Subversion Repositories HelenOS-historic

Rev

Rev 780 | Rev 782 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /*
  2.  * Copyright (C) 2006 Ondrej Palkovsky
  3.  * All rights reserved.
  4.  *
  5.  * Redistribution and use in source and binary forms, with or without
  6.  * modification, are permitted provided that the following conditions
  7.  * are met:
  8.  *
  9.  * - Redistributions of source code must retain the above copyright
  10.  *   notice, this list of conditions and the following disclaimer.
  11.  * - Redistributions in binary form must reproduce the above copyright
  12.  *   notice, this list of conditions and the following disclaimer in the
  13.  *   documentation and/or other materials provided with the distribution.
  14.  * - The name of the author may not be used to endorse or promote products
  15.  *   derived from this software without specific prior written permission.
  16.  *
  17.  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
  18.  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  19.  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  20.  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  21.  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  22.  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  23.  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  24.  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  25.  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  26.  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  27.  */
  28.  
  29. /*
  30.  * The SLAB allocator is closely modelled after Opensolaris SLAB allocator
  31.  * http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/
  32.  *
  33.  * with the following exceptions:
  34.  *   - empty SLABS are deallocated immediately
  35.  *     (in Linux they are kept in linked list, in Solaris ???)
  36.  *   - empty magazines are deallocated when not needed
  37.  *     (in Solaris they are held in linked list in slab cache)
  38.  *
  39.  *   Following features are not currently supported but would be easy to do:
  40.  *   - cache coloring
  41.  *   - dynamic magazine growing (different magazine sizes are already
  42.  *     supported, but we would need to adjust allocating strategy)
  43.  *
  44.  * The SLAB allocator supports per-CPU caches ('magazines') to facilitate
  45.  * good SMP scaling.
  46.  *
  47.  * When a new object is being allocated, it is first checked, if it is
  48.  * available in CPU-bound magazine. If it is not found there, it is
  49.  * allocated from CPU-shared SLAB - if partial full is found, it is used,
  50.  * otherwise a new one is allocated.
  51.  *
  52.  * When an object is being deallocated, it is put to CPU-bound magazine.
  53.  * If there is no such magazine, new one is allocated (if it fails,
  54.  * the object is deallocated into SLAB). If the magazine is full, it is
  55.  * put into cpu-shared list of magazines and new one is allocated.
  56.  *
  57.  * The CPU-bound magazine is actually a pair of magazine to avoid
  58.  * thrashing when somebody is allocating/deallocating 1 item at the magazine
  59.  * size boundary. LIFO order is enforced, which should avoid fragmentation
  60.  * as much as possible.
  61.  *  
  62.  * Every cache contains list of full slabs and list of partialy full slabs.
  63.  * Empty SLABS are immediately freed (thrashing will be avoided because
  64.  * of magazines).
  65.  *
  66.  * The SLAB information structure is kept inside the data area, if possible.
  67.  * The cache can be marked that it should not use magazines. This is used
  68.  * only for SLAB related caches to avoid deadlocks and infinite recursion
  69.  * (the SLAB allocator uses itself for allocating all it's control structures).
  70.  *
  71.  * The SLAB allocator allocates lot of space and does not free it. When
  72.  * frame allocator fails to allocate the frame, it calls slab_reclaim().
  73.  * It tries 'light reclaim' first, then brutal reclaim. The light reclaim
  74.  * releases slabs from cpu-shared magazine-list, until at least 1 slab
  75.  * is deallocated in each cache (this algorithm should probably change).
  76.  * The brutal reclaim removes all cached objects, even from CPU-bound
  77.  * magazines.
  78.  *
  79.  * TODO: For better CPU-scaling the magazine allocation strategy should
  80.  * be extended. Currently, if the cache does not have magazine, it asks
  81.  * for non-cpu cached magazine cache to provide one. It might be feasible
  82.  * to add cpu-cached magazine cache (which would allocate it's magazines
  83.  * from non-cpu-cached mag. cache). This would provide a nice per-cpu
  84.  * buffer. The other possibility is to use the per-cache
  85.  * 'empty-magazine-list', which decreases competing for 1 per-system
  86.  * magazine cache.
