Subversion Repositories HelenOS-doc

Rev

Rev 65 | Rev 67 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. <?xml version="1.0" encoding="UTF-8"?>
  2. <chapter id="mm">
  3.   <?dbhtml filename="mm.html"?>
  4.  
  5.   <title>Memory management</title>
  6.  
  7.   <section>
  8.     <title>Virtual memory management</title>
  9.  
  10.     <section>
  11.       <title>Introduction</title>
  12.  
  13.       <para>Virtual memory is a special memory management technique, used by
  14.       kernel to achieve a bunch of mission critical goals. <itemizedlist>
  15.           <listitem>
  16.              Isolate each task from other tasks that are running on the system at the same time.
  17.           </listitem>
  18.  
  19.           <listitem>
  20.              Allow to allocate more memory, than is actual physical memory size of the machine.
  21.           </listitem>
  22.  
  23.           <listitem>
  24.              Allowing, in general, to load and execute two programs that are linked on the same address without complicated relocations.
  25.           </listitem>
  26.         </itemizedlist></para>
  27.  
  28.       <para><!--
  29.                 <para>
  30.                         Address spaces. Address space area (B+ tree). Only for uspace. Set of syscalls (shrink/extend etc).
  31.                         Special address space area type - device - prohibits shrink/extend syscalls to call on it.
  32.                         Address space has link to mapping tables (hierarchical - per Address space, hash - global tables).
  33.                 </para>
  34.  
  35. --></para>
  36.     </section>
  37.  
  38.     <section>
  39.       <title>Address spaces</title>
  40.  
  41.       <section>
  42.         <title>Address space areas</title>
  43.  
  44.         <para>Each address space consists of mutually disjunctive continuous
  45.         address space areas. Address space area is precisely defined by its
  46.         base address and the number of frames/pages is contains.</para>
  47.  
  48.         <para>Address space area , that define behaviour and permissions on
  49.         the particular area. <itemizedlist>
  50.             <listitem>
  51.                
  52.  
  53.               <emphasis>AS_AREA_READ</emphasis>
  54.  
  55.                flag indicates reading permission.
  56.             </listitem>
  57.  
  58.             <listitem>
  59.                
  60.  
  61.               <emphasis>AS_AREA_WRITE</emphasis>
  62.  
  63.                flag indicates writing permission.
  64.             </listitem>
  65.  
  66.             <listitem>
  67.                
  68.  
  69.               <emphasis>AS_AREA_EXEC</emphasis>
  70.  
  71.                flag indicates code execution permission. Some architectures do not support execution persmission restriction. In this case this flag has no effect.
  72.             </listitem>
  73.  
  74.             <listitem>
  75.                
  76.  
  77.               <emphasis>AS_AREA_DEVICE</emphasis>
  78.  
  79.                marks area as mapped to the device memory.
  80.             </listitem>
  81.           </itemizedlist></para>
  82.  
  83.         <para>Kernel provides possibility tasks create/expand/shrink/share its
  84.         address space via the set of syscalls.</para>
  85.       </section>
  86.  
  87.       <section>
  88.         <title>Address Space ID (ASID)</title>
  89.  
  90.         <para>When switching to the different task, kernel also require to
  91.         switch mappings to the different address space. In case TLB cannot
  92.         distinguish address space mappings, all mapping information in TLB
  93.         from the old address space must be flushed, which can create certain
  94.         uncessary overhead during the task switching. To avoid this, some
  95.         architectures have capability to segregate different address spaces on
  96.         hardware level introducing the address space identifier as a part of
  97.         TLB record, telling the virtual address space translation unit to
  98.         which address space this record is applicable.</para>
  99.  
  100.         <para>HelenOS kernel can take advantage of this hardware supported
  101.         identifier by having an ASID abstraction which is somehow related to
  102.         the corresponding architecture identifier. I.e. on ia64 kernel ASID is
  103.         derived from RID (region identifier) and on the mips32 kernel ASID is
  104.         actually the hardware identifier. As expected, this ASID information
  105.         record is the part of <emphasis>as_t</emphasis> structure.</para>
  106.  
  107.         <para>Due to the hardware limitations, hardware ASID has limited
  108.         length from 8 bits on ia64 to 24 bits on mips32, which makes it
  109.         impossible to use it as unique address space identifier for all tasks
  110.         running in the system. In such situations special ASID stealing
  111.         algoritm is used, which takes ASID from inactive task and assigns it
  112.         to the active task.<classname></classname></para>
  113.       </section>
  114.     </section>
  115.  
