Subversion Repositories HelenOS-doc

Rev

Rev 67 | Rev 69 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. <?xml version="1.0" encoding="UTF-8"?>
  2. <chapter id="mm">
  3.   <?dbhtml filename="mm.html"?>
  4.  
  5.   <title>Memory management</title>
  6.  
  7.   <para>In previous chapters, this book described the scheduling subsystem as
  8.   the creator of the impression that threads execute in parallel. The memory
  9.   management subsystem, on the other hand, creates the impression that there
  10.   is enough physical memory for the kernel and that userspace tasks have the
  11.   entire address space only for themselves.</para>
  12.  
  13.   <section>
  14.     <title>Physical memory management</title>
  15.  
  16.     <section id="zones_and_frames">
  17.       <title>Zones and frames</title>
  18.  
  19.       <para>HelenOS represents continuous areas of physical memory in
  20.       structures called frame zones (abbreviated as zones). Each zone contains
  21.       information about the number of allocated and unallocated physical
  22.       memory frames as well as the physical base address of the zone and
  23.       number of frames contained in it. A zone also contains an array of frame
  24.       structures describing each frame of the zone and, in the last, but not
  25.       the least important, front, each zone is equipped with a buddy system
  26.       that faciliates effective allocation of power-of-two sized block of
  27.       frames.</para>
  28.  
  29.       <para>This organization of physical memory provides good preconditions
  30.       for hot-plugging of more zones. There is also one currently unused zone
  31.       attribute: <code>flags</code>. The attribute could be used to give a
  32.       special meaning to some zones in the future.</para>
  33.  
  34.       <para>The zones are linked in a doubly-linked list. This might seem a
  35.       bit ineffective because the zone list is walked everytime a frame is
  36.       allocated or deallocated. However, this does not represent a significant
  37.       performance problem as it is expected that the number of zones will be
  38.       rather low. Moreover, most architectures merge all zones into
  39.       one.</para>
  40.  
  41.       <para>For each physical memory frame found in a zone, there is a frame
  42.       structure that contains number of references and data used by buddy
  43.       system.</para>
  44.     </section>
  45.  
  46.     <section id="frame_allocator">
  47.       <title>Frame allocator</title>
  48.  
  49.       <para>The frame allocator satisfies kernel requests to allocate
  50.       power-of-two sized blocks of physical memory. Because of zonal
  51.       organization of physical memory, the frame allocator is always working
  52.       within a context of some frame zone. In order to carry out the
  53.       allocation requests, the frame allocator is tightly integrated with the
  54.       buddy system belonging to the zone. The frame allocator is also
  55.       responsible for updating information about the number of free and busy
  56.       frames in the zone. <figure>
  57.           <mediaobject id="frame_alloc">
  58.             <imageobject role="html">
  59.               <imagedata fileref="images/frame_alloc.png" format="PNG" />
  60.             </imageobject>
  61.  
  62.             <imageobject role="fop">
  63.               <imagedata fileref="images.vector/frame_alloc.svg" format="SVG" />
  64.             </imageobject>
  65.           </mediaobject>
  66.  
  67.           <title>Frame allocator scheme.</title>
  68.         </figure></para>
  69.  
  70.       <formalpara>
  71.         <title>Allocation / deallocation</title>
  72.  
  73.         <para>Upon allocation request via function <code>frame_alloc</code>,
  74.         the frame allocator first tries to find a zone that can satisfy the
  75.         request (i.e. has the required amount of free frames). Once a suitable
  76.         zone is found, the frame allocator uses the buddy allocator on the
  77.         zone's buddy system to perform the allocation. During deallocation,
  78.        which is triggered by a call to <code>frame_free</code>, the frame
  79.        allocator looks up the respective zone that contains the frame being
  80.        deallocated. Afterwards, it calls the buddy allocator again, this time
  81.        to take care of deallocation within the zone's buddy system.</para>
  82.       </formalpara>
  83.     </section>
  84.  
  85.     <section id="buddy_allocator">
  86.       <title>Buddy allocator</title>
  87.  
