Subversion Repositories HelenOS-historic

Rev

Rev 778 | Rev 781 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /*
  2.  * Copyright (C) 2006 Ondrej Palkovsky
  3.  * All rights reserved.
  4.  *
  5.  * Redistribution and use in source and binary forms, with or without
  6.  * modification, are permitted provided that the following conditions
  7.  * are met:
  8.  *
  9.  * - Redistributions of source code must retain the above copyright
  10.  *   notice, this list of conditions and the following disclaimer.
  11.  * - Redistributions in binary form must reproduce the above copyright
  12.  *   notice, this list of conditions and the following disclaimer in the
  13.  *   documentation and/or other materials provided with the distribution.
  14.  * - The name of the author may not be used to endorse or promote products
  15.  *   derived from this software without specific prior written permission.
  16.  *
  17.  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
  18.  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  19.  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  20.  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  21.  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  22.  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  23.  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  24.  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  25.  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  26.  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  27.  */
  28.  
  29. /*
  30.  * The SLAB allocator is closely modelled after Opensolaris SLAB allocator
  31.  * http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/
  32.  *
  33.  * with the following exceptions:
  34.  *   - empty SLABS are deallocated immediately
  35.  *     (in Linux they are kept in linked list, in Solaris ???)
  36.  *   - empty magazines are deallocated when not needed
  37.  *     (in Solaris they are held in linked list in slab cache)
  38.  *
  39.  *   Following features are not currently supported but would be easy to do:
  40.  *   - cache coloring
  41.  *   - dynamic magazine growing (different magazine sizes are already
  42.  *     supported, but we would need to adjust allocating strategy)
  43.  *
  44.  * The SLAB allocator supports per-CPU caches ('magazines') to facilitate
  45.  * good SMP scaling.
  46.  *
  47.  * When a new object is being allocated, it is first checked, if it is
  48.  * available in CPU-bound magazine. If it is not found there, it is
  49.  * allocated from CPU-shared SLAB - if partial full is found, it is used,
  50.  * otherwise a new one is allocated.
  51.  *
  52.  * When an object is being deallocated, it is put to CPU-bound magazine.
  53.  * If there is no such magazine, new one is allocated (if it fails,
  54.  * the object is deallocated into SLAB). If the magazine is full, it is
  55.  * put into cpu-shared list of magazines and new one is allocated.
  56.  *
  57.  * The CPU-bound magazine is actually a pair of magazine to avoid
  58.  * thrashing when somebody is allocating/deallocating 1 item at the magazine
  59.  * size boundary. LIFO order is enforced, which should avoid fragmentation
  60.  * as much as possible.
  61.  *  
  62.  * Every cache contains list of full slabs and list of partialy full slabs.
  63.  * Empty SLABS are immediately freed (thrashing will be avoided because
  64.  * of magazines).
  65.  *
  66.  * The SLAB information structure is kept inside the data area, if possible.
  67.  * The cache can be marked that it should not use magazines. This is used
  68.  * only for SLAB related caches to avoid deadlocks and infinite recursion
  69.  * (the SLAB allocator uses itself for allocating all it's control structures).
  70.  *
  71.  * The SLAB allocator allocates lot of space and does not free it. When
  72.  * frame allocator fails to allocate the frame, it calls slab_reclaim().
  73.  * It tries 'light reclaim' first, then brutal reclaim. The light reclaim
  74.  * releases slabs from cpu-shared magazine-list, until at least 1 slab
  75.  * is deallocated in each cache (this algorithm should probably change).
  76.  * The brutal reclaim removes all cached objects, even from CPU-bound
  77.  * magazines.
  78.  *
  79.  * TODO: For better CPU-scaling the magazine allocation strategy should
  80.  * be extended. Currently, if the cache does not have magazine, it asks
  81.  * for non-cpu cached magazine cache to provide one. It might be feasible
  82.  * to add cpu-cached magazine cache (which would allocate it's magazines
  83.  * from non-cpu-cached mag. cache). This would provide a nice per-cpu
  84.  * buffer. The other possibility is to use the per-cache
  85.  * 'empty-magazine-list', which decreases competing for 1 per-system
  86.  * magazine cache.
