int i;
  351.     count_t frames = 0;
  352.  
  353.     for (i=0;i < mag->busy; i++) {
  354.         frames += slab_obj_destroy(cache, mag->objs[i], NULL);
  355.         atomic_dec(&cache->cached_objs);
  356.     }
  357.    
  358.     slab_free(&mag_cache, mag);
  359.  
  360.     return frames;
  361. }
  362.  
  363. /**
  364.  * Find full magazine, set it as current and return it
  365.  *
  366.  * Assume cpu_magazine lock is held
  367.  */
  368. static slab_magazine_t * get_full_current_mag(slab_cache_t *cache)
  369. {
  370.     slab_magazine_t *cmag, *lastmag, *newmag;
  371.  
  372.     cmag = cache->mag_cache[CPU->id].current;
  373.     lastmag = cache->mag_cache[CPU->id].last;
  374.     if (cmag) { /* First try local CPU magazines */
  375.         if (cmag->busy)
  376.             return cmag;
  377.  
  378.         if (lastmag && lastmag->busy) {
  379.             cache->mag_cache[CPU->id].current = lastmag;
  380.             cache->mag_cache[CPU->id].last = cmag;
  381.             return lastmag;
  382.         }
  383.     }
  384.     /* Local magazines are empty, import one from magazine list */
  385.     newmag = get_mag_from_cache(cache, 1);
  386.     if (!newmag)
  387.         return NULL;
  388.  
  389.     if (lastmag)
  390.         magazine_destroy(cache, lastmag);
  391.  
  392.     cache->mag_cache[CPU->id].last = cmag;
  393.     cache->mag_cache[CPU->id].current = newmag;
  394.     return newmag;
  395. }
  396.  
  397. /**
  398.  * Try to find object in CPU-cache magazines
  399.  *
  400.  * @return Pointer to object or NULL if not available
  401.  */
  402. static void * magazine_obj_get(slab_cache_t *cache)
  403. {
  404.     slab_magazine_t *mag;
  405.     void *obj;
  406.  
  407.     if (!CPU)
  408.         return NULL;
  409.  
  410.     spinlock_lock(&cache->mag_cache[CPU->id].lock);
  411.  
  412.     mag = get_full_current_mag(cache);
  413.     if (!mag) {
  414.         spinlock_unlock(&cache->mag_cache[CPU->id].lock);
  415.         return NULL;
  416.     }
  417.     obj = mag->objs[--mag->busy];
  418.     spinlock_unlock(&cache->mag_cache[CPU->id].lock);
  419.     atomic_dec(&cache->cached_objs);
  420.    
  421.     return obj;
  422. }
  423.  
  424. /**
  425.  * Assure that the current magazine is empty, return pointer to it, or NULL if
  426.  * no empty magazine is available and cannot be allocated
  427.  *
  428.  * Assume mag_cache[CPU->id].lock is held
  429.  *
  430.  * We have 2 magazines bound to processor.
  431.  * First try the current.
  432.  *  If full, try the last.
  433.  *   If full, put to magazines list.
  434.  *   allocate new, exchange last & current
  435.  *
  436.  */
  437. static slab_magazine_t * make_empty_current_mag(slab_cache_t *cache)
  438. {
  439.     slab_magazine_t *cmag,*lastmag,*newmag;
  440.  
  441.     cmag = cache->mag_cache[CPU->id].current;
  442.     lastmag = cache->mag_cache[CPU->id].last;
  443.  
  444.     if (cmag) {
  445.         if (cmag->busy < cmag->size)
  446.             return cmag;
  447.         if (lastmag && lastmag->busy < lastmag->size) {
  448.             cache->mag_cache[CPU->id].last = cmag;
  449.             cache->mag_cache[CPU->id].current = lastmag;
  450.             return lastmag;
  451.         }
  452.     }
  453.     /* current | last are full | nonexistent, allocate new */
  454.     /* We do not want to sleep just because of caching */
  455.     /* Especially we do not want reclaiming to start, as
  456.      * this would deadlock */
  457.     newmag = slab_alloc(&mag_cache, FRAME_ATOMIC | FRAME_NO_RECLAIM);
  458.     if (!newmag)
  459.         return NULL;
  460.     newmag->size = SLAB_MAG_SIZE;
  461.     newmag->busy = 0;
  462.  
  463.     /* Flush last to magazine list */
  464.     if (lastmag)
  465.         put_mag_to_cache(cache, lastmag);
  466.  
  467.     /* Move current as last, save new as current */
  468.     cache->mag_cache[CPU->id].last = cmag; 
  469.     cache->mag_cache[CPU->id].current = newmag;
  470.  
  471.     return newmag;
  472. }
  473.  
