Subversion Repositories HelenOS-doc

Rev

Rev 37 | Rev 39 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. <?xml version="1.0" encoding="UTF-8"?>
  2. <chapter id="mm">
  3.   <?dbhtml filename="mm.html"?>
  4.  
  5.   <title>Memory management</title>
  6.  
  7.   <section>
  8.     <title>Virtual memory management</title>
  9.  
  10.     <section>
  11.       <title>Introduction</title>
  12.  
  13.       <para>Virtual memory is a special memory management technique, used by
  14.       kernel to achieve a bunch of mission critical goals. <itemizedlist>
  15.           <listitem>
  16.              Isolate each task from other tasks that are running on the system at the same time.
  17.           </listitem>
  18.  
  19.           <listitem>
  20.              Allow to allocate more memory, than is actual physical memory size of the machine.
  21.           </listitem>
  22.  
  23.           <listitem>
  24.              Allowing, in general, to load and execute two programs that are linked on the same address without complicated relocations.
  25.           </listitem>
  26.         </itemizedlist></para>
  27.    
  28.    
  29. <para><!--
  30.  
  31.                 TLB shootdown ASID/ASID:PAGE/ALL.
  32.                 TLB shootdown requests can come in asynchroniously
  33.                 so there is a cache of TLB shootdown requests. Upon cache overflow TLB shootdown ALL is executed
  34.  
  35.  
  36.                 <para>
  37.                         Address spaces. Address space area (B+ tree). Only for uspace. Set of syscalls (shrink/extend etc).
  38.                         Special address space area type - device - prohibits shrink/extend syscalls to call on it.
  39.                         Address space has link to mapping tables (hierarchical - per Address space, hash - global tables).
  40.                 </para>
  41.  
  42. --></para>
  43.     </section>
  44.  
  45.     <section>
  46.        
  47.  
  48.       <title>Paging</title>
  49.  
  50.       <para>Virtual memory is usually using paged memory model, where virtual
  51.       memory address space is divided into the <emphasis>pages</emphasis>
  52.       (usually having size 4096 bytes) and physical memory is divided into the
  53.       frames (same sized as a page, of course). Each page may be mapped to some
  54.       frame and then, upon memory access to the virtual address, CPU performs
  55.       <emphasis>address translation</emphasis> during the instruction
  56.       execution. Non-existing mapping generates page fault exception, calling
  57.       kernel exception handler, thus allowing kernel to manipulate rules of
  58.       memory access. Information for pages mapping is stored by kernel in the
  59.       <link linkend="page_tables">page tables</link></para>
  60.  
  61.        
  62.  
  63.       <para>The majority of the architectures use multi-level page tables,
  64.       which means need to access physical memory several times before getting
  65.       physical address. This fact would make serios performance overhead in
  66.       virtual memory management. To avoid this <link linkend="tlb">Traslation
  67.       Lookaside Buffer (TLB)</link> is used.</para>
  68.  
  69.        
  70.  
  71.       <para>At the moment HelenOS does not support swapping.</para>
  72.  
  73.       <para>- pouzivame vypadky stranky k alokaci ramcu on-demand v ramci as_area - na architekturach, ktere to podporuji, podporujeme non-exec stranky </para>
  74.     </section>
  75.  
  76.     <section>
  77.       <title>Address spaces</title>
  78.  
  79.       <section>
  80.         <title>Address spaces and areas</title>
  81.  
  82.         <para>
  83.  
  84.     - adresovy prostor se sklada z tzv. address space areas
  85.         usporadanych v B+stromu; tyto areas popisuji vyuzivane casti
  86.         adresoveho prostoru patrici do user address space. Kazda cast je dana
  87.         svoji bazovou adresou, velikosti a flagy (rwx/dd).
  88.  
  89.     </para>
  90.  
  91.         <para>- uzivatelske thready maji moznost manipulovat se svym adresovym
  92.         prostorem (vytvaret/resizovat/sdilet) as_areas pomoci syscallu</para>
  93.       </section>
  94.  
  95.       <section>
  96.         <title>Address Space ID (ASID)</title>
  97.  