  87.  *
  88.  * - it might be good to add granularity of locks even to slab level,
  89.  *   we could then try_spinlock over all partial slabs and thus improve
  90.  *   scalability even on slab level
  91.  */
  92.  
  93.  
  94. #include <synch/spinlock.h>
  95. #include <mm/slab.h>
  96. #include <list.h>
  97. #include <memstr.h>
  98. #include <align.h>
  99. #include <mm/heap.h>
  100. #include <mm/frame.h>
  101. #include <config.h>
  102. #include <print.h>
  103. #include <arch.h>
  104. #include <panic.h>
  105. #include <debug.h>
  106. #include <bitops.h>
  107.  
  108. SPINLOCK_INITIALIZE(slab_cache_lock);
  109. static LIST_INITIALIZE(slab_cache_list);
  110.  
  111. /** Magazine cache */
  112. static slab_cache_t mag_cache;
  113. /** Cache for cache descriptors */
  114. static slab_cache_t slab_cache_cache;
  115.  
  116. /** Cache for external slab descriptors
  117.  * This time we want per-cpu cache, so do not make it static
  118.  * - using SLAB for internal SLAB structures will not deadlock,
  119.  *   as all slab structures are 'small' - control structures of
  120.  *   their caches do not require further allocation
  121.  */
  122. static slab_cache_t *slab_extern_cache;
  123. /** Caches for malloc */
  124. static slab_cache_t *malloc_caches[SLAB_MAX_MALLOC_W-SLAB_MIN_MALLOC_W+1];
  125. char *malloc_names[] =  {
  126.     "malloc-8","malloc-16","malloc-32","malloc-64","malloc-128",
  127.     "malloc-256","malloc-512","malloc-1K","malloc-2K",
  128.     "malloc-4K","malloc-8K","malloc-16K","malloc-32K",
  129.     "malloc-64K","malloc-128K"
  130. };
  131.  
  132. /** Slab descriptor */
  133. typedef struct {
  134.     slab_cache_t *cache; /**< Pointer to parent cache */
  135.     link_t link;       /* List of full/partial slabs */
  136.     void *start;       /**< Start address of first available item */
  137.     count_t available; /**< Count of available items in this slab */
  138.     index_t nextavail; /**< The index of next available item */
  139. }slab_t;
  140.  
  141. /**************************************/
  142. /* SLAB allocation functions          */
  143.  
  144. /**
  145.  * Allocate frames for slab space and initialize
  146.  *
  147.  */
  148. static slab_t * slab_space_alloc(slab_cache_t *cache, int flags)
  149. {
  150.     void *data;
  151.     slab_t *slab;
  152.     size_t fsize;
  153.     int i;
  154.     zone_t *zone = NULL;
  155.     int status;
  156.     frame_t *frame;
  157.  
  158.     data = (void *)frame_alloc(FRAME_KA | flags, cache->order, &status, &zone);
  159.     if (status != FRAME_OK) {
  160.         return NULL;
  161.     }
  162.     if (! (cache->flags & SLAB_CACHE_SLINSIDE)) {
  163.         slab = slab_alloc(slab_extern_cache, flags);
  164.         if (!slab) {
  165.             frame_free((__address)data);
  166.             return NULL;
  167.         }
  168.     } else {
  169.         fsize = (PAGE_SIZE << cache->order);
  170.         slab = data + fsize - sizeof(*slab);
  171.     }
  172.        
  173.     /* Fill in slab structures */
  174.     /* TODO: some better way of accessing the frame */
  175.     for (i=0; i < (1 << cache->order); i++) {
  176.         frame = ADDR2FRAME(zone, KA2PA((__address)(data+i*PAGE_SIZE)));
  177.         frame->parent = slab;
  178.     }
  179.  
  180.     slab->start = data;
  181.     slab->available = cache->objects;
  182.     slab->nextavail = 0;
  183.     slab->cache = cache;
  184.  
  185.     for (i=0; i<cache->objects;i++)
  186.         *((int *) (slab->start + i*cache->size)) = i+1;
  187.  