  474. /**
  475.  * Put object into CPU-cache magazine
  476.  *
  477.  * @return 0 - success, -1 - could not get memory
  478.  */
  479. static int magazine_obj_put(slab_cache_t *cache, void *obj)
  480. {
  481.     slab_magazine_t *mag;
  482.  
  483.     if (!CPU)
  484.         return -1;
  485.  
  486.     spinlock_lock(&cache->mag_cache[CPU->id].lock);
  487.  
  488.     mag = make_empty_current_mag(cache);
  489.     if (!mag) {
  490.         spinlock_unlock(&cache->mag_cache[CPU->id].lock);
  491.         return -1;
  492.     }
  493.    
  494.     mag->objs[mag->busy++] = obj;
  495.  
  496.     spinlock_unlock(&cache->mag_cache[CPU->id].lock);
  497.     atomic_inc(&cache->cached_objs);
  498.     return 0;
  499. }
  500.  
  501.  
  502. /**************************************/
  503. /* SLAB CACHE functions */
  504.  
  505. /** Return number of objects that fit in certain cache size */
  506. static int comp_objects(slab_cache_t *cache)
  507. {
  508.     if (cache->flags & SLAB_CACHE_SLINSIDE)
  509.         return ((PAGE_SIZE << cache->order) - sizeof(slab_t)) / cache->size;
  510.     else
  511.         return (PAGE_SIZE << cache->order) / cache->size;
  512. }
  513.  
  514. /** Return wasted space in slab */
  515. static int badness(slab_cache_t *cache)
  516. {
  517.     int objects;
  518.     int ssize;
  519.  
  520.     objects = comp_objects(cache);
  521.     ssize = PAGE_SIZE << cache->order;
  522.     if (cache->flags & SLAB_CACHE_SLINSIDE)
  523.         ssize -= sizeof(slab_t);
  524.     return ssize - objects*cache->size;
  525. }
  526.  
  527. /** Initialize allocated memory as a slab cache */
  528. static void
  529. _slab_cache_create(slab_cache_t *cache,
  530.            char *name,
  531.            size_t size,
  532.            size_t align,
  533.            int (*constructor)(void *obj, int kmflag),
  534.            void (*destructor)(void *obj),
  535.            int flags)
  536. {
  537.     int i;
  538.     int pages;
  539.     ipl_t ipl;
  540.  
  541.     memsetb((__address)cache, sizeof(*cache), 0);
  542.     cache->name = name;
  543.  
  544.     if (align < sizeof(__native))
  545.         align = sizeof(__native);
  546.     size = ALIGN_UP(size, align);
  547.        
  548.     cache->size = size;
  549.  
  550.     cache->constructor = constructor;
  551.     cache->destructor = destructor;
  552.     cache->flags = flags;
  553.  
  554.     list_initialize(&cache->full_slabs);
  555.     list_initialize(&cache->partial_slabs);
  556.     list_initialize(&cache->magazines);
  557.     spinlock_initialize(&cache->slablock, "slab_lock");
  558.     spinlock_initialize(&cache->maglock, "slab_maglock");
  559.     if (! (cache->flags & SLAB_CACHE_NOMAGAZINE)) {
  560.         for (i=0; i < config.cpu_count; i++) {
  561.             memsetb((__address)&cache->mag_cache[i],
  562.                 sizeof(cache->mag_cache[i]), 0);
  563.             spinlock_initialize(&cache->mag_cache[i].lock,
  564.                         "slab_maglock_cpu");
  565.         }
  566.     }
  567.  
  568.     /* Compute slab sizes, object counts in slabs etc. */
  569.     if (cache->size < SLAB_INSIDE_SIZE)
  570.         cache->flags |= SLAB_CACHE_SLINSIDE;
  571.  
  572.     /* Minimum slab order */
  573.     pages = ((cache->size-1) >> PAGE_WIDTH) + 1;
  574.     cache->order = fnzb(pages);
  575.  
  576.     while (badness(cache) > SLAB_MAX_BADNESS(cache)) {
  577.         cache->order += 1;
  578.     }
  579.     cache->objects = comp_objects(cache);
  580.     /* If info fits in, put it inside */
  581.     if (badness(cache) > sizeof(slab_t))
  582.         cache->flags |= SLAB_CACHE_SLINSIDE;
  583.  
  584.     /* Add cache to cache list */
  585.     ipl = interrupts_disable();
  586.     spinlock_lock(&slab_cache_lock);
  587.  
  588.     list_append(&cache->link, &slab_cache_list);
  589.  
  590.     spinlock_unlock(&slab_cache_lock);
  591.     interrupts_restore(ipl);
  592. }
  593.  
  594. /** Create slab cache  */
  595. slab_cache_t * slab_cache_create(char *name,
  596.                  size_t size,
  597.                  size_t align,
  598.                  int (*constructor)(void *obj, int kmflag),
  599.                  void (*destructor)(void *obj),
  600.                  int flags)
  601. {
  602.     slab_cache_t *cache;
  603.  
