Subversion Repositories HelenOS-doc

Rev

Rev 68 | Rev 70 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. <?xml version="1.0" encoding="UTF-8"?>
  2. <chapter id="mm">
  3.   <?dbhtml filename="mm.html"?>
  4.  
  5.   <title>Memory management</title>
  6.  
  7.   <para>In previous chapters, this book described the scheduling subsystem as
  8.   the creator of the impression that threads execute in parallel. The memory
  9.   management subsystem, on the other hand, creates the impression that there
  10.   is enough physical memory for the kernel and that userspace tasks have the
  11.   entire address space only for themselves.</para>
  12.  
  13.   <section>
  14.     <title>Physical memory management</title>
  15.  
  16.     <section id="zones_and_frames">
  17.       <indexterm><primary>memory management</primary><secondary>memory zone</secondary></indexterm>
  18.       <title>Zones and frames</title>
  19.  
  20.       <para>HelenOS represents continuous areas of physical memory in
  21.       structures called frame zones (abbreviated as zones). Each zone contains
  22.       information about the number of allocated and unallocated physical
  23.       memory frames as well as the physical base address of the zone and
  24.       number of frames contained in it. A zone also contains an array of frame
  25.       structures describing each frame of the zone and, in the last, but not
  26.       the least important, front, each zone is equipped with a buddy system
  27.       that faciliates effective allocation of power-of-two sized block of
  28.       frames.</para>
  29.  
  30.       <para>This organization of physical memory provides good preconditions
  31.       for hot-plugging of more zones. There is also one currently unused zone
  32.       attribute: <code>flags</code>. The attribute could be used to give a
  33.       special meaning to some zones in the future.</para>
  34.  
  35.       <para>The zones are linked in a doubly-linked list. This might seem a
  36.       bit ineffective because the zone list is walked everytime a frame is
  37.       allocated or deallocated. However, this does not represent a significant
  38.       performance problem as it is expected that the number of zones will be
  39.       rather low. Moreover, most architectures merge all zones into
  40.       one.</para>
  41.  
  42.       <para>For each physical memory frame found in a zone, there is a frame
  43.       structure that contains number of references and data used by buddy
  44.       system.</para>
  45.     </section>
  46.  
  47.     <section id="frame_allocator">
  48.       <indexterm><primary>memory management</primary><secondary>frame allocator</secondary></indexterm>
  49.       <title>Frame allocator</title>
  50.  
  51.       <para>The frame allocator satisfies kernel requests to allocate
  52.       power-of-two sized blocks of physical memory. Because of zonal
  53.       organization of physical memory, the frame allocator is always working
  54.       within a context of some frame zone. In order to carry out the
  55.       allocation requests, the frame allocator is tightly integrated with the
  56.       buddy system belonging to the zone. The frame allocator is also
  57.       responsible for updating information about the number of free and busy
  58.       frames in the zone. <figure>
  59.           <mediaobject id="frame_alloc">
  60.             <imageobject role="html">
  61.               <imagedata fileref="images/frame_alloc.png" format="PNG" />
  62.             </imageobject>
  63.  
  64.             <imageobject role="fop">
  65.               <imagedata fileref="images.vector/frame_alloc.svg" format="SVG" />
  66.             </imageobject>
  67.           </mediaobject>
  68.  
  69.           <title>Frame allocator scheme.</title>
  70.         </figure></para>
  71.  
  72.       <formalpara>
  73.         <title>Allocation / deallocation</title>
  74.  
  75.         <para>Upon allocation request via function <code>frame_alloc</code>,
  76.         the frame allocator first tries to find a zone that can satisfy the
  77.         request (i.e. has the required amount of free frames). Once a suitable
  78.         zone is found, the frame allocator uses the buddy allocator on the
  79.         zone's buddy system to perform the allocation. During deallocation,
  80.        which is triggered by a call to <code>frame_free</code>, the frame
  81.        allocator looks up the respective zone that contains the frame being
  82.        deallocated. Afterwards, it calls the buddy allocator again, this time
  83.        to take care of deallocation within the zone's buddy system.</para>
  84.       </formalpara>
  85.     </section>
  86.  