  88.       <para>In the buddy system, the memory is broken down into power-of-two
  89.       sized naturally aligned blocks. These blocks are organized in an array
  90.       of lists, in which the list with index i contains all unallocated blocks
  91.       of size <mathphrase>2<superscript>i</superscript></mathphrase>. The
  92.       index i is called the order of block. Should there be two adjacent
  93.       equally sized blocks in the list i<mathphrase />(i.e. buddies), the
  94.       buddy allocator would coalesce them and put the resulting block in list
  95.       <mathphrase>i + 1</mathphrase>, provided that the resulting block would
  96.       be naturally aligned. Similarily, when the allocator is asked to
  97.       allocate a block of size
  98.       <mathphrase>2<superscript>i</superscript></mathphrase>, it first tries
  99.       to satisfy the request from the list with index i. If the request cannot
  100.       be satisfied (i.e. the list i is empty), the buddy allocator will try to
  101.       allocate and split a larger block from the list with index i + 1. Both
  102.       of these algorithms are recursive. The recursion ends either when there
  103.       are no blocks to coalesce in the former case or when there are no blocks
  104.       that can be split in the latter case.</para>
  105.  
  106.       <para>This approach greatly reduces external fragmentation of memory and
  107.       helps in allocating bigger continuous blocks of memory aligned to their
  108.       size. On the other hand, the buddy allocator suffers increased internal
  109.       fragmentation of memory and is not suitable for general kernel
  110.       allocations. This purpose is better addressed by the <link
  111.       linkend="slab">slab allocator</link>.<figure>
  112.           <mediaobject id="buddy_alloc">
  113.             <imageobject role="html">
  114.               <imagedata fileref="images/buddy_alloc.png" format="PNG" />
  115.             </imageobject>
  116.  
  117.             <imageobject role="fop">
  118.               <imagedata fileref="images.vector/buddy_alloc.svg" format="SVG" />
  119.             </imageobject>
  120.           </mediaobject>
  121.  
  122.           <title>Buddy system scheme.</title>
  123.         </figure></para>
  124.  
  125.       <section>
  126.         <title>Implementation</title>
  127.  
  128.         <para>The buddy allocator is, in fact, an abstract framework wich can
  129.         be easily specialized to serve one particular task. It knows nothing
  130.         about the nature of memory it helps to allocate. In order to beat the
  131.         lack of this knowledge, the buddy allocator exports an interface that
  132.         each of its clients is required to implement. When supplied with an
  133.         implementation of this interface, the buddy allocator can use
  134.         specialized external functions to find a buddy for a block, split and
  135.         coalesce blocks, manipulate block order and mark blocks busy or
  136.         available.</para>
  137.  
  138.         <formalpara>
  139.           <title>Data organization</title>
  140.  
  141.           <para>Each entity allocable by the buddy allocator is required to
  142.           contain space for storing block order number and a link variable
  143.           used to interconnect blocks within the same order.</para>
  144.  
  145.           <para>Whatever entities are allocated by the buddy allocator, the
  146.           first entity within a block is used to represent the entire block.
  147.           The first entity keeps the order of the whole block. Other entities
  148.           within the block are assigned the magic value
  149.           <constant>BUDDY_INNER_BLOCK</constant>. This is especially important
  150.           for effective identification of buddies in a one-dimensional array
  151.           because the entity that represents a potential buddy cannot be
  152.           associated with <constant>BUDDY_INNER_BLOCK</constant> (i.e. if it
  153.           is associated with <constant>BUDDY_INNER_BLOCK</constant> then it is
  154.           not a buddy).</para>
  155.         </formalpara>
  156.       </section>
  157.     </section>
  158.  
  159.     <section id="slab">
  160.       <title>Slab allocator</title>
  161.  