  116.     <section>
  117.       <title>Virtual address translation</title>
  118.  
  119.       <section id="pagING">
  120.         <title>Paging</title>
  121.  
  122.         <section>
  123.           <title>Introduction</title>
  124.  
  125.           <para>Virtual memory is usually using paged memory model, where
  126.           virtual memory address space is divided into the
  127.           <emphasis>pages</emphasis> (usually having size 4096 bytes) and
  128.           physical memory is divided into the frames (same sized as a page, of
  129.           course). Each page may be mapped to some frame and then, upon memory
  130.           access to the virtual address, CPU performs <emphasis>address
  131.           translation</emphasis> during the instruction execution.
  132.           Non-existing mapping generates page fault exception, calling kernel
  133.           exception handler, thus allowing kernel to manipulate rules of
  134.           memory access. Information for pages mapping is stored by kernel in
  135.           the <link linkend="page_tables">page tables</link></para>
  136.  
  137.           <para>The majority of the architectures use multi-level page tables,
  138.           which means need to access physical memory several times before
  139.           getting physical address. This fact would make serios performance
  140.           overhead in virtual memory management. To avoid this <link
  141.           linkend="tlb">Traslation Lookaside Buffer (TLB)</link> is
  142.           used.</para>
  143.  
  144.           <para>HelenOS kernel has two different approaches to the paging
  145.           implementation: <emphasis>4 level page tables</emphasis> and
  146.           <emphasis>global hash table</emphasis>, which are accessible via
  147.           generic paging abstraction layer. Such different functionality was
  148.           caused by the major architectural differences between supported
  149.           platforms. This abstraction is implemented with help of the global
  150.           structure of pointers to basic mapping functions
  151.           <emphasis>page_mapping_operations</emphasis>. To achieve different
  152.           functionality of page tables, corresponding layer must implement
  153.           functions, declared in
  154.           <emphasis>page_mapping_operations</emphasis></para>
  155.  
  156.           <para>Thanks to the abstract paging interface, there was a place
  157.           left for more paging implementations (besides already implemented
  158.           hieararchical page tables and hash table), for example B-Tree based
  159.           page tables.</para>
  160.         </section>
  161.  
  162.         <section>
  163.           <title>Hierarchical 4-level page tables</title>
  164.  
  165.           <para>Hierarchical 4-level page tables are the generalization of the
  166.           hardware capabilities of most architectures. Each address space has
  167.           its own page tables.<itemizedlist>
  168.               <listitem>
  169.                  ia32 uses 2-level page tables, with full hardware support.
  170.               </listitem>
  171.  
  172.               <listitem>
  173.                  amd64 uses 4-level page tables, also coming with full hardware support.
  174.               </listitem>
  175.  
  176.               <listitem>
  177.                  mips and ppc32 have 2-level tables, software simulated support.
  178.               </listitem>
  179.             </itemizedlist></para>
  180.         </section>
  181.  
  182.         <section>
  183.           <title>Global hash table</title>
  184.  
  185.           <para>Implementation of the global hash table was encouraged by the
  186.           ia64 architecture support. One of the major differences between
  187.           global hash table and hierarchical tables is that global hash table
  188.           exists only once in the system and the hierarchical tables are
  189.           maintained per address space. </para>
  190.  
  191.           <para>Thus, hash table contains information about all address spaces
  192.           mappings in the system, so, the hash of an entry must contain
  193.           information of both address space pointer or id and the virtual
  194.           address of the page. Generic hash table implementation assumes that
  195.           the addresses of the pointers to the address spaces are likely to be
  196.           on the close addresses, so it uses least significant bits for hash;
  197.           also it assumes that the virtual page addresses have roughly the
  198.           same probability of occurring, so the least significant bits of VPN
  199.           compose the hash index.</para>
  200.  
  201.           <para>- global page hash table: existuje jen jedna v celem systemu
  202.           (vyuziva ji ia64), pozn. ia64 ma zatim vypnuty VHPT. Pouziva se
  203.           genericke hash table s oddelenymi collision chains. ASID support is
  204.           required to use global hash tables.</para>
  205.         </section>
  206.       </section>
  207.  