  188.     atomic_inc(&cache->allocated_slabs);
  189.     return slab;
  190. }
  191.  
  192. /**
  193.  * Deallocate space associated with SLAB
  194.  *
  195.  * @return number of freed frames
  196.  */
  197. static count_t slab_space_free(slab_cache_t *cache, slab_t *slab)
  198. {
  199.     frame_free((__address)slab->start);
  200.     if (! (cache->flags & SLAB_CACHE_SLINSIDE))
  201.         slab_free(slab_extern_cache, slab);
  202.  
  203.     atomic_dec(&cache->allocated_slabs);
  204.    
  205.     return 1 << cache->order;
  206. }
  207.  
  208. /** Map object to slab structure */
  209. static slab_t * obj2slab(void *obj)
  210. {
  211.     frame_t *frame;
  212.  
  213.     frame = frame_addr2frame((__address)obj);
  214.     return (slab_t *)frame->parent;
  215. }
  216.  
  217. /**************************************/
  218. /* SLAB functions */
  219.  
  220.  
  221. /**
  222.  * Return object to slab and call a destructor
  223.  *
  224.  * @param slab If the caller knows directly slab of the object, otherwise NULL
  225.  *
  226.  * @return Number of freed pages
  227.  */
  228. static count_t slab_obj_destroy(slab_cache_t *cache, void *obj,
  229.                 slab_t *slab)
  230. {
  231.     count_t frames = 0;
  232.  
  233.     if (!slab)
  234.         slab = obj2slab(obj);
  235.  
  236.     ASSERT(slab->cache == cache);
  237.     ASSERT(slab->available < cache->objects);
  238.  
  239.     spinlock_lock(&cache->slablock);
  240.  
  241.     *((int *)obj) = slab->nextavail;
  242.     slab->nextavail = (obj - slab->start)/cache->size;
  243.     slab->available++;
  244.  
  245.     /* Move it to correct list */
  246.     if (slab->available == cache->objects) {
  247.         /* Free associated memory */
  248.         list_remove(&slab->link);
  249.         /* This should not produce deadlock, as
  250.          * magazine is always allocated with NO reclaim,
  251.          * keep all locks */
  252.         frames = slab_space_free(cache, slab);
  253.     } else if (slab->available == 1) {
  254.         /* It was in full, move to partial */
  255.         list_remove(&slab->link);
  256.         list_prepend(&slab->link, &cache->partial_slabs);
  257.     }
  258.  
  259.     spinlock_unlock(&cache->slablock);
  260.  
  261.     return frames;
  262. }
  263.  
  264. /**
  265.  * Take new object from slab or create new if needed
  266.  *
  267.  * @return Object address or null
  268.  */
  269. static void * slab_obj_create(slab_cache_t *cache, int flags)
  270. {
  271.     slab_t *slab;
  272.     void *obj;
  273.  
  274.     spinlock_lock(&cache->slablock);
  275.  
  276.     if (list_empty(&cache->partial_slabs)) {
  277.         /* Allow recursion and reclaiming
  278.          * - this should work, as the SLAB control structures
  279.          *   are small and do not need to allocte with anything
  280.          *   other ten frame_alloc when they are allocating,
  281.          *   that's why we should get recursion at most 1-level deep
  282.          */
  283.         spinlock_unlock(&cache->slablock);
  284.         slab = slab_space_alloc(cache, flags);
  285.         if (!slab)
  286.             return NULL;
  287.         spinlock_lock(&cache->slablock);
  288.     } else {
  289.         slab = list_get_instance(cache->partial_slabs.next,
  290.                      slab_t,
  291.                      link);
  292.         list_remove(&slab->link);
  293.     }
  294.     obj = slab->start + slab->nextavail * cache->size;
  295.     slab->nextavail = *((int *)obj);
  296.     slab->available--;
  297.     if (! slab->available)
  298.         list_prepend(&slab->link, &cache->full_slabs);
  299.     else
  300.         list_prepend(&slab->link, &cache->partial_slabs);
  301.  
  302.     spinlock_unlock(&cache->slablock);
  303.     return obj;
  304. }
  305.  