  162.       <para>The majority of memory allocation requests in the kernel is for
  163.       small, frequently used data structures. The basic idea behind the slab
  164.       allocator is that commonly used objects are preallocated in continuous
  165.       areas of physical memory called slabs<footnote>
  166.           <para>Slabs are in fact blocks of physical memory frames allocated
  167.           from the frame allocator.</para>
  168.         </footnote>. Whenever an object is to be allocated, the slab allocator
  169.       returns the first available item from a suitable slab corresponding to
  170.       the object type<footnote>
  171.           <para>The mechanism is rather more complicated, see the next
  172.           paragraph.</para>
  173.         </footnote>. Due to the fact that the sizes of the requested and
  174.       allocated object match, the slab allocator significantly reduces
  175.       internal fragmentation.</para>
  176.  
  177.       <para>Slabs of one object type are organized in a structure called slab
  178.       cache. There are ususally more slabs in the slab cache, depending on
  179.       previous allocations. If the the slab cache runs out of available slabs,
  180.       new slabs are allocated. In order to exploit parallelism and to avoid
  181.       locking of shared spinlocks, slab caches can have variants of
  182.       processor-private slabs called magazines. On each processor, there is a
  183.       two-magazine cache. Full magazines that are not part of any
  184.       per-processor magazine cache are stored in a global list of full
  185.       magazines.</para>
  186.  
  187.       <para>Each object begins its life in a slab. When it is allocated from
  188.       there, the slab allocator calls a constructor that is registered in the
  189.       respective slab cache. The constructor initializes and brings the object
  190.       into a known state. The object is then used by the user. When the user
  191.       later frees the object, the slab allocator puts it into a processor
  192.       private magazine cache, from where it can be precedently allocated
  193.       again. Note that allocations satisfied from a magazine are already
  194.       initialized by the constructor. When both of the processor cached
  195.       magazines get full, the allocator will move one of the magazines to the
  196.       list of full magazines. Similarily, when allocating from an empty
  197.       processor magazine cache, the kernel will reload only one magazine from
  198.       the list of full magazines. In other words, the slab allocator tries to
  199.       keep the processor magazine cache only half-full in order to prevent
  200.       thrashing when allocations and deallocations interleave on magazine
  201.       boundaries.</para>
  202.  
  203.       <para>Should HelenOS run short of memory, it would start deallocating
  204.       objects from magazines, calling slab cache destructor on them and
  205.       putting them back into slabs. When a slab contanins no allocated object,
  206.       it is immediately freed.</para>
  207.  
  208.       <para><figure>
  209.           <mediaobject id="slab_alloc">
  210.             <imageobject role="html">
  211.               <imagedata fileref="images/slab_alloc.png" format="PNG" />
  212.             </imageobject>
  213.           </mediaobject>
  214.  
  215.           <title>Slab allocator scheme.</title>
  216.         </figure></para>
  217.  
  218.       <section>
  219.         <title>Implementation</title>
  220.  
  221.         <para>The slab allocator is closely modelled after OpenSolaris slab
  222.         allocator by Jeff Bonwick and Jonathan Adams with the following
  223.         exceptions:<itemizedlist>
  224.             <listitem>
  225.                empty slabs are immediately deallocated
  226.             </listitem>
  227.  
  228.             <listitem>
  229.               <para>empty magazines are deallocated when not needed</para>
  230.             </listitem>
  231.           </itemizedlist> Following features are not currently supported but
  232.         would be easy to do: <itemizedlist>
  233.             <listitem>
  234.                cache coloring
  235.             </listitem>
  236.  
  237.             <listitem>
  238.                dynamic magazine grow (different magazine sizes are already supported, but the allocation strategy would need to be adjusted)
  239.             </listitem>
  240.           </itemizedlist></para>
  241.  
  242.         <section>
  243.           <title>Magazine layer</title>
  244.  
  245.           <para>Due to the extensive bottleneck on SMP architures, caused by
  246.           global slab locking mechanism, making processing of all slab
  247.           allocation requests serialized, a new layer was introduced to the
  248.           classic slab allocator design. Slab allocator was extended to
  249.           support per-CPU caches 'magazines' to achieve good SMP scaling.
  250.           <termdef>Slab SMP perfromance bottleneck was resolved by introducing
  251.           a per-CPU caching scheme called as <glossterm>magazine
  252.           layer</glossterm></termdef>.</para>
  253.  