  87.  *
  88.  * - it might be good to add granularity of locks even to slab level,
  89.  *   we could then try_spinlock over all partial slabs and thus improve
  90.  *   scalability even on slab level
  91.  */
  92.  
  93.  
  94. #include <synch/spinlock.h>
  95. #include <mm/slab.h>
  96. #include <list.h>
  97. #include <memstr.h>
  98. #include <align.h>
  99. #include <mm/heap.h>
  100. #include <mm/frame.h>
  101. #include <config.h>
  102. #include <print.h>
  103. #include <arch.h>
  104. #include <panic.h>
  105. #include <debug.h>
  106. #include <bitops.h>
  107.  
  108. SPINLOCK_INITIALIZE(slab_cache_lock);
  109. static LIST_INITIALIZE(slab_cache_list);
  110.  
  111. /** Magazine cache */
  112. static slab_cache_t mag_cache;
  113. /** Cache for cache descriptors */
  114. static slab_cache_t slab_cache_cache;
  115.  
  116. /** Cache for external slab descriptors
  117.  * This time we want per-cpu cache, so do not make it static
  118.  * - using SLAB for internal SLAB structures will not deadlock,
  119.  *   as all slab structures are 'small' - control structures of
  120.  *   their caches do not require further allocation
  121.  */
  122. static slab_cache_t *slab_extern_cache;
  123. /** Caches for malloc */
  124. static slab_cache_t *malloc_caches[SLAB_MAX_MALLOC_W-SLAB_MIN_MALLOC_W+1];
  125. char *malloc_names[] =  {
  126.     "malloc-8","malloc-16","malloc-32","malloc-64","malloc-128",
  127.     "malloc-256","malloc-512","malloc-1K","malloc-2K",
  128.     "malloc-4K","malloc-8K","malloc-16K","malloc-32K",
  129.     "malloc-64K","malloc-128K"
  130. };
  131.  
  132. /** Slab descriptor */
  133. typedef struct {
  134.     slab_cache_t *cache; /**< Pointer to parent cache */
  135.     link_t link;       /* List of full/partial slabs */
  136.     void *start;       /**< Start address of first available item */
  137.     count_t available; /**< Count of available items in this slab */
  138.     index_t nextavail; /**< The index of next available item */
  139. }slab_t;
  140.  
  141. /**************************************/
  142. /* SLAB allocation functions          */
  143.  
  144. /**
  145.  * Allocate frames for slab space and initialize
  146.  *
  147.  */
  148. static slab_t * slab_space_alloc(slab_cache_t *cache, int flags)
  149. {
  150.     void *data;
  151.     slab_t *slab;
  152.     size_t fsize;
  153.     int i;
  154.     zone_t *zone = NULL;
  155.     int status;
  156.     frame_t *frame;
  157.  
  158.     data = (void *)frame_alloc(FRAME_KA | flags, cache->order, &status, &zone);
  159.     if (status != FRAME_OK) {
  160.         return NULL;
  161.     }
  162.     if (! (cache->flags & SLAB_CACHE_SLINSIDE)) {
  163.         slab = slab_alloc(slab_extern_cache, flags);
  164.         if (!slab) {
  165.             frame_free((__address)data);
  166.             return NULL;
  167.         }
  168.     } else {
  169.         fsize = (PAGE_SIZE << cache->order);
  170.         slab = data + fsize - sizeof(*slab);
  171.     }
  172.        
  173.     /* Fill in slab structures */
  174.     /* TODO: some better way of accessing the frame */
  175.     for (i=0; i < (1 << cache->order); i++) {
  176.         frame = ADDR2FRAME(zone, KA2PA((__address)(data+i*PAGE_SIZE)));
  177.         frame->parent = slab;
  178.     }
  179.  
  180.     slab->start = data;
  181.     slab->available = cache->objects;
  182.     slab->nextavail = 0;
  183.     slab->cache = cache;
  184.  