  208.       <section id="tlb">
  209.         <title>Translation Lookaside buffer</title>
  210.  
  211.         <para>Due to the extensive overhead during the page mapping lookup in
  212.         the page tables, all architectures has fast assotiative cache memory
  213.         built-in CPU. This memory called TLB stores recently used page table
  214.         entries.</para>
  215.  
  216.         <section id="tlb_shootdown">
  217.           <title>TLB consistency. TLB shootdown algorithm.</title>
  218.  
  219.           <para>Operating system is responsible for keeping TLB consistent by
  220.           invalidating the contents of TLB, whenever there is some change in
  221.           page tables. Those changes may occur when page or group of pages
  222.           were unmapped, mapping is changed or system switching active address
  223.           space to schedule a new system task. Moreover, this invalidation
  224.           operation must be done an all system CPUs because each CPU has its
  225.           own independent TLB cache. Thus maintaining TLB consistency on SMP
  226.           configuration as not as trivial task as it looks on the first
  227.           glance. Naive solution would assume that is the CPU which wants to
  228.           invalidate TLB will invalidate TLB caches on other CPUs. It is not
  229.           possible on the most of the architectures, because of the simple
  230.           fact - flushing TLB is allowed only on the local CPU and there is no
  231.           possibility to access other CPUs' TLB caches, thus invalidate TLB
  232.          remotely.</para>
  233.  
  234.          <para>Technique of remote invalidation of TLB entries is called "TLB
  235.          shootdown". HelenOS uses a variation of the algorithm described by
  236.          D. Black et al., "Translation Lookaside Buffer Consistency: A
  237.          Software Approach," Proc. Third Int'l Conf. Architectural Support
  238.           for Programming Languages and Operating Systems, 1989, pp.
  239.           113-122.</para>
  240.  
  241.           <para>As the situation demands, you will want partitial invalidation
  242.           of TLB caches. In case of simple memory mapping change it is
  243.           necessary to invalidate only one or more adjacent pages. In case if
  244.           the architecture is aware of ASIDs, when kernel needs to dump some
  245.           ASID to use by another task, it invalidates only entries from this
  246.           particular address space. Final option of the TLB invalidation is
  247.           the complete TLB cache invalidation, which is the operation that
  248.           flushes all entries in TLB.</para>
  249.  
  250.           <para>TLB shootdown is performed in two phases.</para>
  251.  
  252.           <formalpara>
  253.             <title>Phase 1.</title>
  254.  
  255.             <para>First, initiator locks a global TLB spinlock, then request
  256.             is being put to the local request cache of every other CPU in the
  257.             system protected by its spinlock. In case the cache is full, all
  258.             requests in the cache are replaced by one request, indicating
  259.             global TLB flush. Then the initiator thread sends an IPI message
  260.             indicating the TLB shootdown request to the rest of the CPUs and
  261.             waits actively until all CPUs confirm TLB invalidating action
  262.             execution by setting up a special flag. After setting this flag
  263.             this thread is blocked on the TLB spinlock, held by the
  264.             initiator.</para>
  265.           </formalpara>
  266.  
  267.           <formalpara>
  268.             <title>Phase 2.</title>
  269.  
  270.             <para>All CPUs are waiting on the TLB spinlock to execute TLB
  271.             invalidation action and have indicated their intention to the
  272.             initiator. Initiator continues, cleaning up its TLB and releasing
  273.             the global TLB spinlock. After this all other CPUs gain and
  274.             immidiately release TLB spinlock and perform TLB invalidation
  275.             actions.</para>
  276.           </formalpara>
  277.         </section>
  278.       </section>
  279.     </section>
  280.  
  281.     <section>
  282.       <title>---</title>
  283.  
  284.       <para>At the moment HelenOS does not support swapping.</para>
  285.  
  286.       <para>- pouzivame vypadky stranky k alokaci ramcu on-demand v ramci
  287.       as_area - na architekturach, ktere to podporuji, podporujeme non-exec
  288.       stranky</para>
  289.     </section>
  290.   </section>
  291.  
  292.   <section>
  293.     <title>Physical memory management</title>
  294.  
  295.     <section id="zones_and_frames">
  296.       <title>Zones and frames</title>
  297.  
  298.       <para>On some architectures not whole physical memory is available for
  299.       conventional usage. This limitations require from kernel to maintain a
  300.       table of available and unavailable ranges of physical memory addresses.