  254.           <para>Magazine is a N-element cache of objects, so each magazine can
  255.           satisfy N allocations. Magazine behaves like a automatic weapon
  256.           magazine (LIFO, stack), so the allocation/deallocation become simple
  257.           push/pop pointer operation. Trick is that CPU does not access global
  258.           slab allocator data during the allocation from its magazine, thus
  259.           making possible parallel allocations between CPUs.</para>
  260.  
  261.           <para>Implementation also requires adding another feature as the
  262.           CPU-bound magazine is actually a pair of magazines to avoid
  263.           thrashing when during allocation/deallocatiion of 1 item at the
  264.           magazine size boundary. LIFO order is enforced, which should avoid
  265.           fragmentation as much as possible.</para>
  266.  
  267.           <para>Another important entity of magazine layer is the common full
  268.           magazine list (also called a depot), that stores full magazines that
  269.           may be used by any of the CPU magazine caches to reload active CPU
  270.           magazine. This list of magazines can be pre-filled with full
  271.           magazines during initialization, but in current implementation it is
  272.           filled during object deallocation, when CPU magazine becomes
  273.           full.</para>
  274.  
  275.           <para>Slab allocator control structures are allocated from special
  276.           slabs, that are marked by special flag, indicating that it should
  277.           not be used for slab magazine layer. This is done to avoid possible
  278.           infinite recursions and deadlock during conventional slab allocaiton
  279.           requests.</para>
  280.         </section>
  281.  
  282.         <section>
  283.           <title>Allocation/deallocation</title>
  284.  
  285.           <para>Every cache contains list of full slabs and list of partialy
  286.           full slabs. Empty slabs are immediately freed (thrashing will be
  287.           avoided because of magazines).</para>
  288.  
  289.           <para>The SLAB allocator allocates lots of space and does not free
  290.           it. When frame allocator fails to allocate the frame, it calls
  291.           slab_reclaim(). It tries 'light reclaim' first, then brutal reclaim.
  292.           The light reclaim releases slabs from cpu-shared magazine-list,
  293.           until at least 1 slab is deallocated in each cache (this algorithm
  294.           should probably change). The brutal reclaim removes all cached
  295.           objects, even from CPU-bound magazines.</para>
  296.  
  297.           <formalpara>
  298.             <title>Allocation</title>
  299.  
  300.             <para><emphasis>Step 1.</emphasis> When it comes to the allocation
  301.             request, slab allocator first of all checks availability of memory
  302.             in local CPU-bound magazine. If it is there, we would just "pop"
  303.             the CPU magazine and return the pointer to object.</para>
  304.  
  305.             <para><emphasis>Step 2.</emphasis> If the CPU-bound magazine is
  306.             empty, allocator will attempt to reload magazin, swapping it with
  307.             second CPU magazine and returns to the first step.</para>
  308.  
  309.             <para><emphasis>Step 3.</emphasis> Now we are in the situation
  310.             when both CPU-bound magazines are empty, which makes allocator to
  311.             access shared full-magazines depot to reload CPU-bound magazines.
  312.             If reload is succesful (meaning there are full magazines in depot)
  313.             algoritm continues at Step 1.</para>
  314.  
  315.             <para><emphasis>Step 4.</emphasis> Final step of the allocation.
  316.             In this step object is allocated from the conventional slab layer
  317.             and pointer is returned.</para>
  318.           </formalpara>
  319.  
  320.           <formalpara>
  321.             <title>Deallocation</title>
  322.  
  323.             <para><emphasis>Step 1.</emphasis> During deallocation request,
  324.             slab allocator will check if the local CPU-bound magazine is not
  325.             full. In this case we will just push the pointer to this
  326.             magazine.</para>
  327.  
  328.             <para><emphasis>Step 2.</emphasis> If the CPU-bound magazine is
  329.             full, allocator will attempt to reload magazin, swapping it with
  330.             second CPU magazine and returns to the first step.</para>
  331.  
