Subversion Repositories HelenOS-doc

Rev

Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. \chapter{Specification}
  2.  
  3. \section{Overall Conception}
  4.  
  5. General-purpose and portable operating system with elements of
  6. microkernel design and fully preemptive kernel.
  7.  
  8. SPARTAN kernel created by Jakub Jermar will be used as a basis for
  9. further kernel development.
  10.  
  11. Detailed description of the features:
  12.  
  13. \begin{itemize}
  14. \item General-purpose: Ready to run standard (non real-time) server and
  15.       workstation applications. Support for common programming
  16.       abstractions (threads, synchronization, physical and virtual
  17.       memory management).
  18. \item Portable: Except small platform-specific kernel parts the system
  19.       will be implemented in higher programming languages to be portable
  20.       to different hardware platforms (PCs and similar).
  21. \item Fully preemptive kernel: The basic scheduling element will be a
  22.       thread (more threads eventually grouped into a task) and the task
  23.       switching will be preemptive in both user-space and kernel-space.
  24.       However no real-time scheduling will be attempted.
  25. \item Fine grained locking in kernel: The kernel will not contain
  26.       anything such as "big kernel lock", all critical sections will be
  27.       handled with small granularity locking.
  28. \item Elements of microkernel design: The code running in kernel-space
  29.       will be limited to a much smaller size compared for example to the
  30.       traditional Unix design. The kernel will contain mostly just the
  31.       code which is necessary to run in kernel-space (scheduling, memory
  32.       management and protection, hardware resource management, IPC).
  33.       Device drivers, filesystems, network stacks, etc. will be
  34.       implemented in user-space.
  35. \end{itemize}
  36.  
  37. \section[1a]{Research Domains}
  38.  
  39. Following features can be eventually implemented as research subjects,
  40. but are optional to the overall design of the system:
  41.  
  42. \begin{itemize}
  43. \item Kernel-level virtualization: Apart from some standard security
  44.       model (i.e. unix-like or any other) the OS might support
  45.       kernel-level context separation allowing to run more virtual
  46.       operating environments on a single physical machine.
  47. \item Framework for running GNU/Linux applications: There should be no
  48.       syscall or native API compatibility, but rather some kind of
  49.       compile-time layer (libc and other shared libraries) allowing to
  50.       compile common GNU/Linux applications from sources.
  51. \item Object/message paradigm: In the contrary to Unix file paradigm
  52.       (where every object in the system is represented by a file - even
  53.       if there is no consistent mapping from the given object's methods
  54.       to generic file methods), HelenOS might have a tree of objects
  55.       instead of a tree of files. Each object in the tree can support an
  56.       arbitrary set of messages and files are those objects which
  57.       support the set of messages representing file methods (i.e. open,
  58.       close, read, write, seek, etc.). All objects might support several
  59.       compulsory messages (GetName, GetSupportedMessages, etc.). The
  60.       message passing mechanism will be synchronous.
  61. \end{itemize}
  62.  
  63. \section{Particular features}
  64.  
  65. \begin{itemize}
  66. \item Kernel features
  67.        \begin{itemize}
  68.         \item Preemptive multiprocessing, SMP support, threads (tasks)
  69.               \begin{itemize}
  70.                \item Simple scheduler (but more complex than round-robin),
  71.                     with threads as basic scheduling element
  72.               \item Support for thread priorities (possibly classes of
  73.                     priorities for user-space tasks)
  74.               \item Support for SMP CPU bounding
  75.               \item Utilization of non-boot CPU(s)
  76.               \item Support for user-space threads (tasks as sets of
  77.                     threads)
  78.               \item Support for kernel threads (independent code executed
  79.                     within the kernel)
  80.               \end{itemize}
  81.        \item Kernel synchronization primitives, small granularity
  82.              synchronization (preemptive kernel)
  83.               \begin{itemize}
  84.                \item Semaphores, mutexes, condition variables, RW-locks,
  85.                     spin-locks, etc.
  86.                \item No "big kernel lock"
  87.               \end{itemize}
  88.         \item Physical and virtual memory management
  89.               \begin{itemize}
  90.               \item Proper handling of physical memory regions
  91.               \item Physical memory heap (allocating of continuous blocks of
  92.                     physical memory)
  93.               \item Arbitrary number of independent virtual memory mappings
  94.                     (both for threads and internal kernel usage)
  95.               \item Kernel allocator in virtual memory (buddy/slab)
  96.               \item Named (text, stack, heap) and unnamed virtual memory
  97.                     areas
  98.               \item Copying and sharing pages between different memory
  99.                     mappings
  100.               \end{itemize}
  101.        \item Basic hardware handling
  102.               \begin{itemize}
  103.                \item Handling of basic boot-time hardware (CPU, PCI buses,
  104.                     memory, display, keyboard, RTC, etc.) in kernel
  105.                \item Handling of specific hardware resources which are
  106.                     fundamentaly unreachable from user-space on given
  107.                     platform
  108.               \end{itemize}
  109.        \item IPC, user-space hardware access framework
  110.               \begin{itemize}
  111.                \item Abstraction for implementing inter-process communication
  112.                     (message passing, etc.)
  113.               \item Interface for enabling the user-space threads to gain
  114.                     access and manage hardware resources (with kernel
  115.                     modules where needed)
  116.               \end{itemize}
  117.        \item User-space features
  118.              \begin{itemize}
  119.               \item Basic API
  120.                     \begin{itemize}
  121.                      \item Memory management API (memory regions creation,
  122.                           descruction, resizing)
  123.                      \item Task/thread management API
  124.                      \item Synchronization API
  125.                     \end{itemize}
  126.              \end{itemize}
  127.      \end{itemize}
  128. \end{itemize}
  129.  
  130. \section{Implementation details}
  131.  
  132. \begin{itemize}
  133. \item Supported platforms
  134.       \begin{itemize}
  135.         \item Real hardware support
  136.               \begin{itemize}
  137.                \item IA-32 (will be tested on multiple consumer Intel Pentium~4,
  138.                      Intel Pentium~M, AMD Athlon~XP and AMD Athlon~MP machines)
  139.                \item PowerPC (will be tested on a consumer IBM PowerPC G5 machine)
  140.               \end{itemize}
  141.         \item Emulated support
  142.               \begin{itemize}
  143.                \item MIPS (will be tested in MSIM R4000 simulator)
  144.                \item IA-64 (will be tested in Ski simulator)
  145.                \item AMD64 (will be tested in Simics simulator)
  146.               \end{itemize}
  147.        \end{itemize}
  148. \end{itemize}
  149.