  306. /**************************************/
  307. /* CPU-Cache slab functions */
  308.  
  309. /**
  310.  * Finds a full magazine in cache, takes it from list
  311.  * and returns it
  312.  *
  313.  * @param first If true, return first, else last mag
  314.  */
  315. static slab_magazine_t * get_mag_from_cache(slab_cache_t *cache,
  316.                         int first)
  317. {
  318.     slab_magazine_t *mag = NULL;
  319.     link_t *cur;
  320.  
  321.     spinlock_lock(&cache->maglock);
  322.     if (!list_empty(&cache->magazines)) {
  323.         if (first)
  324.             cur = cache->magazines.next;
  325.         else
  326.             cur = cache->magazines.prev;
  327.         mag = list_get_instance(cur, slab_magazine_t, link);
  328.         list_remove(&mag->link);
  329.         atomic_dec(&cache->magazine_counter);
  330.     }
  331.     spinlock_unlock(&cache->maglock);
  332.     return mag;
  333. }
  334.  
  335. /** Prepend magazine to magazine list in cache */
  336. static void put_mag_to_cache(slab_cache_t *cache, slab_magazine_t *mag)
  337. {
  338.     spinlock_lock(&cache->maglock);
  339.  
  340.     list_prepend(&mag->link, &cache->magazines);
  341.     atomic_inc(&cache->magazine_counter);
  342.    
  343.     spinlock_unlock(&cache->maglock);
  344. }
  345.  
  346. /**
  347.  * Free all objects in magazine and free memory associated with magazine
  348.  *
  349.  * @return Number of freed pages
  350.  */
  351. static count_t magazine_destroy(slab_cache_t *cache,
  352.                 slab_magazine_t *mag)
  353. {
  354.     int i;
  355.     count_t frames = 0;
  356.  
  357.     for (i=0;i < mag->busy; i++) {
  358.         frames += slab_obj_destroy(cache, mag->objs[i], NULL);
  359.         atomic_dec(&cache->cached_objs);
  360.     }
  361.    
  362.     slab_free(&mag_cache, mag);
  363.  
  364.     return frames;
  365. }
  366.  
  367. /**
  368.  * Find full magazine, set it as current and return it
  369.  *
  370.  * Assume cpu_magazine lock is held
  371.  */
  372. static slab_magazine_t * get_full_current_mag(slab_cache_t *cache)
  373. {
  374.     slab_magazine_t *cmag, *lastmag, *newmag;
  375.  
  376.     cmag = cache->mag_cache[CPU->id].current;
  377.     lastmag = cache->mag_cache[CPU->id].last;
  378.     if (cmag) { /* First try local CPU magazines */
  379.         if (cmag->busy)
  380.             return cmag;
  381.  
  382.         if (lastmag && lastmag->busy) {
  383.             cache->mag_cache[CPU->id].current = lastmag;
  384.             cache->mag_cache[CPU->id].last = cmag;
  385.             return lastmag;
  386.         }
  387.     }
  388.     /* Local magazines are empty, import one from magazine list */
  389.     newmag = get_mag_from_cache(cache, 1);
  390.     if (!newmag)
  391.         return NULL;
  392.  
  393.     if (lastmag)
  394.         magazine_destroy(cache, lastmag);
  395.  
  396.     cache->mag_cache[CPU->id].last = cmag;
  397.     cache->mag_cache[CPU->id].current = newmag;
  398.     return newmag;
  399. }
  400.  
  401. /**
  402.  * Try to find object in CPU-cache magazines
  403.  *
  404.  * @return Pointer to object or NULL if not available
  405.  */
  406. static void * magazine_obj_get(slab_cache_t *cache)
  407. {
  408.     slab_magazine_t *mag;
  409.     void *obj;
  410.  
  411.     if (!CPU)
  412.         return NULL;
  413.  
  414.     spinlock_lock(&cache->mag_cache[CPU->id].lock);
  415.  
  416.     mag = get_full_current_mag(cache);
  417.     if (!mag) {
  418.         spinlock_unlock(&cache->mag_cache[CPU->id].lock);
  419.         return NULL;
  420.     }
  421.     obj = mag->objs[--mag->busy];
  422.     spinlock_unlock(&cache->mag_cache[CPU->id].lock);
  423.     atomic_dec(&cache->cached_objs);
  424.    