  301.       Main idea of zones is in creating memory zone entity, that is a
  302.       continuous chunk of memory available for allocation. If some chunk is
  303.       not available, we simply do not put it in any zone.</para>
  304.  
  305.       <para>Zone is also serves for informational purposes, containing
  306.       information about number of free and busy frames. Physical memory
  307.       allocation is also done inside the certain zone. Allocation of zone
  308.       frame must be organized by the <link linkend="frame_allocator">frame
  309.       allocator</link> associated with the zone.</para>
  310.  
  311.       <para>Some of the architectures (mips32, ppc32) have only one zone, that
  312.       covers whole physical memory, and the others (like ia32) may have
  313.       multiple zones. Information about zones on current machine is stored in
  314.       BIOS hardware tables or can be hardcoded into kernel during compile
  315.       time.</para>
  316.     </section>
  317.  
  318.     <section id="frame_allocator">
  319.       <title>Frame allocator</title>
  320.  
  321.       <figure>
  322.         <mediaobject id="frame_alloc">
  323.           <imageobject role="html">
  324.             <imagedata fileref="images/frame_alloc.png" format="PNG" />
  325.           </imageobject>
  326.  
  327.           <imageobject role="fop">
  328.             <imagedata fileref="images.vector/frame_alloc.svg" format="SVG" />
  329.           </imageobject>
  330.         </mediaobject>
  331.  
  332.         <title>Frame allocator scheme.</title>
  333.       </figure>
  334.  
  335.       <formalpara>
  336.         <title>Overview</title>
  337.  
  338.         <para>Frame allocator provides physical memory allocation for the
  339.         kernel. Because of zonal organization of physical memory, frame
  340.         allocator is always working in context of some zone, thus making
  341.         impossible to allocate a piece of memory, which lays in different
  342.         zone, which cannot happen, because two adjacent zones can be merged
  343.         into one. Frame allocator is also being responsible to update
  344.         information on the number of free/busy frames in zone. Physical memory
  345.         allocation inside one <link linkend="zones_and_frames">memory
  346.         zone</link> is being handled by an instance of <link
  347.         linkend="buddy_allocator">buddy allocator</link> tailored to allocate
  348.         blocks of physical memory frames.</para>
  349.       </formalpara>
  350.  
  351.       <formalpara>
  352.         <title>Allocation / deallocation</title>
  353.  
  354.         <para>Upon allocation request, frame allocator tries to find first
  355.         zone, that can satisfy the incoming request (has required amount of
  356.         free frames to allocate). During deallocation, frame allocator needs
  357.         to find zone, that contain deallocated frame. This approach could
  358.         bring up two potential problems: <itemizedlist>
  359.             <listitem>
  360.                Linear search of zones does not any good to performance, but number of zones is not expected to be high. And if yes, list of zones can be replaced with more time-efficient B-tree.
  361.             </listitem>
  362.  
  363.             <listitem>
  364.                Quickly find out if zone contains required number of frames to allocate and if this chunk of memory is properly aligned. This issue is perfectly solved bu the buddy allocator.
  365.             </listitem>
  366.           </itemizedlist></para>
  367.       </formalpara>
  368.     </section>
  369.  
  370.     <section id="buddy_allocator">
  371.       <title>Buddy allocator</title>
  372.  
  373.       <section>
  374.         <title>Overview</title>
  375.  
  376.         <figure>
  377.           <mediaobject id="buddy_alloc">
  378.             <imageobject role="html">
  379.               <imagedata fileref="images/buddy_alloc.png" format="PNG" />
  380.             </imageobject>
  381.  
  382.             <imageobject role="fop">
  383.               <imagedata fileref="images.vector/buddy_alloc.svg" format="SVG" />
  384.             </imageobject>
  385.           </mediaobject>
  386.  
  387.           <title>Buddy system scheme.</title>
  388.         </figure>
  389.  