  604.     cache = slab_alloc(&slab_cache_cache, 0);
  605.     _slab_cache_create(cache, name, size, align, constructor, destructor,
  606.                flags);
  607.     return cache;
  608. }
  609.  
  610. /**
  611.  * Reclaim space occupied by objects that are already free
  612.  *
  613.  * @param flags If contains SLAB_RECLAIM_ALL, do aggressive freeing
  614.  * @return Number of freed pages
  615.  */
  616. static count_t _slab_reclaim(slab_cache_t *cache, int flags)
  617. {
  618.     int i;
  619.     slab_magazine_t *mag;
  620.     count_t frames = 0;
  621.     int magcount;
  622.    
  623.     if (cache->flags & SLAB_CACHE_NOMAGAZINE)
  624.         return 0; /* Nothing to do */
  625.  
  626.     /* We count up to original magazine count to avoid
  627.      * endless loop
  628.      */
  629.     magcount = atomic_get(&cache->magazine_counter);
  630.     while (magcount-- && (mag=get_mag_from_cache(cache,0))) {
  631.         frames += magazine_destroy(cache,mag);
  632.         if (!(flags & SLAB_RECLAIM_ALL) && frames)
  633.             break;
  634.     }
  635.    
  636.     if (flags & SLAB_RECLAIM_ALL) {
  637.         /* Free cpu-bound magazines */
  638.         /* Destroy CPU magazines */
  639.         for (i=0; i<config.cpu_count; i++) {
  640.             spinlock_lock(&cache->mag_cache[i].lock);
  641.  
  642.             mag = cache->mag_cache[i].current;
  643.             if (mag)
  644.                 frames += magazine_destroy(cache, mag);
  645.             cache->mag_cache[i].current = NULL;
  646.            
  647.             mag = cache->mag_cache[i].last;
  648.             if (mag)
  649.                 frames += magazine_destroy(cache, mag);
  650.             cache->mag_cache[i].last = NULL;
  651.  
  652.             spinlock_unlock(&cache->mag_cache[i].lock);
  653.         }
  654.     }
  655.  
  656.     return frames;
  657. }
  658.  
  659. /** Check that there are no slabs and remove cache from system  */
  660. void slab_cache_destroy(slab_cache_t *cache)
  661. {
  662.     ipl_t ipl;
  663.  
  664.     /* First remove cache from link, so that we don't need
  665.      * to disable interrupts later
  666.      */
  667.  
  668.     ipl = interrupts_disable();
  669.     spinlock_lock(&slab_cache_lock);
  670.  
  671.     list_remove(&cache->link);
  672.  
  673.     spinlock_unlock(&slab_cache_lock);
  674.     interrupts_restore(ipl);
  675.  
  676.     /* Do not lock anything, we assume the software is correct and
  677.      * does not touch the cache when it decides to destroy it */
  678.    
  679.     /* Destroy all magazines */
  680.     _slab_reclaim(cache, SLAB_RECLAIM_ALL);
  681.  
  682.     /* All slabs must be empty */
  683.     if (!list_empty(&cache->full_slabs) \
  684.         || !list_empty(&cache->partial_slabs))
  685.         panic("Destroying cache that is not empty.");
  686.  
  687.     slab_free(&slab_cache_cache, cache);
  688. }
  689.  
  690. /** Allocate new object from cache - if no flags given, always returns
  691.     memory */
  692. void * slab_alloc(slab_cache_t *cache, int flags)
  693. {
  694.     ipl_t ipl;
  695.     void *result = NULL;
  696.    
  697.     /* Disable interrupts to avoid deadlocks with interrupt handlers */
  698.     ipl = interrupts_disable();
  699.  
  700.     if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
  701.         result = magazine_obj_get(cache);
  702.     if (!result)
  703.         result = slab_obj_create(cache, flags);
  704.  
  705.     interrupts_restore(ipl);
  706.  
  707.     if (result)
  708.         atomic_inc(&cache->allocated_objs);
  709.  
  710.     return result;
  711. }
  712.  
  713. /** Return object to cache, use slab if known  */
  714. static void _slab_free(slab_cache_t *cache, void *obj, slab_t *slab)
  715. {
  716.     ipl_t ipl;
  717.  
  718.     ipl = interrupts_disable();
  719.  
  720.     if ((cache->flags & SLAB_CACHE_NOMAGAZINE) \
  721.         || magazine_obj_put(cache, obj)) {
  722.  
  723.         slab_obj_destroy(cache, obj, slab);
  724.  
  725.     }
  726.     interrupts_restore(ipl);
  727.     atomic_dec(&cache->allocated_objs);
  728. }
  729.  