  87.     <section id="buddy_allocator">
  88.       <indexterm><primary>memory management</primary><secondary>buddy system</secondary></indexterm>
  89.       <title>Buddy allocator</title>
  90.  
  91.       <para>In the buddy system, the memory is broken down into power-of-two
  92.       sized naturally aligned blocks. These blocks are organized in an array
  93.       of lists, in which the list with index i contains all unallocated blocks
  94.       of size <mathphrase>2<superscript>i</superscript></mathphrase>. The
  95.       index i is called the order of block. Should there be two adjacent
  96.       equally sized blocks in the list i<mathphrase />(i.e. buddies), the
  97.       buddy allocator would coalesce them and put the resulting block in list
  98.       <mathphrase>i + 1</mathphrase>, provided that the resulting block would
  99.       be naturally aligned. Similarily, when the allocator is asked to
  100.       allocate a block of size
  101.       <mathphrase>2<superscript>i</superscript></mathphrase>, it first tries
  102.       to satisfy the request from the list with index i. If the request cannot
  103.       be satisfied (i.e. the list i is empty), the buddy allocator will try to
  104.       allocate and split a larger block from the list with index i + 1. Both
  105.       of these algorithms are recursive. The recursion ends either when there
  106.       are no blocks to coalesce in the former case or when there are no blocks
  107.       that can be split in the latter case.</para>
  108.  
  109.       <para>This approach greatly reduces external fragmentation of memory and
  110.       helps in allocating bigger continuous blocks of memory aligned to their
  111.       size. On the other hand, the buddy allocator suffers increased internal
  112.       fragmentation of memory and is not suitable for general kernel
  113.       allocations. This purpose is better addressed by the <link
  114.       linkend="slab">slab allocator</link>.<figure>
  115.           <mediaobject id="buddy_alloc">
  116.             <imageobject role="html">
  117.               <imagedata fileref="images/buddy_alloc.png" format="PNG" />
  118.             </imageobject>
  119.  
  120.             <imageobject role="fop">
  121.               <imagedata fileref="images.vector/buddy_alloc.svg" format="SVG" />
  122.             </imageobject>
  123.           </mediaobject>
  124.  
  125.           <title>Buddy system scheme.</title>
  126.         </figure></para>
  127.  
  128.       <section>
  129.         <title>Implementation</title>
  130.  
  131.         <para>The buddy allocator is, in fact, an abstract framework wich can
  132.         be easily specialized to serve one particular task. It knows nothing
  133.         about the nature of memory it helps to allocate. In order to beat the
  134.         lack of this knowledge, the buddy allocator exports an interface that
  135.         each of its clients is required to implement. When supplied with an
  136.         implementation of this interface, the buddy allocator can use
  137.         specialized external functions to find a buddy for a block, split and
  138.         coalesce blocks, manipulate block order and mark blocks busy or
  139.         available.</para>
  140.  
  141.         <formalpara>
  142.           <title>Data organization</title>
  143.  
  144.           <para>Each entity allocable by the buddy allocator is required to
  145.           contain space for storing block order number and a link variable
  146.           used to interconnect blocks within the same order.</para>
  147.  
  148.           <para>Whatever entities are allocated by the buddy allocator, the
  149.           first entity within a block is used to represent the entire block.
  150.           The first entity keeps the order of the whole block. Other entities
  151.           within the block are assigned the magic value
  152.           <constant>BUDDY_INNER_BLOCK</constant>. This is especially important
  153.           for effective identification of buddies in a one-dimensional array
  154.           because the entity that represents a potential buddy cannot be
  155.           associated with <constant>BUDDY_INNER_BLOCK</constant> (i.e. if it
  156.           is associated with <constant>BUDDY_INNER_BLOCK</constant> then it is
  157.           not a buddy).</para>
  158.         </formalpara>
  159.       </section>
  160.     </section>
  161.  
  162.     <section id="slab">
  163.     <indexterm><primary>memory management</primary><secondary>slab</secondary></indexterm>      
  164.     <title>Slab allocator</title>
  165.  