  98.         <para>- nektery hardware umoznuje rozlisit ruzne adresove prostory od
  99.         sebe (cilem je maximalizovat vyuziti TLB); dela to tak, ze s kazdou
  100.         polozkou TLB/strankovacich tabulek sdruzi identifikator adresoveho
  101.         prostoru (ASID, RID, ppc32 ???). Tyto id mivaji ruznou sirku: 8-bitu
  102.         az 24-bitu (kolik ma ppc32?)</para>
  103.  
  104.         <para>- kernel tomu rozumi a sam pouziva abstrakci ASIDu (na ia64 to
  105.         je napr. cislo odvozene od RIDu, na mips32 to je ASID samotny);
  106.         existence ASIDu je nutnou podminkou pouziti _global_ page hash table
  107.         mechanismu.</para>
  108.  
  109.         <para>- na vsech arch. plati, ze asidu je mnohem mene, nez teoreticky
  110.         pocet soucasne bezicich tasku ~ adresovych prostoru, takze je
  111.         implementovan mechanismus, ktery umoznuje jednomu adresovemu prostoru
  112.         ASID odebrat a pridelit ho jinemu</para>
  113.  
  114.         <para>- vztah task ~ adresovy prostor: teoreticky existuje moznost, ze
  115.         je adresovy prostor sdilen vice tasky, avsak tuto moznost nepouzivame
  116.         a neni ani nijak osetrena. Tim padem plati, ze kazdy task ma vlastni
  117.         adresovy prostor</para>
  118.       </section>
  119.      
  120.      
  121.      
  122.     </section>
  123.  
  124.     <section>
  125.       <title>Virtual address translation</title>
  126.  
  127.       <section id="page_tables">
  128.         <title>Page tables</title>
  129.  
  130.         <para>HelenOS kernel has two different approaches to the paging
  131.         implementation: <emphasis>4 level page tables</emphasis> and
  132.         <emphasis>global hash tables</emphasis>, which are accessible via
  133.         generic paging abstraction layer. This division was caused by the
  134.         major architectural differences between different platforms.</para>
  135.  
  136.         <formalpara>
  137.           <title>4-level page tables</title>
  138.  
  139.           <para>4-level page tables are the generalization of the hardware
  140.           capabilities of the certain platforms. <itemizedlist>
  141.               <listitem>
  142.                  ia32 uses 2-level page tables, with full hardware support.
  143.               </listitem>
  144.  
  145.               <listitem>
  146.                  amd64 uses 4-level page tables, also coming with full hardware support.
  147.               </listitem>
  148.  
  149.               <listitem>
  150.                  mips and ppc32 have 2-level tables, software simulated support.
  151.               </listitem>
  152.             </itemizedlist></para>
  153.         </formalpara>
  154.  
  155.         <formalpara>
  156.           <title>Global hash tables</title>
  157.  
  158.           <para>- global page hash table: existuje jen jedna v celem systemu
  159.           (vyuziva ji ia64), pozn. ia64 ma zatim vypnuty VHPT. Pouziva se
  160.           genericke hash table s oddelenymi collision chains</para>
  161.         </formalpara>
  162.  
  163.         <para>Thanks to the abstract paging interface, there is possibility
  164.         left have more paging implementations, for example B-Tree page
  165.         tables.</para>
  166.       </section>
  167.  
  168.       <section id="tlb">
  169.         <title>Translation Lookaside buffer</title>
  170.  
  171.         <para>- TLB cachuji informace ve strankovacich tabulkach; alternativne
  172.         se lze na strankovaci tabulky (ci ruzne hw rozsireni [e.g. VHPT, ppc32
  173.         hw hash table]) divat jako na velke TLB</para>
  174.  
  175.         <para>- pri modifikaci mapovani nebo odstraneni mapovani ze
  176.         strankovacich tabulek je potreba zajistit konsistenci TLB a techto
  177.         tabulek; nutne delat na vsech CPU; na to mame zjednodusenou verzi TLB
  178.         shootdown mechanismu; je to variace na algoritmus popsany zde: D.
  179.         Black et al., "Translation Lookaside Buffer Consistency: A Software
  180.        Approach," Proc. Third Int'l Conf. Architectural Support for
  181.        Programming Languages and Operating Systems, 1989, pp. 113-122.</para>
  182.  