  185.     for (i=0; i<cache->objects;i++)
  186.         *((int *) (slab->start + i*cache->size)) = i+1;
  187.  
  188.     atomic_inc(&cache->allocated_slabs);
  189.     return slab;
  190. }
  191.  
  192. /**
  193.  * Deallocate space associated with SLAB
  194.  *
  195.  * @return number of freed frames
  196.  */
  197. static count_t slab_space_free(slab_cache_t *cache, slab_t *slab)
  198. {
  199.     frame_free((__address)slab->start);
  200.     if (! (cache->flags & SLAB_CACHE_SLINSIDE))
  201.         slab_free(slab_extern_cache, slab);
  202.  
  203.     atomic_dec(&cache->allocated_slabs);
  204.    
  205.     return 1 << cache->order;
  206. }
  207.  
  208. /** Map object to slab structure */
  209. static slab_t * obj2slab(void *obj)
  210. {
  211.     frame_t *frame;
  212.  
  213.     frame = frame_addr2frame((__address)obj);
  214.     return (slab_t *)frame->parent;
  215. }
  216.  
  217. /**************************************/
  218. /* SLAB functions */
  219.  
  220.  
  221. /**
  222.  * Return object to slab and call a destructor
  223.  *
  224.  * @param slab If the caller knows directly slab of the object, otherwise NULL
  225.  *
  226.  * @return Number of freed pages
  227.  */
  228. static count_t slab_obj_destroy(slab_cache_t *cache, void *obj,
  229.                 slab_t *slab)
  230. {
  231.     count_t frames = 0;
  232.  
  233.     if (!slab)
  234.         slab = obj2slab(obj);
  235.  
  236.     ASSERT(slab->cache == cache);
  237.     ASSERT(slab->available < cache->objects);
  238.  
  239.     spinlock_lock(&cache->slablock);
  240.  
  241.     *((int *)obj) = slab->nextavail;
  242.     slab->nextavail = (obj - slab->start)/cache->size;
  243.     slab->available++;
  244.  
  245.     /* Move it to correct list */
  246.     if (slab->available == cache->objects) {
  247.         /* Free associated memory */
  248.         list_remove(&slab->link);
  249.         /* This should not produce deadlock, as
  250.          * magazine is always allocated with NO reclaim,
  251.          * keep all locks */
  252.         frames = slab_space_free(cache, slab);
  253.     } else if (slab->available == 1) {
  254.         /* It was in full, move to partial */
  255.         list_remove(&slab->link);
  256.         list_prepend(&slab->link, &cache->partial_slabs);
  257.     }
  258.  
  259.     spinlock_unlock(&cache->slablock);
  260.  
  261.     return frames;
  262. }
  263.  
  264. /**
  265.  * Take new object from slab or create new if needed
  266.  *
  267.  * @return Object address or null
  268.  */
  269. static void * slab_obj_create(slab_cache_t *cache, int flags)
  270. {
  271.     slab_t *slab;
  272.     void *obj;
  273.  
  274.     spinlock_lock(&cache->slablock);
  275.  
  276.     if (list_empty(&cache->partial_slabs)) {
  277.         /* Allow recursion and reclaiming
  278.          * - this should work, as the SLAB control structures
  279.          *   are small and do not need to allocte with anything
  280.          *   other ten frame_alloc when they are allocating,
  281.          *   that's why we should get recursion at most 1-level deep
  282.          */
  283.         spinlock_unlock(&cache->slablock);
  284.         slab = slab_space_alloc(cache, flags);
  285.         if (!slab)
  286.             return NULL;
  287.         spinlock_lock(&cache->slablock);
  288.     } else {
  289.         slab = list_get_instance(cache->partial_slabs.next,
  290.                      slab_t,
  291.                      link);
  292.         list_remove(&slab->link);
  293.     }
  294.     obj = slab->start + slab->nextavail * cache->size;
  295.     slab->nextavail = *((int *)obj);
  296.     slab->available--;
  297.     if (! slab->available)
  298.         list_prepend(&slab->link, &cache->full_slabs);
  299.     else
  300.         list_prepend(&slab->link, &cache->partial_slabs);
  301.  