  332.             <para><emphasis>Step 3.</emphasis> Now we are in the situation
  333.             when both CPU-bound magazines are full, which makes allocator to
  334.             access shared full-magazines depot to put one of the magazines to
  335.             the depot and creating new empty magazine. Algoritm continues at
  336.             Step 1.</para>
  337.           </formalpara>
  338.         </section>
  339.       </section>
  340.     </section>
  341.  
  342.     <!-- End of Physmem -->
  343.   </section>
  344.  
  345.   <section>
  346.     <title>Virtual memory management</title>
  347.  
  348.     <section>
  349.       <title>Introduction</title>
  350.  
  351.       <para>Virtual memory is a special memory management technique, used by
  352.       kernel to achieve a bunch of mission critical goals. <itemizedlist>
  353.           <listitem>
  354.              Isolate each task from other tasks that are running on the system at the same time.
  355.           </listitem>
  356.  
  357.           <listitem>
  358.              Allow to allocate more memory, than is actual physical memory size of the machine.
  359.           </listitem>
  360.  
  361.           <listitem>
  362.              Allowing, in general, to load and execute two programs that are linked on the same address without complicated relocations.
  363.           </listitem>
  364.         </itemizedlist></para>
  365.  
  366.       <para><!--
  367.  
  368.                 <para>
  369.                         Address spaces. Address space area (B+ tree). Only for uspace. Set of syscalls (shrink/extend etc).
  370.                         Special address space area type - device - prohibits shrink/extend syscalls to call on it.
  371.                         Address space has link to mapping tables (hierarchical - per Address space, hash - global tables).
  372.                 </para>
  373.  
  374. --></para>
  375.     </section>
  376.  
  377.     <section>
  378.       <title>Address spaces</title>
  379.  
  380.       <section>
  381.         <title>Address space areas</title>
  382.  
  383.         <para>Each address space consists of mutually disjunctive continuous
  384.         address space areas. Address space area is precisely defined by its
  385.         base address and the number of frames/pages is contains.</para>
  386.  
  387.         <para>Address space area , that define behaviour and permissions on
  388.         the particular area. <itemizedlist>
  389.             <listitem>
  390.                
  391.  
  392.               <emphasis>AS_AREA_READ</emphasis>
  393.  
  394.                flag indicates reading permission.
  395.             </listitem>
  396.  
  397.             <listitem>
  398.                
  399.  
  400.               <emphasis>AS_AREA_WRITE</emphasis>
  401.  
  402.                flag indicates writing permission.
  403.             </listitem>
  404.  
  405.             <listitem>
  406.                
  407.  
  408.               <emphasis>AS_AREA_EXEC</emphasis>
  409.  
  410.                flag indicates code execution permission. Some architectures do not support execution persmission restriction. In this case this flag has no effect.
  411.             </listitem>
  412.  
  413.             <listitem>
  414.                
  415.  
  416.               <emphasis>AS_AREA_DEVICE</emphasis>
  417.  
  418.                marks area as mapped to the device memory.
  419.             </listitem>
  420.           </itemizedlist></para>
  421.  
  422.         <para>Kernel provides possibility tasks create/expand/shrink/share its
  423.         address space via the set of syscalls.</para>
  424.       </section>
  425.  
  426.       <section>
  427.         <title>Address Space ID (ASID)</title>
  428.  
  429.         <para>When switching to the different task, kernel also require to
  430.         switch mappings to the different address space. In case TLB cannot
  431.         distinguish address space mappings, all mapping information in TLB
  432.         from the old address space must be flushed, which can create certain
  433.         uncessary overhead during the task switching. To avoid this, some
  434.         architectures have capability to segregate different address spaces on
  435.         hardware level introducing the address space identifier as a part of
  436.         TLB record, telling the virtual address space translation unit to
  437.         which address space this record is applicable.</para>
  438.  
  439.         <para>HelenOS kernel can take advantage of this hardware supported
  440.         identifier by having an ASID abstraction which is somehow related to
  441.         the corresponding architecture identifier. I.e. on ia64 kernel ASID is
  442.         derived from RID (region identifier) and on the mips32 kernel ASID is
  443.         actually the hardware identifier. As expected, this ASID information
  444.         record is the part of <emphasis>as_t</emphasis> structure.</para>
  445.  