  183.        <para>- nutno poznamenat, ze existuji odlehcenejsi verze TLB shootdown
  184.        algoritmu</para>
  185.      </section>
  186.    </section>
  187.  </section>
  188.  
  189.  <!-- End of VM -->
  190.  
  191.  <section>
  192.    <!-- Phys mem -->
  193.  
  194.    <title>Physical memory management</title>
  195.  
  196.    <section id="zones_and_frames">
  197.      <title>Zones and frames</title>
  198.  
  199.      <para><!--graphic fileref="images/mm2.png" /--><!--graphic fileref="images/buddy_alloc.svg" format="SVG" /--></para>
  200.  
  201.      <para>On some architectures not whole physical memory is available for
  202.      conventional usage. This limitations require from kernel to maintain a
  203.      table of available and unavailable ranges of physical memory addresses.
  204.      Main idea of zones is in creating memory zone entity, that is a
  205.      continuous chunk of memory available for allocation. If some chunk is
  206.      not available, we simply do not put it in any zone.</para>
  207.  
  208.      <para>Zone is also serves for informational purposes, containing
  209.      information about number of free and busy frames. Physical memory
  210.      allocation is also done inside the certain zone. Allocation of zone
  211.      frame must be organized by the <link linkend="frame_allocator">frame
  212.      allocator</link> associated with the zone.</para>
  213.  
  214.      <para>Some of the architectures (mips32, ppc32) have only one zone, that
  215.      covers whole physical memory, and the others (like ia32) may have
  216.      multiple zones. Information about zones on current machine is stored in
  217.      BIOS hardware tables or can be hardcoded into kernel during compile
  218.      time.</para>
  219.    </section>
  220.  
  221.    <section id="frame_allocator">
  222.      <title>Frame allocator</title>
  223.  
  224.      <formalpara>
  225.        <title>Overview</title>
  226.  
  227.        <para>Frame allocator provides physical memory allocation for the
  228.        kernel. Because of zonal organization of physical memory, frame
  229.        allocator is always working in context of some zone, thus making
  230.        impossible to allocate a piece of memory, which lays in different
  231.        zone, which cannot happen, because two adjacent zones can be merged
  232.        into one. Frame allocator is also being responsible to update
  233.        information on the number of free/busy frames in zone. Physical memory
  234.        allocation inside one <link linkend="zones_and_frames">memory
  235.        zone</link> is being handled by an instance of <link
  236.        linkend="buddy_allocator">buddy allocator</link> tailored to allocate
  237.        blocks of physical memory frames.</para>
  238.      </formalpara>
  239.  
  240.      <formalpara>
  241.        <title>Allocation / deallocation</title>
  242.  
  243.        <para>Upon allocation request, frame allocator tries to find first
  244.        zone, that can satisfy the incoming request (has required amount of
  245.        free frames to allocate). During deallocation, frame allocator needs
  246.        to find zone, that contain deallocated frame. This approach could
  247.        bring up two potential problems: <itemizedlist>
  248.            <listitem>
  249.               Linear search of zones does not any good to performance, but number of zones is not expected to be high. And if yes, list of zones can be replaced with more time-efficient B-tree.
  250.            </listitem>
  251.  
  252.            <listitem>
  253.               Quickly find out if zone contains required number of frames to allocate and if this chunk of memory is properly aligned. This issue is perfectly solved bu the buddy allocator.
  254.            </listitem>
  255.          </itemizedlist></para>
  256.      </formalpara>
  257.    </section>
  258.  
  259.    <section id="buddy_allocator">
  260.      <title>Buddy allocator</title>
  261.  
  262.      <section>
  263.        <title>Overview</title>
  264.  
  265.        <para>In buddy allocator, memory is broken down into power-of-two
  266.        sized naturally aligned blocks. These blocks are organized in an array
  267.        of lists in which list with index i contains all unallocated blocks of
  268.        the size <mathphrase>2<superscript>i</superscript></mathphrase>. The
  269.        index i is called the order of block. Should there be two adjacent
  270.        equally sized blocks in list <mathphrase>i</mathphrase> (i.e.