  302.     spinlock_unlock(&cache->slablock);
  303.     return obj;
  304. }
  305.  
  306. /**************************************/
  307. /* CPU-Cache slab functions */
  308.  
  309. /**
  310.  * Free all objects in magazine and free memory associated with magazine
  311.  *
  312.  * @return Number of freed pages
  313.  */
  314. static count_t magazine_destroy(slab_cache_t *cache,
  315.                 slab_magazine_t *mag)
  316. {
  317.     int i;
  318.     count_t frames = 0;
  319.  
  320.     for (i=0;i < mag->busy; i++) {
  321.         frames += slab_obj_destroy(cache, mag->objs[i], NULL);
  322.         atomic_dec(&cache->cached_objs);
  323.     }
  324.    
  325.     slab_free(&mag_cache, mag);
  326.  
  327.     return frames;
  328. }
  329.  
  330. /**
  331.  * Find full magazine, set it as current and return it
  332.  *
  333.  * Assume cpu_magazine lock is held
  334.  */
  335. static slab_magazine_t * get_full_current_mag(slab_cache_t *cache)
  336. {
  337.     slab_magazine_t *cmag, *lastmag, *newmag;
  338.  
  339.     cmag = cache->mag_cache[CPU->id].current;
  340.     lastmag = cache->mag_cache[CPU->id].last;
  341.     if (cmag) { /* First try local CPU magazines */
  342.         if (cmag->busy)
  343.             return cmag;
  344.  
  345.         if (lastmag && lastmag->busy) {
  346.             cache->mag_cache[CPU->id].current = lastmag;
  347.             cache->mag_cache[CPU->id].last = cmag;
  348.             return lastmag;
  349.         }
  350.     }
  351.     /* Local magazines are empty, import one from magazine list */
  352.     spinlock_lock(&cache->maglock);
  353.     if (list_empty(&cache->magazines)) {
  354.         spinlock_unlock(&cache->maglock);
  355.         return NULL;
  356.     }
  357.     newmag = list_get_instance(cache->magazines.next,
  358.                    slab_magazine_t,
  359.                    link);
  360.     list_remove(&newmag->link);
  361.     spinlock_unlock(&cache->maglock);
  362.  
  363.     if (lastmag)
  364.         slab_free(&mag_cache, lastmag);
  365.     cache->mag_cache[CPU->id].last = cmag;
  366.     cache->mag_cache[CPU->id].current = newmag;
  367.     return newmag;
  368. }
  369.  
  370. /**
  371.  * Try to find object in CPU-cache magazines
  372.  *
  373.  * @return Pointer to object or NULL if not available
  374.  */
  375. static void * magazine_obj_get(slab_cache_t *cache)
  376. {
  377.     slab_magazine_t *mag;
  378.     void *obj;
  379.  
  380.     if (!CPU)
  381.         return NULL;
  382.  
  383.     spinlock_lock(&cache->mag_cache[CPU->id].lock);
  384.  
  385.     mag = get_full_current_mag(cache);
  386.     if (!mag) {
  387.         spinlock_unlock(&cache->mag_cache[CPU->id].lock);
  388.         return NULL;
  389.     }
  390.     obj = mag->objs[--mag->busy];
  391.     spinlock_unlock(&cache->mag_cache[CPU->id].lock);
  392.     atomic_dec(&cache->cached_objs);
  393.    
  394.     return obj;
  395. }
  396.  
  397. /**
  398.  * Assure that the current magazine is empty, return pointer to it, or NULL if
  399.  * no empty magazine is available and cannot be allocated
  400.  *
  401.  * Assume mag_cache[CPU->id].lock is held
  402.  *
  403.  * We have 2 magazines bound to processor.
  404.  * First try the current.
  405.  *  If full, try the last.
  406.  *   If full, put to magazines list.