  166.       <para>The majority of memory allocation requests in the kernel is for
  167.       small, frequently used data structures. The basic idea behind the slab
  168.       allocator is that commonly used objects are preallocated in continuous
  169.       areas of physical memory called slabs<footnote>
  170.           <para>Slabs are in fact blocks of physical memory frames allocated
  171.           from the frame allocator.</para>
  172.         </footnote>. Whenever an object is to be allocated, the slab allocator
  173.       returns the first available item from a suitable slab corresponding to
  174.       the object type<footnote>
  175.           <para>The mechanism is rather more complicated, see the next
  176.           paragraph.</para>
  177.         </footnote>. Due to the fact that the sizes of the requested and
  178.       allocated object match, the slab allocator significantly reduces
  179.       internal fragmentation.</para>
  180.  
  181.       <para>Slabs of one object type are organized in a structure called slab
  182.       cache. There are ususally more slabs in the slab cache, depending on
  183.       previous allocations. If the the slab cache runs out of available slabs,
  184.       new slabs are allocated. In order to exploit parallelism and to avoid
  185.       locking of shared spinlocks, slab caches can have variants of
  186.       processor-private slabs called magazines. On each processor, there is a
  187.       two-magazine cache. Full magazines that are not part of any
  188.       per-processor magazine cache are stored in a global list of full
  189.       magazines.</para>
  190.  
  191.       <para>Each object begins its life in a slab. When it is allocated from
  192.       there, the slab allocator calls a constructor that is registered in the
  193.       respective slab cache. The constructor initializes and brings the object
  194.       into a known state. The object is then used by the user. When the user
  195.       later frees the object, the slab allocator puts it into a processor
  196.       private magazine cache, from where it can be precedently allocated
  197.       again. Note that allocations satisfied from a magazine are already
  198.       initialized by the constructor. When both of the processor cached
  199.       magazines get full, the allocator will move one of the magazines to the
  200.       list of full magazines. Similarily, when allocating from an empty
  201.       processor magazine cache, the kernel will reload only one magazine from
  202.       the list of full magazines. In other words, the slab allocator tries to
  203.       keep the processor magazine cache only half-full in order to prevent
  204.       thrashing when allocations and deallocations interleave on magazine
  205.       boundaries.</para>
  206.  
  207.       <para>Should HelenOS run short of memory, it would start deallocating
  208.       objects from magazines, calling slab cache destructor on them and
  209.       putting them back into slabs. When a slab contanins no allocated object,
  210.       it is immediately freed.</para>
  211.  
  212.       <para><figure>
  213.           <mediaobject id="slab_alloc">
  214.             <imageobject role="html">
  215.               <imagedata fileref="images/slab_alloc.png" format="PNG" />
  216.             </imageobject>
  217.           </mediaobject>
  218.  
  219.           <title>Slab allocator scheme.</title>
  220.         </figure></para>
  221.  
  222.       <section>
  223.         <title>Implementation</title>
  224.  
  225.         <para>The slab allocator is closely modelled after OpenSolaris slab
  226.         allocator by Jeff Bonwick and Jonathan Adams with the following
  227.         exceptions:<itemizedlist>
  228.             <listitem>
  229.                empty slabs are immediately deallocated
  230.             </listitem>
  231.  
  232.             <listitem>
  233.               <para>empty magazines are deallocated when not needed</para>
  234.             </listitem>
  235.           </itemizedlist> Following features are not currently supported but
  236.         would be easy to do: <itemizedlist>
  237.             <listitem>
  238.                cache coloring
  239.             </listitem>
  240.  
  241.             <listitem>
  242.                dynamic magazine grow (different magazine sizes are already supported, but the allocation strategy would need to be adjusted)
  243.             </listitem>
  244.           </itemizedlist></para>
  245.  
  246.         <section>
  247.         <indexterm><primary>memory management</primary><secondary>slab magazine</secondary></indexterm>
  248.         <title>Magazine layer</title>
  249.  
  250.           <para>Due to the extensive bottleneck on SMP architures, caused by
  251.           global slab locking mechanism, making processing of all slab
  252.           allocation requests serialized, a new layer was introduced to the
  253.           classic slab allocator design. Slab allocator was extended to
  254.           support per-CPU caches 'magazines' to achieve good SMP scaling.