  271.        buddies), the buddy allocator would coalesce them and put the
  272.        resulting block in list <mathphrase>i + 1</mathphrase>, provided that
  273.        the resulting block would be naturally aligned. Similarily, when the
  274.        allocator is asked to allocate a block of size
  275.        <mathphrase>2<superscript>i</superscript></mathphrase>, it first tries
  276.        to satisfy the request from list with index i. If the request cannot
  277.        be satisfied (i.e. the list i is empty), the buddy allocator will try
  278.        to allocate and split larger block from list with index i + 1. Both of
  279.        these algorithms are recursive. The recursion ends either when there
  280.        are no blocks to coalesce in the former case or when there are no
  281.        blocks that can be split in the latter case.</para>
  282.  
  283.        <!--graphic fileref="images/mm1.png" format="EPS" /-->
  284.  
  285.        <para>This approach greatly reduces external fragmentation of memory
  286.        and helps in allocating bigger continuous blocks of memory aligned to
  287.        their size. On the other hand, the buddy allocator suffers increased
  288.        internal fragmentation of memory and is not suitable for general
  289.        kernel allocations. This purpose is better addressed by the <link
  290.        linkend="slab">slab allocator</link>.</para>
  291.      </section>
  292.  
  293.      <section>
  294.        <title>Implementation</title>
  295.  
  296.        <para>The buddy allocator is, in fact, an abstract framework wich can
  297.        be easily specialized to serve one particular task. It knows nothing
  298.        about the nature of memory it helps to allocate. In order to beat the
  299.        lack of this knowledge, the buddy allocator exports an interface that
  300.        each of its clients is required to implement. When supplied an
  301.        implementation of this interface, the buddy allocator can use
  302.        specialized external functions to find buddy for a block, split and
  303.        coalesce blocks, manipulate block order and mark blocks busy or
  304.        available. For precize documentation of this interface, refer to <link
  305.        linkend="???">HelenOS Generic Kernel Reference Manual</link>.</para>
  306.  
  307.        <formalpara>
  308.          <title>Data organization</title>
  309.  
  310.          <para>Each entity allocable by the buddy allocator is required to
  311.          contain space for storing block order number and a link variable
  312.          used to interconnect blocks within the same order.</para>
  313.  
  314.          <para>Whatever entities are allocated by the buddy allocator, the
  315.          first entity within a block is used to represent the entire block.
  316.          The first entity keeps the order of the whole block. Other entities
  317.          within the block are assigned the magic value
  318.          <constant>BUDDY_INNER_BLOCK</constant>. This is especially important
  319.          for effective identification of buddies in one-dimensional array
  320.          because the entity that represents a potential buddy cannot be
  321.          associated with <constant>BUDDY_INNER_BLOCK</constant> (i.e. if it
  322.          is associated with <constant>BUDDY_INNER_BLOCK</constant> then it is
  323.          not a buddy).</para>
  324.  
  325.          <para>Buddy allocator always uses first frame to represent frame
  326.          block. This frame contains <varname>buddy_order</varname> variable
  327.          to provide information about the block size it actually represents (
  328.          <mathphrase>2<superscript>buddy_order</superscript></mathphrase>
  329.          frames block). Other frames in block have this value set to magic
  330.          <constant>BUDDY_INNER_BLOCK</constant> that is much greater than
  331.          buddy <varname>max_order</varname> value.</para>
  332.  
  333.          <para>Each <varname>frame_t</varname> also contains pointer member
  334.          to hold frame structure in the linked list inside one order.</para>
  335.        </formalpara>
  336.  
  337.        <formalpara>
  338.          <title>Allocation algorithm</title>
  339.  
  340.          <para>Upon <mathphrase>2<superscript>i</superscript></mathphrase>
  341.          frames block allocation request, allocator checks if there are any
  342.          blocks available at the order list <varname>i</varname>. If yes,
  343.          removes block from order list and returns its address. If no,
  344.          recursively allocates
  345.          <mathphrase>2<superscript>i+1</superscript></mathphrase> frame
  346.          block, splits it into two
  347.          <mathphrase>2<superscript>i</superscript></mathphrase> frame blocks.