  425.     return obj;
  426. }
  427.  
  428. /**
  429.  * Assure that the current magazine is empty, return pointer to it, or NULL if
  430.  * no empty magazine is available and cannot be allocated
  431.  *
  432.  * Assume mag_cache[CPU->id].lock is held
  433.  *
  434.  * We have 2 magazines bound to processor.
  435.  * First try the current.
  436.  *  If full, try the last.
  437.  *   If full, put to magazines list.
  438.  *   allocate new, exchange last & current
  439.  *
  440.  */
  441. static slab_magazine_t * make_empty_current_mag(slab_cache_t *cache)
  442. {
  443.     slab_magazine_t *cmag,*lastmag,*newmag;
  444.  
  445.     cmag = cache->mag_cache[CPU->id].current;
  446.     lastmag = cache->mag_cache[CPU->id].last;
  447.  
  448.     if (cmag) {
  449.         if (cmag->busy < cmag->size)
  450.             return cmag;
  451.         if (lastmag && lastmag->busy < lastmag->size) {
  452.             cache->mag_cache[CPU->id].last = cmag;
  453.             cache->mag_cache[CPU->id].current = lastmag;
  454.             return lastmag;
  455.         }
  456.     }
  457.     /* current | last are full | nonexistent, allocate new */
  458.     /* We do not want to sleep just because of caching */
  459.     /* Especially we do not want reclaiming to start, as
  460.      * this would deadlock */
  461.     newmag = slab_alloc(&mag_cache, FRAME_ATOMIC | FRAME_NO_RECLAIM);
  462.     if (!newmag)
  463.         return NULL;
  464.     newmag->size = SLAB_MAG_SIZE;
  465.     newmag->busy = 0;
  466.  
  467.     /* Flush last to magazine list */
  468.     if (lastmag)
  469.         put_mag_to_cache(cache, lastmag);
  470.  
  471.     /* Move current as last, save new as current */
  472.     cache->mag_cache[CPU->id].last = cmag; 
  473.     cache->mag_cache[CPU->id].current = newmag;
  474.  
  475.     return newmag;
  476. }
  477.  
  478. /**
  479.  * Put object into CPU-cache magazine
  480.  *
  481.  * @return 0 - success, -1 - could not get memory
  482.  */
  483. static int magazine_obj_put(slab_cache_t *cache, void *obj)
  484. {
  485.     slab_magazine_t *mag;
  486.  
  487.     if (!CPU)
  488.         return -1;
  489.  
  490.     spinlock_lock(&cache->mag_cache[CPU->id].lock);
  491.  
  492.     mag = make_empty_current_mag(cache);
  493.     if (!mag) {
  494.         spinlock_unlock(&cache->mag_cache[CPU->id].lock);
  495.         return -1;
  496.     }
  497.    
  498.     mag->objs[mag->busy++] = obj;
  499.  
  500.     spinlock_unlock(&cache->mag_cache[CPU->id].lock);
  501.     atomic_inc(&cache->cached_objs);
  502.     return 0;
  503. }
  504.  
  505.  
  506. /**************************************/
  507. /* SLAB CACHE functions */
  508.  
  509. /** Return number of objects that fit in certain cache size */
  510. static int comp_objects(slab_cache_t *cache)
  511. {
  512.     if (cache->flags & SLAB_CACHE_SLINSIDE)
  513.         return ((PAGE_SIZE << cache->order) - sizeof(slab_t)) / cache->size;
  514.     else
  515.         return (PAGE_SIZE << cache->order) / cache->size;
  516. }
  517.  
  518. /** Return wasted space in slab */
  519. static int badness(slab_cache_t *cache)
  520. {
  521.     int objects;
  522.     int ssize;
  523.  
  524.     objects = comp_objects(cache);
  525.     ssize = PAGE_SIZE << cache->order;
  526.     if (cache->flags & SLAB_CACHE_SLINSIDE)
  527.         ssize -= sizeof(slab_t);
  528.     return ssize - objects*cache->size;
  529. }
  530.  