  255.           <termdef>Slab SMP perfromance bottleneck was resolved by introducing
  256.           a per-CPU caching scheme called as <glossterm>magazine
  257.           layer</glossterm></termdef>.</para>
  258.  
  259.           <para>Magazine is a N-element cache of objects, so each magazine can
  260.           satisfy N allocations. Magazine behaves like a automatic weapon
  261.           magazine (LIFO, stack), so the allocation/deallocation become simple
  262.           push/pop pointer operation. Trick is that CPU does not access global
  263.           slab allocator data during the allocation from its magazine, thus
  264.           making possible parallel allocations between CPUs.</para>
  265.  
  266.           <para>Implementation also requires adding another feature as the
  267.           CPU-bound magazine is actually a pair of magazines to avoid
  268.           thrashing when during allocation/deallocatiion of 1 item at the
  269.           magazine size boundary. LIFO order is enforced, which should avoid
  270.           fragmentation as much as possible.</para>
  271.  
  272.           <para>Another important entity of magazine layer is the common full
  273.           magazine list (also called a depot), that stores full magazines that
  274.           may be used by any of the CPU magazine caches to reload active CPU
  275.           magazine. This list of magazines can be pre-filled with full
  276.           magazines during initialization, but in current implementation it is
  277.           filled during object deallocation, when CPU magazine becomes
  278.           full.</para>
  279.  
  280.           <para>Slab allocator control structures are allocated from special
  281.           slabs, that are marked by special flag, indicating that it should
  282.           not be used for slab magazine layer. This is done to avoid possible
  283.           infinite recursions and deadlock during conventional slab allocaiton
  284.           requests.</para>
  285.         </section>
  286.  
  287.         <section>
  288.           <title>Allocation/deallocation</title>
  289.  
  290.           <para>Every cache contains list of full slabs and list of partialy
  291.           full slabs. Empty slabs are immediately freed (thrashing will be
  292.           avoided because of magazines).</para>
  293.  
  294.           <para>The SLAB allocator allocates lots of space and does not free
  295.           it. When frame allocator fails to allocate the frame, it calls
  296.           slab_reclaim(). It tries 'light reclaim' first, then brutal reclaim.
  297.           The light reclaim releases slabs from cpu-shared magazine-list,
  298.           until at least 1 slab is deallocated in each cache (this algorithm
  299.           should probably change). The brutal reclaim removes all cached
  300.           objects, even from CPU-bound magazines.</para>
  301.  
  302.           <formalpara>
  303.             <title>Allocation</title>
  304.  
  305.             <para><emphasis>Step 1.</emphasis> When it comes to the allocation
  306.             request, slab allocator first of all checks availability of memory
  307.             in local CPU-bound magazine. If it is there, we would just "pop"
  308.             the CPU magazine and return the pointer to object.</para>
  309.  
  310.             <para><emphasis>Step 2.</emphasis> If the CPU-bound magazine is
  311.             empty, allocator will attempt to reload magazin, swapping it with
  312.             second CPU magazine and returns to the first step.</para>
  313.  
  314.             <para><emphasis>Step 3.</emphasis> Now we are in the situation
  315.             when both CPU-bound magazines are empty, which makes allocator to
  316.             access shared full-magazines depot to reload CPU-bound magazines.
  317.             If reload is succesful (meaning there are full magazines in depot)
  318.             algoritm continues at Step 1.</para>
  319.  
  320.             <para><emphasis>Step 4.</emphasis> Final step of the allocation.
  321.             In this step object is allocated from the conventional slab layer
  322.             and pointer is returned.</para>
  323.           </formalpara>
  324.  
  325.           <formalpara>
  326.             <title>Deallocation</title>
  327.  
  328.             <para><emphasis>Step 1.</emphasis> During deallocation request,
  329.             slab allocator will check if the local CPU-bound magazine is not
  330.             full. In this case we will just push the pointer to this
  331.             magazine.</para>
  332.  
  333.             <para><emphasis>Step 2.</emphasis> If the CPU-bound magazine is
  334.             full, allocator will attempt to reload magazin, swapping it with
  335.             second CPU magazine and returns to the first step.</para>
  336.  