  407.  *   allocate new, exchange last & current
  408.  *
  409.  */
  410. static slab_magazine_t * make_empty_current_mag(slab_cache_t *cache)
  411. {
  412.     slab_magazine_t *cmag,*lastmag,*newmag;
  413.  
  414.     cmag = cache->mag_cache[CPU->id].current;
  415.     lastmag = cache->mag_cache[CPU->id].last;
  416.  
  417.     if (cmag) {
  418.         if (cmag->busy < cmag->size)
  419.             return cmag;
  420.         if (lastmag && lastmag->busy < lastmag->size) {
  421.             cache->mag_cache[CPU->id].last = cmag;
  422.             cache->mag_cache[CPU->id].current = lastmag;
  423.             return lastmag;
  424.         }
  425.     }
  426.     /* current | last are full | nonexistent, allocate new */
  427.     /* We do not want to sleep just because of caching */
  428.     /* Especially we do not want reclaiming to start, as
  429.      * this would deadlock */
  430.     newmag = slab_alloc(&mag_cache, FRAME_ATOMIC | FRAME_NO_RECLAIM);
  431.     if (!newmag)
  432.         return NULL;
  433.     newmag->size = SLAB_MAG_SIZE;
  434.     newmag->busy = 0;
  435.  
  436.     /* Flush last to magazine list */
  437.     if (lastmag) {
  438.         spinlock_lock(&cache->maglock);
  439.         list_prepend(&lastmag->link, &cache->magazines);
  440.         spinlock_unlock(&cache->maglock);
  441.     }
  442.     /* Move current as last, save new as current */
  443.     cache->mag_cache[CPU->id].last = cmag; 
  444.     cache->mag_cache[CPU->id].current = newmag;
  445.  
  446.     return newmag;
  447. }
  448.  
  449. /**
  450.  * Put object into CPU-cache magazine
  451.  *
  452.  * @return 0 - success, -1 - could not get memory
  453.  */
  454. static int magazine_obj_put(slab_cache_t *cache, void *obj)
  455. {
  456.     slab_magazine_t *mag;
  457.  
  458.     if (!CPU)
  459.         return -1;
  460.  
  461.     spinlock_lock(&cache->mag_cache[CPU->id].lock);
  462.  
  463.     mag = make_empty_current_mag(cache);
  464.     if (!mag) {
  465.         spinlock_unlock(&cache->mag_cache[CPU->id].lock);
  466.         return -1;
  467.     }
  468.    
  469.     mag->objs[mag->busy++] = obj;
  470.  
  471.     spinlock_unlock(&cache->mag_cache[CPU->id].lock);
  472.     atomic_inc(&cache->cached_objs);
  473.     return 0;
  474. }
  475.  
  476.  
  477. /**************************************/
  478. /* SLAB CACHE functions */
  479.  
  480. /** Return number of objects that fit in certain cache size */
  481. static int comp_objects(slab_cache_t *cache)
  482. {
  483.     if (cache->flags & SLAB_CACHE_SLINSIDE)
  484.         return ((PAGE_SIZE << cache->order) - sizeof(slab_t)) / cache->size;
  485.     else
  486.         return (PAGE_SIZE << cache->order) / cache->size;
  487. }
  488.  
  489. /** Return wasted space in slab */
  490. static int badness(slab_cache_t *cache)
  491. {
  492.     int objects;
  493.     int ssize;
  494.  
  495.     objects = comp_objects(cache);
  496.     ssize = PAGE_SIZE << cache->order;
  497.     if (cache->flags & SLAB_CACHE_SLINSIDE)
  498.         ssize -= sizeof(slab_t);
  499.     return ssize - objects*cache->size;
  500. }
  501.  
  502. /** Initialize allocated memory as a slab cache */
  503. static void
  504. _slab_cache_create(slab_cache_t *cache,
  505.            char *name,
  506.            size_t size,
  507.            size_t align,
  508.            int (*constructor)(void *obj, int kmflag),
  509.            void (*destructor)(void *obj),
  510.            int flags)
  511. {
  512.     int i;
  513.     int pages;
  514.  