  730. /** Return slab object to cache */
  731. void slab_free(slab_cache_t *cache, void *obj)
  732. {
  733.     _slab_free(cache,obj,NULL);
  734. }
  735.  
  736. /* Go through all caches and reclaim what is possible */
  737. count_t slab_reclaim(int flags)
  738. {
  739.     slab_cache_t *cache;
  740.     link_t *cur;
  741.     count_t frames = 0;
  742.  
  743.     spinlock_lock(&slab_cache_lock);
  744.  
  745.     /* TODO: Add assert, that interrupts are disabled, otherwise
  746.      * memory allocation from interrupts can deadlock.
  747.      */
  748.  
  749.     for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
  750.         cache = list_get_instance(cur, slab_cache_t, link);
  751.         frames += _slab_reclaim(cache, flags);
  752.     }
  753.  
  754.     spinlock_unlock(&slab_cache_lock);
  755.  
  756.     return frames;
  757. }
  758.  
  759.  
  760. /* Print list of slabs */
  761. void slab_print_list(void)
  762. {
  763.     slab_cache_t *cache;
  764.     link_t *cur;
  765.     ipl_t ipl;
  766.    
  767.     ipl = interrupts_disable();
  768.     spinlock_lock(&slab_cache_lock);
  769.     printf("SLAB name\tOsize\tPages\tObj/pg\tSlabs\tCached\tAllocobjs\tCtl\n");
  770.     for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
  771.         cache = list_get_instance(cur, slab_cache_t, link);
  772.         printf("%s\t%d\t%d\t%d\t%d\t%d\t%d\t\t%s\n", cache->name, cache->size,
  773.                (1 << cache->order), cache->objects,
  774.                atomic_get(&cache->allocated_slabs),
  775.                atomic_get(&cache->cached_objs),
  776.                atomic_get(&cache->allocated_objs),
  777.                cache->flags & SLAB_CACHE_SLINSIDE ? "In" : "Out");
  778.     }
  779.     spinlock_unlock(&slab_cache_lock);
  780.     interrupts_restore(ipl);
  781. }
  782.  
  783. #ifdef CONFIG_DEBUG
  784. static int _slab_initialized = 0;
  785. #endif
  786.  
  787. void slab_cache_init(void)
  788. {
  789.     int i, size;
  790.  
  791.     /* Initialize magazine cache */
  792.     _slab_cache_create(&mag_cache,
  793.                "slab_magazine",
  794.                sizeof(slab_magazine_t)+SLAB_MAG_SIZE*sizeof(void*),
  795.                sizeof(__address),
  796.                NULL, NULL,
  797.                SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
  798.     /* Initialize slab_cache cache */
  799.     _slab_cache_create(&slab_cache_cache,
  800.                "slab_cache",
  801.                sizeof(slab_cache_cache) + config.cpu_count*sizeof(slab_cache_cache.mag_cache[0]),
  802.                sizeof(__address),
  803.                NULL, NULL,
  804.                SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
  805.     /* Initialize external slab cache */
  806.     slab_extern_cache = slab_cache_create("slab_extern",
  807.                           sizeof(slab_t),
  808.                           0, NULL, NULL,
  809.                           SLAB_CACHE_SLINSIDE);
  810.  
  811.     /* Initialize structures for malloc */
  812.     for (i=0, size=(1<<SLAB_MIN_MALLOC_W);
  813.          i < (SLAB_MAX_MALLOC_W-SLAB_MIN_MALLOC_W+1);
  814.          i++, size <<= 1) {
  815.         malloc_caches[i] = slab_cache_create(malloc_names[i],
  816.                              size, 0,
  817.                              NULL,NULL,0);
  818.     }
  819. #ifdef CONFIG_DEBUG      
  820.     _slab_initialized = 1;
  821. #endif
  822. }
  823.  
  824. /**************************************/
  825. /* kalloc/kfree functions             */
  826. void * kalloc(unsigned int size, int flags)
  827. {
  828.     int idx;
  829.  
  830.     ASSERT(_slab_initialized);
  831.     ASSERT( size && size <= (1 << SLAB_MAX_MALLOC_W));
  832.    
  833.     if (size < (1 << SLAB_MIN_MALLOC_W))
  834.         size = (1 << SLAB_MIN_MALLOC_W);
  835.  
  836.     idx = fnzb(size-1) - SLAB_MIN_MALLOC_W + 1;
  837.  
  838.     return slab_alloc(malloc_caches[idx], flags);
  839. }
  840.  
  841.  
  842. void kfree(void *obj)
  843. {
  844.     slab_t *slab;
  845.  
  846.     if (!obj) return;
  847.  
  848.     slab = obj2slab(obj);
  849.     _slab_free(slab->cache, obj, slab);
  850. }
  851.