  348.          Then adds one of the blocks to the <varname>i</varname> order list
  349.          and returns address of another.</para>
  350.        </formalpara>
  351.  
  352.        <formalpara>
  353.          <title>Deallocation algorithm</title>
  354.  
  355.          <para>Check if block has so called buddy (another free
  356.          <mathphrase>2<superscript>i</superscript></mathphrase> frame block
  357.          that can be linked with freed block into the
  358.          <mathphrase>2<superscript>i+1</superscript></mathphrase> block).
  359.          Technically, buddy is a odd/even block for even/odd block
  360.          respectively. Plus we can put an extra requirement, that resulting
  361.          block must be aligned to its size. This requirement guarantees
  362.          natural block alignment for the blocks coming out the allocation
  363.          system.</para>
  364.  
  365.          <para>Using direct pointer arithmetics,
  366.          <varname>frame_t::ref_count</varname> and
  367.          <varname>frame_t::buddy_order</varname> variables, finding buddy is
  368.          done at constant time.</para>
  369.        </formalpara>
  370.      </section>
  371.    </section>
  372.  
  373.    <section id="slab">
  374.      <title>Slab allocator</title>
  375.  
  376.      <section>
  377.        <title>Overview</title>
  378.  
  379.        <para><termdef><glossterm>Slab</glossterm> represents a contiguous
  380.        piece of memory, usually made of several physically contiguous
  381.        pages.</termdef> <termdef><glossterm>Slab cache</glossterm> consists
  382.        of one or more slabs.</termdef></para>
  383.  
  384.        <para>The majority of memory allocation requests in the kernel are for
  385.        small, frequently used data structures. For this purpose the slab
  386.        allocator is a perfect solution. The basic idea behind the slab
  387.        allocator is to have lists of commonly used objects available packed
  388.        into pages. This avoids the overhead of allocating and destroying
  389.        commonly used types of objects such threads, virtual memory structures
  390.        etc. Also due to the exact allocated size matching, slab allocation
  391.        completely eliminates internal fragmentation issue.</para>
  392.      </section>
  393.  
  394.      <section>
  395.        <title>Implementation</title>
  396.  
  397.        <para>The SLAB allocator is closely modelled after <ulink
  398.        url="http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/">
  399.        OpenSolaris SLAB allocator by Jeff Bonwick and Jonathan Adams </ulink>
  400.        with the following exceptions: <itemizedlist>
  401.            <listitem>
  402.               empty SLABS are deallocated immediately (in Linux they are kept in linked list, in Solaris ???)
  403.            </listitem>
  404.  
  405.            <listitem>
  406.               empty magazines are deallocated when not needed (in Solaris they are held in linked list in slab cache)
  407.            </listitem>
  408.          </itemizedlist> Following features are not currently supported but
  409.        would be easy to do: <itemizedlist>
  410.            <listitem>
  411.               - cache coloring
  412.            </listitem>
  413.  
  414.            <listitem>
  415.               - dynamic magazine grow (different magazine sizes are already supported, but we would need to adjust allocation strategy)
  416.            </listitem>
  417.          </itemizedlist></para>
  418.  
  419.        <section>
  420.          <title>Magazine layer</title>
  421.  
  422.          <para>Due to the extensive bottleneck on SMP architures, caused by
  423.          global SLAB locking mechanism, making processing of all slab
  424.          allocation requests serialized, a new layer was introduced to the
  425.          classic slab allocator design. Slab allocator was extended to
  426.          support per-CPU caches 'magazines' to achieve good SMP scaling.
  427.          <termdef>Slab SMP perfromance bottleneck was resolved by introducing
  428.          a per-CPU caching scheme called as <glossterm>magazine
  429.          layer</glossterm></termdef>.</para>
  430.  
  431.          <para>Magazine is a N-element cache of objects, so each magazine can
  432.          satisfy N allocations. Magazine behaves like a automatic weapon
  433.          magazine (LIFO, stack), so the allocation/deallocation become simple
  434.          push/pop pointer operation. Trick is that CPU does not access global
  435.          slab allocator data during the allocation from its magazine, thus
  436.          making possible parallel allocations between CPUs.</para>
  437.  