  515.     memsetb((__address)cache, sizeof(*cache), 0);
  516.     cache->name = name;
  517.  
  518.     if (align < sizeof(__native))
  519.         align = sizeof(__native);
  520.     size = ALIGN_UP(size, align);
  521.        
  522.     cache->size = size;
  523.  
  524.     cache->constructor = constructor;
  525.     cache->destructor = destructor;
  526.     cache->flags = flags;
  527.  
  528.     list_initialize(&cache->full_slabs);
  529.     list_initialize(&cache->partial_slabs);
  530.     list_initialize(&cache->magazines);
  531.     spinlock_initialize(&cache->slablock, "slab_lock");
  532.     spinlock_initialize(&cache->maglock, "slab_maglock");
  533.     if (! (cache->flags & SLAB_CACHE_NOMAGAZINE)) {
  534.         for (i=0; i < config.cpu_count; i++) {
  535.             memsetb((__address)&cache->mag_cache[i],
  536.                 sizeof(cache->mag_cache[i]), 0);
  537.             spinlock_initialize(&cache->mag_cache[i].lock,
  538.                         "slab_maglock_cpu");
  539.         }
  540.     }
  541.  
  542.     /* Compute slab sizes, object counts in slabs etc. */
  543.     if (cache->size < SLAB_INSIDE_SIZE)
  544.         cache->flags |= SLAB_CACHE_SLINSIDE;
  545.  
  546.     /* Minimum slab order */
  547.     pages = ((cache->size-1) >> PAGE_WIDTH) + 1;
  548.     cache->order = fnzb(pages);
  549.  
  550.     while (badness(cache) > SLAB_MAX_BADNESS(cache)) {
  551.         cache->order += 1;
  552.     }
  553.     cache->objects = comp_objects(cache);
  554.     /* If info fits in, put it inside */
  555.     if (badness(cache) > sizeof(slab_t))
  556.         cache->flags |= SLAB_CACHE_SLINSIDE;
  557.  
  558.     spinlock_lock(&slab_cache_lock);
  559.  
  560.     list_append(&cache->link, &slab_cache_list);
  561.  
  562.     spinlock_unlock(&slab_cache_lock);
  563. }
  564.  
  565. /** Create slab cache  */
  566. slab_cache_t * slab_cache_create(char *name,
  567.                  size_t size,
  568.                  size_t align,
  569.                  int (*constructor)(void *obj, int kmflag),
  570.                  void (*destructor)(void *obj),
  571.                  int flags)
  572. {
  573.     slab_cache_t *cache;
  574.  
  575.     cache = slab_alloc(&slab_cache_cache, 0);
  576.     _slab_cache_create(cache, name, size, align, constructor, destructor,
  577.                flags);
  578.     return cache;
  579. }
  580.  
  581. /**
  582.  * Reclaim space occupied by objects that are already free
  583.  *
  584.  * @param flags If contains SLAB_RECLAIM_ALL, do aggressive freeing
  585.  * @return Number of freed pages
  586.  */
  587. static count_t _slab_reclaim(slab_cache_t *cache, int flags)
  588. {
  589.     int i;
  590.     slab_magazine_t *mag;
  591.     link_t *cur;
  592.     count_t frames = 0;
  593.    
  594.     if (cache->flags & SLAB_CACHE_NOMAGAZINE)
  595.         return 0; /* Nothing to do */
  596.    
  597.     /* First lock all cpu caches, then the complete cache lock */
  598.     if (flags & SLAB_RECLAIM_ALL) {
  599.         for (i=0; i < config.cpu_count; i++)
  600.             spinlock_lock(&cache->mag_cache[i].lock);
  601.     }
  602.     spinlock_lock(&cache->maglock);
  603.    
  604.     if (flags & SLAB_RECLAIM_ALL) {
  605.         /* Aggressive memfree */
  606.         /* Destroy CPU magazines */
  607.         for (i=0; i<config.cpu_count; i++) {
  608.             mag = cache->mag_cache[i].current;
  609.             if (mag)
  610.                 frames += magazine_destroy(cache, mag);
  611.             cache->mag_cache[i].current = NULL;
  612.            