  390.         <para>In the buddy allocator, the memory is broken down into
  391.         power-of-two sized naturally aligned blocks. These blocks are
  392.         organized in an array of lists, in which the list with index i
  393.         contains all unallocated blocks of size
  394.         <mathphrase>2<superscript>i</superscript></mathphrase>. The index i is
  395.         called the order of block. Should there be two adjacent equally sized
  396.         blocks in the list i<mathphrase />(i.e. buddies), the buddy allocator
  397.         would coalesce them and put the resulting block in list <mathphrase>i
  398.         + 1</mathphrase>, provided that the resulting block would be naturally
  399.         aligned. Similarily, when the allocator is asked to allocate a block
  400.         of size <mathphrase>2<superscript>i</superscript></mathphrase>, it
  401.         first tries to satisfy the request from the list with index i. If the
  402.         request cannot be satisfied (i.e. the list i is empty), the buddy
  403.         allocator will try to allocate and split a larger block from the list
  404.         with index i + 1. Both of these algorithms are recursive. The
  405.         recursion ends either when there are no blocks to coalesce in the
  406.         former case or when there are no blocks that can be split in the
  407.         latter case.</para>
  408.  
  409.         <!--graphic fileref="images/mm1.png" format="EPS" /-->
  410.  
  411.         <para>This approach greatly reduces external fragmentation of memory
  412.         and helps in allocating bigger continuous blocks of memory aligned to
  413.         their size. On the other hand, the buddy allocator suffers increased
  414.         internal fragmentation of memory and is not suitable for general
  415.         kernel allocations. This purpose is better addressed by the <link
  416.         linkend="slab">slab allocator</link>.</para>
  417.       </section>
  418.  
  419.       <section>
  420.         <title>Implementation</title>
  421.  
  422.         <para>The buddy allocator is, in fact, an abstract framework wich can
  423.         be easily specialized to serve one particular task. It knows nothing
  424.         about the nature of memory it helps to allocate. In order to beat the
  425.         lack of this knowledge, the buddy allocator exports an interface that
  426.         each of its clients is required to implement. When supplied with an
  427.         implementation of this interface, the buddy allocator can use
  428.         specialized external functions to find a buddy for a block, split and
  429.         coalesce blocks, manipulate block order and mark blocks busy or
  430.         available. For precise documentation of this interface, refer to
  431.         <emphasis>"HelenOS Generic Kernel Reference Manual"</emphasis>.</para>
  432.  
  433.         <formalpara>
  434.           <title>Data organization</title>
  435.  
  436.           <para>Each entity allocable by the buddy allocator is required to
  437.           contain space for storing block order number and a link variable
  438.           used to interconnect blocks within the same order.</para>
  439.  
  440.           <para>Whatever entities are allocated by the buddy allocator, the
  441.           first entity within a block is used to represent the entire block.
  442.           The first entity keeps the order of the whole block. Other entities
  443.           within the block are assigned the magic value
  444.           <constant>BUDDY_INNER_BLOCK</constant>. This is especially important
  445.           for effective identification of buddies in a one-dimensional array
  446.           because the entity that represents a potential buddy cannot be
  447.           associated with <constant>BUDDY_INNER_BLOCK</constant> (i.e. if it
  448.           is associated with <constant>BUDDY_INNER_BLOCK</constant> then it is
  449.           not a buddy).</para>
  450.  
  451.           <para>The buddy allocator always uses the first frame to represent
  452.           the frame block. This frame contains <varname>buddy_order</varname>
  453.           variable to provide information about the block size it actually
  454.           represents (
  455.           <mathphrase>2<superscript>buddy_order</superscript></mathphrase>
  456.           frames block). Other frames in block have this value set to magic
  457.           <constant>BUDDY_INNER_BLOCK</constant> that is much greater than
  458.           buddy <varname>max_order</varname> value.</para>
  459.  
  460.           <para>Each <varname>frame_t</varname> also contains pointer member
  461.           to hold frame structure in the linked list inside one order.</para>
  462.         </formalpara>
  463.  
  464.         <formalpara>
  465.           <title>Allocation algorithm</title>
  466.  
  467.           <para>Upon <mathphrase>2<superscript>i</superscript></mathphrase>
  468.           frames block allocation request, allocator checks if there are any
  469.           blocks available at the order list <varname>i</varname>. If yes,
  470.           removes block from order list and returns its address. If no,
  471.           recursively allocates
  472.           <mathphrase>2<superscript>i+1</superscript></mathphrase> frame
  473.           block, splits it into two
  474.           <mathphrase>2<superscript>i</superscript></mathphrase> frame blocks.
  475.           Then adds one of the blocks to the <varname>i</varname> order list
  476.           and returns address of another.</para>
  477.         </formalpara>
  478.  