  531. /** Initialize allocated memory as a slab cache */
  532. static void
  533. _slab_cache_create(slab_cache_t *cache,
  534.            char *name,
  535.            size_t size,
  536.            size_t align,
  537.            int (*constructor)(void *obj, int kmflag),
  538.            void (*destructor)(void *obj),
  539.            int flags)
  540. {
  541.     int i;
  542.     int pages;
  543.  
  544.     memsetb((__address)cache, sizeof(*cache), 0);
  545.     cache->name = name;
  546.  
  547.     if (align < sizeof(__native))
  548.         align = sizeof(__native);
  549.     size = ALIGN_UP(size, align);
  550.        
  551.     cache->size = size;
  552.  
  553.     cache->constructor = constructor;
  554.     cache->destructor = destructor;
  555.     cache->flags = flags;
  556.  
  557.     list_initialize(&cache->full_slabs);
  558.     list_initialize(&cache->partial_slabs);
  559.     list_initialize(&cache->magazines);
  560.     spinlock_initialize(&cache->slablock, "slab_lock");
  561.     spinlock_initialize(&cache->maglock, "slab_maglock");
  562.     if (! (cache->flags & SLAB_CACHE_NOMAGAZINE)) {
  563.         for (i=0; i < config.cpu_count; i++) {
  564.             memsetb((__address)&cache->mag_cache[i],
  565.                 sizeof(cache->mag_cache[i]), 0);
  566.             spinlock_initialize(&cache->mag_cache[i].lock,
  567.                         "slab_maglock_cpu");
  568.         }
  569.     }
  570.  
  571.     /* Compute slab sizes, object counts in slabs etc. */
  572.     if (cache->size < SLAB_INSIDE_SIZE)
  573.         cache->flags |= SLAB_CACHE_SLINSIDE;
  574.  
  575.     /* Minimum slab order */
  576.     pages = ((cache->size-1) >> PAGE_WIDTH) + 1;
  577.     cache->order = fnzb(pages);
  578.  
  579.     while (badness(cache) > SLAB_MAX_BADNESS(cache)) {
  580.         cache->order += 1;
  581.     }
  582.     cache->objects = comp_objects(cache);
  583.     /* If info fits in, put it inside */
  584.     if (badness(cache) > sizeof(slab_t))
  585.         cache->flags |= SLAB_CACHE_SLINSIDE;
  586.  
  587.     spinlock_lock(&slab_cache_lock);
  588.  
  589.     list_append(&cache->link, &slab_cache_list);
  590.  
  591.     spinlock_unlock(&slab_cache_lock);
  592. }
  593.  
  594. /** Create slab cache  */
  595. slab_cache_t * slab_cache_create(char *name,
  596.                  size_t size,
  597.                  size_t align,
  598.                  int (*constructor)(void *obj, int kmflag),
  599.                  void (*destructor)(void *obj),
  600.                  int flags)
  601. {
  602.     slab_cache_t *cache;
  603.  
  604.     cache = slab_alloc(&slab_cache_cache, 0);
  605.     _slab_cache_create(cache, name, size, align, constructor, destructor,
  606.                flags);
  607.     return cache;
  608. }
  609.  
  610. /**
  611.  * Reclaim space occupied by objects that are already free
  612.  *
  613.  * @param flags If contains SLAB_RECLAIM_ALL, do aggressive freeing
  614.  * @return Number of freed pages
  615.  */
  616. static count_t _slab_reclaim(slab_cache_t *cache, int flags)
  617. {
  618.     int i;
  619.     slab_magazine_t *mag;
  620.     count_t frames = 0;
  621.     int magcount;
  622.    
  623.     if (cache->flags & SLAB_CACHE_NOMAGAZINE)
  624.         return 0; /* Nothing to do */
  625.  
  626.     /* We count up to original magazine count to avoid
  627.      * endless loop
  628.      */
  629.     magcount = atomic_get(&cache->magazine_counter);
  630.     while (magcount-- && (mag=get_mag_from_cache(cache,0))) {
  631.         frames += magazine_destroy(cache,mag);
  632.         if (!(flags & SLAB_RECLAIM_ALL) && frames)
  633.             break;
  634.     }
  635.    