  613.             mag = cache->mag_cache[i].last;
  614.             if (mag)
  615.                 frames += magazine_destroy(cache, mag);
  616.             cache->mag_cache[i].last = NULL;
  617.         }
  618.     }
  619.     /* We can release the cache locks now */
  620.     if (flags & SLAB_RECLAIM_ALL) {
  621.         for (i=0; i < config.cpu_count; i++)
  622.             spinlock_unlock(&cache->mag_cache[i].lock);
  623.     }
  624.     /* Destroy full magazines */
  625.     cur=cache->magazines.prev;
  626.  
  627.     while (cur != &cache->magazines) {
  628.         mag = list_get_instance(cur, slab_magazine_t, link);
  629.        
  630.         cur = cur->prev;
  631.         list_remove(&mag->link);
  632.         frames += magazine_destroy(cache,mag);
  633.         /* If we do not do full reclaim, break
  634.          * as soon as something is freed */
  635.         if (!(flags & SLAB_RECLAIM_ALL) && frames)
  636.             break;
  637.     }
  638.    
  639.     spinlock_unlock(&cache->maglock);
  640.    
  641.     return frames;
  642. }
  643.  
  644. /** Check that there are no slabs and remove cache from system  */
  645. void slab_cache_destroy(slab_cache_t *cache)
  646. {
  647.     /* Do not lock anything, we assume the software is correct and
  648.      * does not touch the cache when it decides to destroy it */
  649.    
  650.     /* Destroy all magazines */
  651.     _slab_reclaim(cache, SLAB_RECLAIM_ALL);
  652.  
  653.     /* All slabs must be empty */
  654.     if (!list_empty(&cache->full_slabs) \
  655.         || !list_empty(&cache->partial_slabs))
  656.         panic("Destroying cache that is not empty.");
  657.  
  658.     spinlock_lock(&slab_cache_lock);
  659.     list_remove(&cache->link);
  660.     spinlock_unlock(&slab_cache_lock);
  661.  
  662.     slab_free(&slab_cache_cache, cache);
  663. }
  664.  
  665. /** Allocate new object from cache - if no flags given, always returns
  666.     memory */
  667. void * slab_alloc(slab_cache_t *cache, int flags)
  668. {
  669.     ipl_t ipl;
  670.     void *result = NULL;
  671.    
  672.     /* Disable interrupts to avoid deadlocks with interrupt handlers */
  673.     ipl = interrupts_disable();
  674.  
  675.     if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
  676.         result = magazine_obj_get(cache);
  677.  
  678.     if (!result)
  679.         result = slab_obj_create(cache, flags);
  680.  
  681.     interrupts_restore(ipl);
  682.  
  683.     if (result)
  684.         atomic_inc(&cache->allocated_objs);
  685.  
  686.     return result;
  687. }
  688.  
  689. /** Return object to cache, use slab if known  */
  690. static void _slab_free(slab_cache_t *cache, void *obj, slab_t *slab)
  691. {
  692.     ipl_t ipl;
  693.  
  694.     ipl = interrupts_disable();
  695.  
  696.     if ((cache->flags & SLAB_CACHE_NOMAGAZINE) \
  697.         || magazine_obj_put(cache, obj)) {
  698.  
  699.         slab_obj_destroy(cache, obj, slab);
  700.  
  701.     }
  702.     interrupts_restore(ipl);
  703.     atomic_dec(&cache->allocated_objs);
  704. }
  705.  
  706. /** Return slab object to cache */
  707. void slab_free(slab_cache_t *cache, void *obj)
  708. {
  709.     _slab_free(cache,obj,NULL);
  710. }
  711.  
  712. /* Go through all caches and reclaim what is possible */
  713. count_t slab_reclaim(int flags)
  714. {
  715.     slab_cache_t *cache;
  716.     link_t *cur;
  717.     count_t frames = 0;
  718.  
  719.     spinlock_lock(&slab_cache_lock);
  720.  