  479.         <formalpara>
  480.           <title>Deallocation algorithm</title>
  481.  
  482.           <para>Check if block has so called buddy (another free
  483.           <mathphrase>2<superscript>i</superscript></mathphrase> frame block
  484.           that can be linked with freed block into the
  485.           <mathphrase>2<superscript>i+1</superscript></mathphrase> block).
  486.           Technically, buddy is a odd/even block for even/odd block
  487.           respectively. Plus we can put an extra requirement, that resulting
  488.           block must be aligned to its size. This requirement guarantees
  489.           natural block alignment for the blocks coming out the allocation
  490.           system.</para>
  491.  
  492.           <para>Using direct pointer arithmetics,
  493.           <varname>frame_t::ref_count</varname> and
  494.           <varname>frame_t::buddy_order</varname> variables, finding buddy is
  495.           done at constant time.</para>
  496.         </formalpara>
  497.       </section>
  498.     </section>
  499.  
  500.     <section id="slab">
  501.       <title>Slab allocator</title>
  502.  
  503.       <section>
  504.         <title>Overview</title>
  505.  
  506.         <para><termdef><glossterm>Slab</glossterm> represents a contiguous
  507.         piece of memory, usually made of several physically contiguous
  508.         pages.</termdef> <termdef><glossterm>Slab cache</glossterm> consists
  509.         of one or more slabs.</termdef></para>
  510.  
  511.         <para>The majority of memory allocation requests in the kernel are for
  512.         small, frequently used data structures. For this purpose the slab
  513.         allocator is a perfect solution. The basic idea behind the slab
  514.         allocator is to have lists of commonly used objects available packed
  515.         into pages. This avoids the overhead of allocating and destroying
  516.         commonly used types of objects such threads, virtual memory structures
  517.         etc. Also due to the exact allocated size matching, slab allocation
  518.         completely eliminates internal fragmentation issue.</para>
  519.       </section>
  520.  
  521.       <section>
  522.         <title>Implementation</title>
  523.  
  524.         <figure>
  525.           <mediaobject id="slab_alloc">
  526.             <imageobject role="html">
  527.               <imagedata fileref="images/slab_alloc.png" format="PNG" />
  528.             </imageobject>
  529.  
  530.             <imageobject role="fop">
  531.               <imagedata fileref="images.vector/slab_alloc.svg" format="SVG" />
  532.             </imageobject>
  533.           </mediaobject>
  534.  
  535.           <title>Slab allocator scheme.</title>
  536.         </figure>
  537.  
  538.         <para>The slab allocator is closely modelled after <ulink
  539.         url="http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/">
  540.         OpenSolaris slab allocator by Jeff Bonwick and Jonathan Adams </ulink>
  541.         with the following exceptions: <itemizedlist>
  542.             <listitem>
  543.                empty slabs are deallocated immediately (in Linux they are kept in linked list, in Solaris ???)
  544.             </listitem>
  545.  
  546.             <listitem>
  547.                empty magazines are deallocated when not needed (in Solaris they are held in linked list in slab cache)
  548.             </listitem>
  549.           </itemizedlist> Following features are not currently supported but
  550.         would be easy to do: <itemizedlist>
  551.             <listitem>
  552.                - cache coloring
  553.             </listitem>
  554.  
  555.             <listitem>
  556.                - dynamic magazine grow (different magazine sizes are already supported, but we would need to adjust allocation strategy)
  557.             </listitem>
  558.           </itemizedlist></para>
  559.  
  560.         <section>
  561.           <title>Magazine layer</title>
  562.  
  563.           <para>Due to the extensive bottleneck on SMP architures, caused by
  564.           global slab locking mechanism, making processing of all slab
  565.           allocation requests serialized, a new layer was introduced to the
  566.           classic slab allocator design. Slab allocator was extended to
  567.           support per-CPU caches 'magazines' to achieve good SMP scaling.
  568.           <termdef>Slab SMP perfromance bottleneck was resolved by introducing
  569.           a per-CPU caching scheme called as <glossterm>magazine
  570.           layer</glossterm></termdef>.</para>
  571.  
  572.           <para>Magazine is a N-element cache of objects, so each magazine can
  573.           satisfy N allocations. Magazine behaves like a automatic weapon
  574.           magazine (LIFO, stack), so the allocation/deallocation become simple
  575.           push/pop pointer operation. Trick is that CPU does not access global
  576.           slab allocator data during the allocation from its magazine, thus
  577.           making possible parallel allocations between CPUs.</para>
  578.  