  446.         <para>Due to the hardware limitations, hardware ASID has limited
  447.         length from 8 bits on ia64 to 24 bits on mips32, which makes it
  448.         impossible to use it as unique address space identifier for all tasks
  449.         running in the system. In such situations special ASID stealing
  450.         algoritm is used, which takes ASID from inactive task and assigns it
  451.         to the active task.</para>
  452.  
  453.         <para><classname>ASID stealing algoritm here.</classname></para>
  454.       </section>
  455.     </section>
  456.  
  457.     <section>
  458.       <title>Virtual address translation</title>
  459.  
  460.       <section id="paging">
  461.         <title>Paging</title>
  462.  
  463.         <section>
  464.           <title>Introduction</title>
  465.  
  466.           <para>Virtual memory is usually using paged memory model, where
  467.           virtual memory address space is divided into the
  468.           <emphasis>pages</emphasis> (usually having size 4096 bytes) and
  469.           physical memory is divided into the frames (same sized as a page, of
  470.           course). Each page may be mapped to some frame and then, upon memory
  471.           access to the virtual address, CPU performs <emphasis>address
  472.           translation</emphasis> during the instruction execution.
  473.           Non-existing mapping generates page fault exception, calling kernel
  474.           exception handler, thus allowing kernel to manipulate rules of
  475.           memory access. Information for pages mapping is stored by kernel in
  476.           the <link linkend="page_tables">page tables</link></para>
  477.  
  478.           <para>The majority of the architectures use multi-level page tables,
  479.           which means need to access physical memory several times before
  480.           getting physical address. This fact would make serios performance
  481.           overhead in virtual memory management. To avoid this <link
  482.           linkend="tlb">Traslation Lookaside Buffer (TLB)</link> is
  483.           used.</para>
  484.  
  485.           <para>HelenOS kernel has two different approaches to the paging
  486.           implementation: <emphasis>4 level page tables</emphasis> and
  487.           <emphasis>global hash table</emphasis>, which are accessible via
  488.           generic paging abstraction layer. Such different functionality was
  489.           caused by the major architectural differences between supported
  490.           platforms. This abstraction is implemented with help of the global
  491.           structure of pointers to basic mapping functions
  492.           <emphasis>page_mapping_operations</emphasis>. To achieve different
  493.           functionality of page tables, corresponding layer must implement
  494.           functions, declared in
  495.           <emphasis>page_mapping_operations</emphasis></para>
  496.  
  497.           <para>Thanks to the abstract paging interface, there was a place
  498.           left for more paging implementations (besides already implemented
  499.           hieararchical page tables and hash table), for example B-Tree based
  500.           page tables.</para>
  501.         </section>
  502.  
  503.         <section>
  504.           <title>Hierarchical 4-level page tables</title>
  505.  
  506.           <para>Hierarchical 4-level page tables are the generalization of the
  507.           hardware capabilities of most architectures. Each address space has
  508.           its own page tables.<itemizedlist>
  509.               <listitem>
  510.                  ia32 uses 2-level page tables, with full hardware support.
  511.               </listitem>
  512.  
  513.               <listitem>
  514.                  amd64 uses 4-level page tables, also coming with full hardware support.
  515.               </listitem>
  516.  
  517.               <listitem>
  518.                  mips and ppc32 have 2-level tables, software simulated support.
  519.               </listitem>
  520.             </itemizedlist></para>
  521.         </section>
  522.  
  523.         <section>
  524.           <title>Global hash table</title>
  525.  
  526.           <para>Implementation of the global hash table was encouraged by the
  527.           ia64 architecture support. One of the major differences between
  528.           global hash table and hierarchical tables is that global hash table
  529.           exists only once in the system and the hierarchical tables are
  530.           maintained per address space.</para>
  531.  