  337.             <para><emphasis>Step 3.</emphasis> Now we are in the situation
  338.             when both CPU-bound magazines are full, which makes allocator to
  339.             access shared full-magazines depot to put one of the magazines to
  340.             the depot and creating new empty magazine. Algoritm continues at
  341.             Step 1.</para>
  342.           </formalpara>
  343.         </section>
  344.       </section>
  345.     </section>
  346.  
  347.     <!-- End of Physmem -->
  348.   </section>
  349.  
  350.   <section>
  351.     <title>Virtual memory management</title>
  352.  
  353.     <section>
  354.       <title>Introduction</title>
  355.  
  356.       <para>Virtual memory is a special memory management technique, used by
  357.       kernel to achieve a bunch of mission critical goals. <itemizedlist>
  358.           <listitem>
  359.              Isolate each task from other tasks that are running on the system at the same time.
  360.           </listitem>
  361.  
  362.           <listitem>
  363.              Allow to allocate more memory, than is actual physical memory size of the machine.
  364.           </listitem>
  365.  
  366.           <listitem>
  367.              Allowing, in general, to load and execute two programs that are linked on the same address without complicated relocations.
  368.           </listitem>
  369.         </itemizedlist></para>
  370.  
  371.       <para><!--
  372.  
  373.                 <para>
  374.                         Address spaces. Address space area (B+ tree). Only for uspace. Set of syscalls (shrink/extend etc).
  375.                         Special address space area type - device - prohibits shrink/extend syscalls to call on it.
  376.                         Address space has link to mapping tables (hierarchical - per Address space, hash - global tables).
  377.                 </para>
  378.  
  379. --></para>
  380.     </section>
  381.  
  382.     <section>
  383.       <title>Address spaces</title>
  384.  
  385.       <section>
  386.     <indexterm><primary>memory management</primary><secondary>address space area</secondary></indexterm>
  387.     <title>Address space areas</title>
  388.  
  389.         <para>Each address space consists of mutually disjunctive continuous
  390.         address space areas. Address space area is precisely defined by its
  391.         base address and the number of frames/pages is contains.</para>
  392.  
  393.         <para>Address space area , that define behaviour and permissions on
  394.         the particular area. <itemizedlist>
  395.             <listitem>
  396.                
  397.  
  398.               <emphasis>AS_AREA_READ</emphasis>
  399.  
  400.                flag indicates reading permission.
  401.             </listitem>
  402.  
  403.             <listitem>
  404.                
  405.  
  406.               <emphasis>AS_AREA_WRITE</emphasis>
  407.  
  408.                flag indicates writing permission.
  409.             </listitem>
  410.  
  411.             <listitem>
  412.                
  413.  
  414.               <emphasis>AS_AREA_EXEC</emphasis>
  415.  
  416.                flag indicates code execution permission. Some architectures do not support execution persmission restriction. In this case this flag has no effect.
  417.             </listitem>
  418.  
  419.             <listitem>
  420.                
  421.  
  422.               <emphasis>AS_AREA_DEVICE</emphasis>
  423.  
  424.                marks area as mapped to the device memory.
  425.             </listitem>
  426.           </itemizedlist></para>
  427.  
  428.         <para>Kernel provides possibility tasks create/expand/shrink/share its
  429.         address space via the set of syscalls.</para>
  430.       </section>
  431.  
  432.       <section>
  433.     <indexterm><primary>memory management</primary><secondary>asid</secondary></indexterm>
  434.         <title>Address Space ID (ASID)</title>
  435.  
  436.         <para>When switching to the different task, kernel also require to
  437.         switch mappings to the different address space. In case TLB cannot
  438.         distinguish address space mappings, all mapping information in TLB
  439.         from the old address space must be flushed, which can create certain
  440.         uncessary overhead during the task switching. To avoid this, some
  441.         architectures have capability to segregate different address spaces on
  442.         hardware level introducing the address space identifier as a part of
  443.         TLB record, telling the virtual address space translation unit to
  444.         which address space this record is applicable.</para>
  445.  
  446.         <para>HelenOS kernel can take advantage of this hardware supported
  447.         identifier by having an ASID abstraction which is somehow related to
  448.         the corresponding architecture identifier. I.e. on ia64 kernel ASID is
  449.         derived from RID (region identifier) and on the mips32 kernel ASID is
  450.         actually the hardware identifier. As expected, this ASID information
  451.         record is the part of <emphasis>as_t</emphasis> structure.</para>
  452.  