  579.           <para>Implementation also requires adding another feature as the
  580.           CPU-bound magazine is actually a pair of magazines to avoid
  581.           thrashing when during allocation/deallocatiion of 1 item at the
  582.           magazine size boundary. LIFO order is enforced, which should avoid
  583.           fragmentation as much as possible.</para>
  584.  
  585.           <para>Another important entity of magazine layer is the common full
  586.           magazine list (also called a depot), that stores full magazines that
  587.           may be used by any of the CPU magazine caches to reload active CPU
  588.           magazine. This list of magazines can be pre-filled with full
  589.           magazines during initialization, but in current implementation it is
  590.           filled during object deallocation, when CPU magazine becomes
  591.           full.</para>
  592.  
  593.           <para>Slab allocator control structures are allocated from special
  594.           slabs, that are marked by special flag, indicating that it should
  595.           not be used for slab magazine layer. This is done to avoid possible
  596.           infinite recursions and deadlock during conventional slab allocaiton
  597.           requests.</para>
  598.         </section>
  599.  
  600.         <section>
  601.           <title>Allocation/deallocation</title>
  602.  
  603.           <para>Every cache contains list of full slabs and list of partialy
  604.           full slabs. Empty slabs are immediately freed (thrashing will be
  605.           avoided because of magazines).</para>
  606.  
  607.           <para>The SLAB allocator allocates lots of space and does not free
  608.           it. When frame allocator fails to allocate the frame, it calls
  609.           slab_reclaim(). It tries 'light reclaim' first, then brutal reclaim.
  610.           The light reclaim releases slabs from cpu-shared magazine-list,
  611.           until at least 1 slab is deallocated in each cache (this algorithm
  612.           should probably change). The brutal reclaim removes all cached
  613.           objects, even from CPU-bound magazines.</para>
  614.  
  615.           <formalpara>
  616.             <title>Allocation</title>
  617.  
  618.             <para><emphasis>Step 1.</emphasis> When it comes to the allocation
  619.             request, slab allocator first of all checks availability of memory
  620.             in local CPU-bound magazine. If it is there, we would just "pop"
  621.             the CPU magazine and return the pointer to object.</para>
  622.  
  623.             <para><emphasis>Step 2.</emphasis> If the CPU-bound magazine is
  624.             empty, allocator will attempt to reload magazin, swapping it with
  625.             second CPU magazine and returns to the first step.</para>
  626.  
  627.             <para><emphasis>Step 3.</emphasis> Now we are in the situation
  628.             when both CPU-bound magazines are empty, which makes allocator to
  629.             access shared full-magazines depot to reload CPU-bound magazines.
  630.             If reload is succesful (meaning there are full magazines in depot)
  631.             algoritm continues at Step 1.</para>
  632.  
  633.             <para><emphasis>Step 4.</emphasis> Final step of the allocation.
  634.             In this step object is allocated from the conventional slab layer
  635.             and pointer is returned.</para>
  636.           </formalpara>
  637.  
  638.           <formalpara>
  639.             <title>Deallocation</title>
  640.  
  641.             <para><emphasis>Step 1.</emphasis> During deallocation request,
  642.             slab allocator will check if the local CPU-bound magazine is not
  643.             full. In this case we will just push the pointer to this
  644.             magazine.</para>
  645.  
  646.             <para><emphasis>Step 2.</emphasis> If the CPU-bound magazine is
  647.             full, allocator will attempt to reload magazin, swapping it with
  648.             second CPU magazine and returns to the first step.</para>
  649.  
  650.             <para><emphasis>Step 3.</emphasis> Now we are in the situation
  651.             when both CPU-bound magazines are full, which makes allocator to
  652.             access shared full-magazines depot to put one of the magazines to
  653.             the depot and creating new empty magazine. Algoritm continues at
  654.             Step 1.</para>
  655.           </formalpara>
  656.         </section>
  657.       </section>
  658.     </section>
  659.  
  660.     <!-- End of Physmem -->
  661.   </section>
  662.  
  663.   <section>
  664.     <title>Memory sharing</title>
  665.  
  666.     <para>Not implemented yet(?)</para>
  667.   </section>
  668. </chapter>