  532.           <para>Thus, hash table contains information about all address spaces
  533.           mappings in the system, so, the hash of an entry must contain
  534.           information of both address space pointer or id and the virtual
  535.           address of the page. Generic hash table implementation assumes that
  536.           the addresses of the pointers to the address spaces are likely to be
  537.           on the close addresses, so it uses least significant bits for hash;
  538.           also it assumes that the virtual page addresses have roughly the
  539.           same probability of occurring, so the least significant bits of VPN
  540.           compose the hash index.</para>
  541.  
  542.           <para>Collision chains ...</para>
  543.         </section>
  544.       </section>
  545.  
  546.       <section id="tlb">
  547.         <title>Translation Lookaside buffer</title>
  548.  
  549.         <para>Due to the extensive overhead during the page mapping lookup in
  550.         the page tables, all architectures has fast assotiative cache memory
  551.         built-in CPU. This memory called TLB stores recently used page table
  552.         entries.</para>
  553.  
  554.         <section id="tlb_shootdown">
  555.           <title>TLB consistency. TLB shootdown algorithm.</title>
  556.  
  557.           <para>Operating system is responsible for keeping TLB consistent by
  558.           invalidating the contents of TLB, whenever there is some change in
  559.           page tables. Those changes may occur when page or group of pages
  560.           were unmapped, mapping is changed or system switching active address
  561.           space to schedule a new system task. Moreover, this invalidation
  562.           operation must be done an all system CPUs because each CPU has its
  563.           own independent TLB cache. Thus maintaining TLB consistency on SMP
  564.           configuration as not as trivial task as it looks on the first
  565.           glance. Naive solution would assume that is the CPU which wants to
  566.           invalidate TLB will invalidate TLB caches on other CPUs. It is not
  567.           possible on the most of the architectures, because of the simple
  568.           fact - flushing TLB is allowed only on the local CPU and there is no
  569.           possibility to access other CPUs' TLB caches, thus invalidate TLB
  570.          remotely.</para>
  571.  
  572.          <para>Technique of remote invalidation of TLB entries is called "TLB
  573.          shootdown". HelenOS uses a variation of the algorithm described by
  574.          D. Black et al., "Translation Lookaside Buffer Consistency: A
  575.          Software Approach," Proc. Third Int'l Conf. Architectural Support
  576.           for Programming Languages and Operating Systems, 1989, pp.
  577.           113-122.</para>
  578.  
  579.           <para>As the situation demands, you will want partitial invalidation
  580.           of TLB caches. In case of simple memory mapping change it is
  581.           necessary to invalidate only one or more adjacent pages. In case if
  582.           the architecture is aware of ASIDs, when kernel needs to dump some
  583.           ASID to use by another task, it invalidates only entries from this
  584.           particular address space. Final option of the TLB invalidation is
  585.           the complete TLB cache invalidation, which is the operation that
  586.           flushes all entries in TLB.</para>
  587.  
  588.           <para>TLB shootdown is performed in two phases.</para>
  589.  
  590.           <formalpara>
  591.             <title>Phase 1.</title>
  592.  
  593.             <para>First, initiator locks a global TLB spinlock, then request
  594.             is being put to the local request cache of every other CPU in the
  595.             system protected by its spinlock. In case the cache is full, all
  596.             requests in the cache are replaced by one request, indicating
  597.             global TLB flush. Then the initiator thread sends an IPI message
  598.             indicating the TLB shootdown request to the rest of the CPUs and
  599.             waits actively until all CPUs confirm TLB invalidating action
  600.             execution by setting up a special flag. After setting this flag
  601.             this thread is blocked on the TLB spinlock, held by the
  602.             initiator.</para>
  603.           </formalpara>
  604.  
  605.           <formalpara>
  606.             <title>Phase 2.</title>
  607.  
  608.             <para>All CPUs are waiting on the TLB spinlock to execute TLB
  609.             invalidation action and have indicated their intention to the
  610.             initiator. Initiator continues, cleaning up its TLB and releasing
  611.             the global TLB spinlock. After this all other CPUs gain and
  612.             immidiately release TLB spinlock and perform TLB invalidation
  613.             actions.</para>
  614.           </formalpara>
  615.         </section>
  616.       </section>
  617.     </section>
  618.   </section>
  619. </chapter>