  453.         <para>Due to the hardware limitations, hardware ASID has limited
  454.         length from 8 bits on ia64 to 24 bits on mips32, which makes it
  455.         impossible to use it as unique address space identifier for all tasks
  456.         running in the system. In such situations special ASID stealing
  457.         algoritm is used, which takes ASID from inactive task and assigns it
  458.         to the active task.</para>
  459.  
  460.         <para><classname>ASID stealing algoritm here.</classname></para>
  461.       </section>
  462.     </section>
  463.  
  464.     <section>
  465.       <title>Virtual address translation</title>
  466.  
  467.       <section id="paging">
  468.         <title>Paging</title>
  469.  
  470.         <section>
  471.           <title>Introduction</title>
  472.  
  473.           <para>Virtual memory is usually using paged memory model, where
  474.           virtual memory address space is divided into the
  475.           <emphasis>pages</emphasis> (usually having size 4096 bytes) and
  476.           physical memory is divided into the frames (same sized as a page, of
  477.           course). Each page may be mapped to some frame and then, upon memory
  478.           access to the virtual address, CPU performs <emphasis>address
  479.           translation</emphasis> during the instruction execution.
  480.           Non-existing mapping generates page fault exception, calling kernel
  481.           exception handler, thus allowing kernel to manipulate rules of
  482.           memory access. Information for pages mapping is stored by kernel in
  483.           the page tables</para>
  484.  
  485.           <para>The majority of the architectures use multi-level page tables,
  486.           which means need to access physical memory several times before
  487.           getting physical address. This fact would make serios performance
  488.           overhead in virtual memory management. To avoid this <link
  489.           linkend="tlb">Traslation Lookaside Buffer (TLB)</link> is
  490.           used.</para>
  491.  
  492.           <para>HelenOS kernel has two different approaches to the paging
  493.           implementation: <emphasis>4 level page tables</emphasis> and
  494.           <emphasis>global hash table</emphasis>, which are accessible via
  495.           generic paging abstraction layer. Such different functionality was
  496.           caused by the major architectural differences between supported
  497.           platforms. This abstraction is implemented with help of the global
  498.           structure of pointers to basic mapping functions
  499.           <emphasis>page_mapping_operations</emphasis>. To achieve different
  500.           functionality of page tables, corresponding layer must implement
  501.           functions, declared in
  502.           <emphasis>page_mapping_operations</emphasis></para>
  503.  
  504.           <para>Thanks to the abstract paging interface, there was a place
  505.           left for more paging implementations (besides already implemented
  506.           hieararchical page tables and hash table), for example B-Tree based
  507.           page tables.</para>
  508.         </section>
  509.  
  510.         <section>
  511.           <title>Hierarchical 4-level page tables</title>
  512.  
  513.           <para>Hierarchical 4-level page tables are the generalization of the
  514.           hardware capabilities of most architectures. Each address space has
  515.           its own page tables.<itemizedlist>
  516.               <listitem>
  517.                  ia32 uses 2-level page tables, with full hardware support.
  518.               </listitem>
  519.  
  520.               <listitem>
  521.                  amd64 uses 4-level page tables, also coming with full hardware support.
  522.               </listitem>
  523.  
  524.               <listitem>
  525.                  mips and ppc32 have 2-level tables, software simulated support.
  526.               </listitem>
  527.             </itemizedlist></para>
  528.         </section>
  529.  
  530.         <section>
  531.       <indexterm><primary>memory management</primary><secondary>hash table</secondary></indexterm>          
  532.       <title>Global hash table</title>
  533.  
  534.           <para>Implementation of the global hash table was encouraged by the
  535.           ia64 architecture support. One of the major differences between
  536.           global hash table and hierarchical tables is that global hash table
  537.           exists only once in the system and the hierarchical tables are
  538.           maintained per address space.</para>
  539.  