  636.     if (flags & SLAB_RECLAIM_ALL) {
  637.         /* Free cpu-bound magazines */
  638.         /* Destroy CPU magazines */
  639.         for (i=0; i<config.cpu_count; i++) {
  640.             spinlock_lock(&cache->mag_cache[i].lock);
  641.  
  642.             mag = cache->mag_cache[i].current;
  643.             if (mag)
  644.                 frames += magazine_destroy(cache, mag);
  645.             cache->mag_cache[i].current = NULL;
  646.            
  647.             mag = cache->mag_cache[i].last;
  648.             if (mag)
  649.                 frames += magazine_destroy(cache, mag);
  650.             cache->mag_cache[i].last = NULL;
  651.  
  652.             spinlock_unlock(&cache->mag_cache[i].lock);
  653.         }
  654.     }
  655.  
  656.     return frames;
  657. }
  658.  
  659. /** Check that there are no slabs and remove cache from system  */
  660. void slab_cache_destroy(slab_cache_t *cache)
  661. {
  662.     ipl_t ipl;
  663.  
  664.     /* First remove cache from link, so that we don't need
  665.      * to disable interrupts later
  666.      */
  667.  
  668.     ipl = interrupts_disable();
  669.     spinlock_lock(&slab_cache_lock);
  670.  
  671.     list_remove(&cache->link);
  672.  
  673.     spinlock_unlock(&slab_cache_lock);
  674.     interrupts_restore(ipl);
  675.  
  676.     /* Do not lock anything, we assume the software is correct and
  677.      * does not touch the cache when it decides to destroy it */
  678.    
  679.     /* Destroy all magazines */
  680.     _slab_reclaim(cache, SLAB_RECLAIM_ALL);
  681.  
  682.     /* All slabs must be empty */
  683.     if (!list_empty(&cache->full_slabs) \
  684.         || !list_empty(&cache->partial_slabs))
  685.         panic("Destroying cache that is not empty.");
  686.  
  687.     slab_free(&slab_cache_cache, cache);
  688. }
  689.  
  690. /** Allocate new object from cache - if no flags given, always returns
  691.     memory */
  692. void * slab_alloc(slab_cache_t *cache, int flags)
  693. {
  694.     ipl_t ipl;
  695.     void *result = NULL;
  696.    
  697.     /* Disable interrupts to avoid deadlocks with interrupt handlers */
  698.     ipl = interrupts_disable();
  699.  
  700.     if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
  701.         result = magazine_obj_get(cache);
  702.     if (!result)
  703.         result = slab_obj_create(cache, flags);
  704.  
  705.     interrupts_restore(ipl);
  706.  
  707.     if (result)
  708.         atomic_inc(&cache->allocated_objs);
  709.  
  710.     return result;
  711. }
  712.  
  713. /** Return object to cache, use slab if known  */
  714. static void _slab_free(slab_cache_t *cache, void *obj, slab_t *slab)
  715. {
  716.     ipl_t ipl;
  717.  
  718.     ipl = interrupts_disable();
  719.  
  720.     if ((cache->flags & SLAB_CACHE_NOMAGAZINE) \
  721.         || magazine_obj_put(cache, obj)) {
  722.  
  723.         slab_obj_destroy(cache, obj, slab);
  724.  
  725.     }
  726.     interrupts_restore(ipl);
  727.     atomic_dec(&cache->allocated_objs);
  728. }
  729.  
  730. /** Return slab object to cache */
  731. void slab_free(slab_cache_t *cache, void *obj)
  732. {
  733.     _slab_free(cache,obj,NULL);
  734. }
  735.  
  736. /* Go through all caches and reclaim what is possible */
  737. count_t slab_reclaim(int flags)
  738. {
  739.     slab_cache_t *cache;
  740.     link_t *cur;
  741.     count_t frames = 0;
  742.  
  743.     spinlock_lock(&slab_cache_lock);
  744.  
  745.     /* TODO: Add assert, that interrupts are disabled, otherwise
  746.      * memory allocation from interrupts can deadlock.