  721.     /* TODO: Add assert, that interrupts are disabled, otherwise
  722.      * memory allocation from interrupts can deadlock.
  723.      */
  724.  
  725.     for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
  726.         cache = list_get_instance(cur, slab_cache_t, link);
  727.         frames += _slab_reclaim(cache, flags);
  728.     }
  729.  
  730.     spinlock_unlock(&slab_cache_lock);
  731.  
  732.     return frames;
  733. }
  734.  
  735.  
  736. /* Print list of slabs */
  737. void slab_print_list(void)
  738. {
  739.     slab_cache_t *cache;
  740.     link_t *cur;
  741.  
  742.     spinlock_lock(&slab_cache_lock);
  743.     printf("SLAB name\tOsize\tPages\tObj/pg\tSlabs\tCached\tAllocobjs\tCtl\n");
  744.     for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
  745.         cache = list_get_instance(cur, slab_cache_t, link);
  746.         printf("%s\t%d\t%d\t%d\t%d\t%d\t%d\t\t%s\n", cache->name, cache->size,
  747.                (1 << cache->order), cache->objects,
  748.                atomic_get(&cache->allocated_slabs),
  749.                atomic_get(&cache->cached_objs),
  750.                atomic_get(&cache->allocated_objs),
  751.                cache->flags & SLAB_CACHE_SLINSIDE ? "In" : "Out");
  752.     }
  753.     spinlock_unlock(&slab_cache_lock);
  754. }
  755.  
  756. #ifdef CONFIG_DEBUG
  757. static int _slab_initialized = 0;
  758. #endif
  759.  
  760. void slab_cache_init(void)
  761. {
  762.     int i, size;
  763.  
  764.     /* Initialize magazine cache */
  765.     _slab_cache_create(&mag_cache,
  766.                "slab_magazine",
  767.                sizeof(slab_magazine_t)+SLAB_MAG_SIZE*sizeof(void*),
  768.                sizeof(__address),
  769.                NULL, NULL,
  770.                SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
  771.     /* Initialize slab_cache cache */
  772.     _slab_cache_create(&slab_cache_cache,
  773.                "slab_cache",
  774.                sizeof(slab_cache_cache) + config.cpu_count*sizeof(slab_cache_cache.mag_cache[0]),
  775.                sizeof(__address),
  776.                NULL, NULL,
  777.                SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
  778.     /* Initialize external slab cache */
  779.     slab_extern_cache = slab_cache_create("slab_extern",
  780.                           sizeof(slab_t),
  781.                           0, NULL, NULL,
  782.                           SLAB_CACHE_SLINSIDE);
  783.  
  784.     /* Initialize structures for malloc */
  785.     for (i=0, size=(1<<SLAB_MIN_MALLOC_W);
  786.          i < (SLAB_MAX_MALLOC_W-SLAB_MIN_MALLOC_W+1);
  787.          i++, size <<= 1) {
  788.         malloc_caches[i] = slab_cache_create(malloc_names[i],
  789.                              size, 0,
  790.                              NULL,NULL,0);
  791.     }
  792. #ifdef CONFIG_DEBUG      
  793.     _slab_initialized = 1;
  794. #endif
  795. }
  796.  
  797. /**************************************/
  798. /* kalloc/kfree functions             */
  799. void * kalloc(unsigned int size, int flags)
  800. {
  801.     int idx;
  802.  
  803.     ASSERT(_slab_initialized);
  804.     ASSERT( size && size <= (1 << SLAB_MAX_MALLOC_W));
  805.    
  806.     if (size < (1 << SLAB_MIN_MALLOC_W))
  807.         size = (1 << SLAB_MIN_MALLOC_W);
  808.  
  809.     idx = fnzb(size-1) - SLAB_MIN_MALLOC_W + 1;
  810.  
  811.     return slab_alloc(malloc_caches[idx], flags);
  812. }
  813.  
  814.  
  815. void kfree(void *obj)
  816. {
  817.     slab_t *slab = obj2slab(obj);
  818.    
  819.     _slab_free(slab->cache, obj, slab);
  820. }
  821.