  540.           <para>Thus, hash table contains information about all address spaces
  541.           mappings in the system, so, the hash of an entry must contain
  542.           information of both address space pointer or id and the virtual
  543.           address of the page. Generic hash table implementation assumes that
  544.           the addresses of the pointers to the address spaces are likely to be
  545.           on the close addresses, so it uses least significant bits for hash;
  546.           also it assumes that the virtual page addresses have roughly the
  547.           same probability of occurring, so the least significant bits of VPN
  548.           compose the hash index.</para>
  549.  
  550.           <para>Collision chains ...</para>
  551.         </section>
  552.       </section>
  553.  
  554.       <section id="tlb">
  555.         <indexterm><primary>memory management</primary><secondary>tlb</secondary></indexterm>
  556.         <title>Translation Lookaside buffer</title>
  557.  
  558.         <para>Due to the extensive overhead during the page mapping lookup in
  559.         the page tables, all architectures has fast assotiative cache memory
  560.         built-in CPU. This memory called TLB stores recently used page table
  561.         entries.</para>
  562.  
  563.         <section id="tlb_shootdown">
  564.           <title>TLB consistency. TLB shootdown algorithm.</title>
  565.  
  566.           <para>Operating system is responsible for keeping TLB consistent by
  567.           invalidating the contents of TLB, whenever there is some change in
  568.           page tables. Those changes may occur when page or group of pages
  569.           were unmapped, mapping is changed or system switching active address
  570.           space to schedule a new system task. Moreover, this invalidation
  571.           operation must be done an all system CPUs because each CPU has its
  572.           own independent TLB cache. Thus maintaining TLB consistency on SMP
  573.           configuration as not as trivial task as it looks on the first
  574.           glance. Naive solution would assume that is the CPU which wants to
  575.           invalidate TLB will invalidate TLB caches on other CPUs. It is not
  576.           possible on the most of the architectures, because of the simple
  577.           fact - flushing TLB is allowed only on the local CPU and there is no
  578.           possibility to access other CPUs' TLB caches, thus invalidate TLB
  579.          remotely.</para>
  580.  
  581.          <para>Technique of remote invalidation of TLB entries is called "TLB
  582.          shootdown". HelenOS uses a variation of the algorithm described by
  583.          D. Black et al., "Translation Lookaside Buffer Consistency: A
  584.          Software Approach," Proc. Third Int'l Conf. Architectural Support
  585.           for Programming Languages and Operating Systems, 1989, pp.
  586.           113-122.</para>
  587.  
  588.           <para>As the situation demands, you will want partitial invalidation
  589.           of TLB caches. In case of simple memory mapping change it is
  590.           necessary to invalidate only one or more adjacent pages. In case if
  591.           the architecture is aware of ASIDs, when kernel needs to dump some
  592.           ASID to use by another task, it invalidates only entries from this
  593.           particular address space. Final option of the TLB invalidation is
  594.           the complete TLB cache invalidation, which is the operation that
  595.           flushes all entries in TLB.</para>
  596.  
  597.           <para>TLB shootdown is performed in two phases.</para>
  598.  
  599.           <formalpara>
  600.             <title>Phase 1.</title>
  601.  
  602.             <para>First, initiator locks a global TLB spinlock, then request
  603.             is being put to the local request cache of every other CPU in the
  604.             system protected by its spinlock. In case the cache is full, all
  605.             requests in the cache are replaced by one request, indicating
  606.             global TLB flush. Then the initiator thread sends an IPI message
  607.             indicating the TLB shootdown request to the rest of the CPUs and
  608.             waits actively until all CPUs confirm TLB invalidating action
  609.             execution by setting up a special flag. After setting this flag
  610.             this thread is blocked on the TLB spinlock, held by the
  611.             initiator.</para>
  612.           </formalpara>
  613.  
  614.           <formalpara>
  615.             <title>Phase 2.</title>
  616.  
  617.             <para>All CPUs are waiting on the TLB spinlock to execute TLB
  618.             invalidation action and have indicated their intention to the
  619.             initiator. Initiator continues, cleaning up its TLB and releasing
  620.             the global TLB spinlock. After this all other CPUs gain and
  621.             immidiately release TLB spinlock and perform TLB invalidation
  622.             actions.</para>
  623.           </formalpara>
  624.         </section>
  625.       </section>
  626.     </section>
  627.   </section>
  628. </chapter>