  438.          <para>Implementation also requires adding another feature as the
  439.          CPU-bound magazine is actually a pair of magazines to avoid
  440.          thrashing when during allocation/deallocatiion of 1 item at the
  441.          magazine size boundary. LIFO order is enforced, which should avoid
  442.          fragmentation as much as possible.</para>
  443.  
  444.          <para>Another important entity of magazine layer is a full magazine
  445.          depot, that stores full magazines which are used by any of the CPU
  446.          magazine caches to reload active CPU magazine. Magazine depot can be
  447.          pre-filled with full magazines during initialization, but in current
  448.          implementation it is filled during object deallocation, when CPU
  449.          magazine becomes full.</para>
  450.  
  451.          <para>Slab allocator control structures are allocated from special
  452.          slabs, that are marked by special flag, indicating that it should
  453.          not be used for slab magazine layer. This is done to avoid possible
  454.          infinite recursions and deadlock during conventional slab allocaiton
  455.          requests.</para>
  456.        </section>
  457.  
  458.        <section>
  459.          <title>Allocation/deallocation</title>
  460.  
  461.          <para>Every cache contains list of full slabs and list of partialy
  462.          full slabs. Empty slabs are immediately freed (thrashing will be
  463.          avoided because of magazines).</para>
  464.  
  465.          <para>The SLAB allocator allocates lots of space and does not free
  466.          it. When frame allocator fails to allocate the frame, it calls
  467.          slab_reclaim(). It tries 'light reclaim' first, then brutal reclaim.
  468.          The light reclaim releases slabs from cpu-shared magazine-list,
  469.          until at least 1 slab is deallocated in each cache (this algorithm
  470.          should probably change). The brutal reclaim removes all cached
  471.          objects, even from CPU-bound magazines.</para>
  472.  
  473.          <formalpara>
  474.            <title>Allocation</title>
  475.  
  476.            <para><emphasis>Step 1.</emphasis> When it comes to the allocation
  477.            request, slab allocator first of all checks availability of memory
  478.            in local CPU-bound magazine. If it is there, we would just "pop"
  479.            the CPU magazine and return the pointer to object.</para>
  480.  
  481.            <para><emphasis>Step 2.</emphasis> If the CPU-bound magazine is
  482.            empty, allocator will attempt to reload magazin, swapping it with
  483.            second CPU magazine and returns to the first step.</para>
  484.  
  485.            <para><emphasis>Step 3.</emphasis> Now we are in the situation
  486.            when both CPU-bound magazines are empty, which makes allocator to
  487.            access shared full-magazines depot to reload CPU-bound magazines.
  488.            If reload is succesful (meaning there are full magazines in depot)
  489.            algoritm continues at Step 1.</para>
  490.  
  491.            <para><emphasis>Step 4.</emphasis> Final step of the allocation.
  492.            In this step object is allocated from the conventional slab layer
  493.            and pointer is returned.</para>
  494.          </formalpara>
  495.  
  496.          <formalpara>
  497.            <title>Deallocation</title>
  498.  
  499.            <para><emphasis>Step 1.</emphasis> During deallocation request,
  500.            slab allocator will check if the local CPU-bound magazine is not
  501.            full. In this case we will just push the pointer to this
  502.            magazine.</para>
  503.  
  504.            <para><emphasis>Step 2.</emphasis> If the CPU-bound magazine is
  505.            full, allocator will attempt to reload magazin, swapping it with
  506.            second CPU magazine and returns to the first step.</para>
  507.  
  508.            <para><emphasis>Step 3.</emphasis> Now we are in the situation
  509.            when both CPU-bound magazines are full, which makes allocator to
  510.            access shared full-magazines depot to put one of the magazines to
  511.            the depot and creating new empty magazine. Algoritm continues at
  512.            Step 1.</para>
  513.          </formalpara>
  514.        </section>
  515.      </section>
  516.    </section>
  517.  
  518.    <!-- End of Physmem -->
  519.  </section>
  520.  
  521.  <section>
  522.    <title>Memory sharing</title>
  523.  
  524.    <para>Not implemented yet(?)</para>
  525.  </section>
  526. </chapter>