  747.      * - cache_destroy can call this with interrupts enabled :-/
  748.      */
  749.  
  750.     for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
  751.         cache = list_get_instance(cur, slab_cache_t, link);
  752.         frames += _slab_reclaim(cache, flags);
  753.     }
  754.  
  755.     spinlock_unlock(&slab_cache_lock);
  756.  
  757.     return frames;
  758. }
  759.  
  760.  
  761. /* Print list of slabs */
  762. void slab_print_list(void)
  763. {
  764.     slab_cache_t *cache;
  765.     link_t *cur;
  766.  
  767.     spinlock_lock(&slab_cache_lock);
  768.     printf("SLAB name\tOsize\tPages\tObj/pg\tSlabs\tCached\tAllocobjs\tCtl\n");
  769.     for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
  770.         cache = list_get_instance(cur, slab_cache_t, link);
  771.         printf("%s\t%d\t%d\t%d\t%d\t%d\t%d\t\t%s\n", cache->name, cache->size,
  772.                (1 << cache->order), cache->objects,
  773.                atomic_get(&cache->allocated_slabs),
  774.                atomic_get(&cache->cached_objs),
  775.                atomic_get(&cache->allocated_objs),
  776.                cache->flags & SLAB_CACHE_SLINSIDE ? "In" : "Out");
  777.     }
  778.     spinlock_unlock(&slab_cache_lock);
  779. }
  780.  
  781. #ifdef CONFIG_DEBUG
  782. static int _slab_initialized = 0;
  783. #endif
  784.  
  785. void slab_cache_init(void)
  786. {
  787.     int i, size;
  788.  
  789.     /* Initialize magazine cache */
  790.     _slab_cache_create(&mag_cache,
  791.                "slab_magazine",
  792.                sizeof(slab_magazine_t)+SLAB_MAG_SIZE*sizeof(void*),
  793.                sizeof(__address),
  794.                NULL, NULL,
  795.                SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
  796.     /* Initialize slab_cache cache */
  797.     _slab_cache_create(&slab_cache_cache,
  798.                "slab_cache",
  799.                sizeof(slab_cache_cache) + config.cpu_count*sizeof(slab_cache_cache.mag_cache[0]),
  800.                sizeof(__address),
  801.                NULL, NULL,
  802.                SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
  803.     /* Initialize external slab cache */
  804.     slab_extern_cache = slab_cache_create("slab_extern",
  805.                           sizeof(slab_t),
  806.                           0, NULL, NULL,
  807.                           SLAB_CACHE_SLINSIDE);
  808.  
  809.     /* Initialize structures for malloc */
  810.     for (i=0, size=(1<<SLAB_MIN_MALLOC_W);
  811.          i < (SLAB_MAX_MALLOC_W-SLAB_MIN_MALLOC_W+1);
  812.          i++, size <<= 1) {
  813.         malloc_caches[i] = slab_cache_create(malloc_names[i],
  814.                              size, 0,
  815.                              NULL,NULL,0);
  816.     }
  817. #ifdef CONFIG_DEBUG      
  818.     _slab_initialized = 1;
  819. #endif
  820. }
  821.  
  822. /**************************************/
  823. /* kalloc/kfree functions             */
  824. void * kalloc(unsigned int size, int flags)
  825. {
  826.     int idx;
  827.  
  828.     ASSERT(_slab_initialized);
  829.     ASSERT( size && size <= (1 << SLAB_MAX_MALLOC_W));
  830.    
  831.     if (size < (1 << SLAB_MIN_MALLOC_W))
  832.         size = (1 << SLAB_MIN_MALLOC_W);
  833.  
  834.     idx = fnzb(size-1) - SLAB_MIN_MALLOC_W + 1;
  835.  
  836.     return slab_alloc(malloc_caches[idx], flags);
  837. }
  838.  
  839.  
  840. void kfree(void *obj)
  841. {
  842.     slab_t *slab;
  843.  
  844.     if (!obj) return;
  845.  
  846.     slab = obj2slab(obj);
  847.     _slab_free(slab->cache, obj, slab);
  848. }
  849.