Subversion Repositories HelenOS-doc

Rev

Rev 24 | Rev 27 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. <?xml version="1.0" encoding="UTF-8"?>
  2. <chapter id="mm">
  3.   <?dbhtml filename="mm.html"?>
  4.  
  5.   <title>Memory management</title>
  6.  
  7.   <section>
  8.     <!-- VM -->
  9.  
  10.     <title>Virtual memory management</title>
  11.  
  12.     <section>
  13.       <title>Address spaces</title>
  14.  
  15.       <para></para>
  16.     </section>
  17.  
  18.     <section>
  19.       <title>Virtual address translation</title>
  20.  
  21.       <para></para>
  22.     </section>
  23.   </section>
  24.  
  25.   <!-- End of VM -->
  26.  
  27.   <section>
  28.     <!-- Phys mem -->
  29.  
  30.     <title>Physical memory management</title>
  31.  
  32.     <section id="zones_and_frames">
  33.       <title>Zones and frames</title>
  34.  
  35.       <para>
  36.       <!--graphic fileref="images/mm2.png" /-->
  37.      
  38.       <!--graphic fileref="images/buddy_alloc.svg" format="SVG" /-->
  39.       <mediaobject
  40.      
  41.      
  42.       </para>
  43.  
  44.       <para>On some architectures not whole physical memory is available for
  45.       conventional usage. This limitations require from kernel to maintain a
  46.       table of available and unavailable ranges of physical memory addresses.
  47.       Main idea of zones is in creating memory zone entity, that is a
  48.       continuous chunk of memory available for allocation. If some chunk is
  49.       not available, we simply do not put it in any zone.</para>
  50.  
  51.       <para>Zone is also serves for informational purposes, containing
  52.       information about number of free and busy frames. Physical memory
  53.       allocation is also done inside the certain zone. Allocation of zone
  54.       frame must be organized by the <link linkend="frame_allocator">frame
  55.       allocator</link> associated with the zone.</para>
  56.  
  57.       <para>Some of the architectures (mips32, ppc32) have only one zone, that
  58.       covers whole physical memory, and the others (like ia32) may have
  59.       multiple zones. Information about zones on current machine is stored in
  60.       BIOS hardware tables or can be hardcoded into kernel during compile
  61.       time.</para>
  62.     </section>
  63.  
  64.     <section id="frame_allocator">
  65.       <title>Frame allocator</title>
  66.  
  67.       <formalpara>
  68.         <title>Overview</title>
  69.  
  70.         <para>Frame allocator provides physical memory allocation for the
  71.         kernel. Because of zonal organization of physical memory, frame
  72.         allocator is always working in context of some zone, thus making
  73.         impossible to allocate a piece of memory, which lays in different
  74.         zone, which cannot happen, because two adjacent zones can be merged
  75.         into one. Frame allocator is also being responsible to update
  76.         information on the number of free/busy frames in zone. Physical memory
  77.         allocation inside one <link linkend="zones_and_frames">memory
  78.         zone</link> is being handled by an instance of <link
  79.         linkend="buddy_allocator">buddy allocator</link> tailored to allocate
  80.         blocks of physical memory frames.</para>
  81.       </formalpara>
  82.  
  83.       <formalpara>
  84.         <title>Allocation / deallocation</title>
  85.  
  86.         <para>Upon allocation request, frame allocator tries to find first
  87.         zone, that can satisfy the incoming request (has required amount of
  88.         free frames to allocate). During deallocation, frame allocator needs
  89.         to find zone, that contain deallocated frame. This approach could
  90.         bring up two potential problems: <itemizedlist>
  91.             <listitem>
  92.                Linear search of zones does not any good to performance, but number of zones is not expected to be high. And if yes, list of zones can be replaced with more time-efficient B-tree.
  93.             </listitem>
  94.  
  95.             <listitem>
  96.                Quickly find out if zone contains required number of frames to allocate and if this chunk of memory is properly aligned. This issue is perfectly solved bu the buddy allocator.
  97.             </listitem>
  98.           </itemizedlist></para>
  99.       </formalpara>
  100.     </section>
  101.   </section>
  102.  
  103.   <section id="buddy_allocator">
  104.     <title>Buddy allocator</title>
  105.  
  106.     <section>
  107.       <title>Overview</title>
  108.  
  109.       <para>In buddy allocator, memory is broken down into power-of-two sized
  110.       naturally aligned blocks. These blocks are organized in an array of
  111.       lists in which list with index i contains all unallocated blocks of the
  112.       size <mathphrase>2<superscript>i</superscript></mathphrase>. The index i
  113.       is called the order of block. Should there be two adjacent equally sized
  114.       blocks in list <mathphrase>i</mathphrase> (i.e. buddies), the buddy
  115.       allocator would coalesce them and put the resulting block in list
  116.       <mathphrase>i + 1</mathphrase>, provided that the resulting block would
  117.       be naturally aligned. Similarily, when the allocator is asked to
  118.       allocate a block of size
  119.       <mathphrase>2<superscript>i</superscript></mathphrase>, it first tries
  120.       to satisfy the request from list with index i. If the request cannot be
  121.       satisfied (i.e. the list i is empty), the buddy allocator will try to
  122.       allocate and split larger block from list with index i + 1. Both of
  123.       these algorithms are recursive. The recursion ends either when there are
  124.       no blocks to coalesce in the former case or when there are no blocks
  125.       that can be split in the latter case.</para>
  126.  
  127.       <graphic fileref="images/mm1.png" format="EPS" />
  128.  
  129.       <para>This approach greatly reduces external fragmentation of memory and
  130.       helps in allocating bigger continuous blocks of memory aligned to their
  131.       size. On the other hand, the buddy allocator suffers increased internal
  132.       fragmentation of memory and is not suitable for general kernel
  133.       allocations. This purpose is better addressed by the <link
  134.       linkend="slab">slab allocator</link>.</para>
  135.     </section>
  136.  
  137.     <section>
  138.       <title>Implementation</title>
  139.  
  140.       <para>The buddy allocator is, in fact, an abstract framework wich can be
  141.       easily specialized to serve one particular task. It knows nothing about
  142.       the nature of memory it helps to allocate. In order to beat the lack of
  143.       this knowledge, the buddy allocator exports an interface that each of
  144.       its clients is required to implement. When supplied an implementation of
  145.       this interface, the buddy allocator can use specialized external
  146.       functions to find buddy for a block, split and coalesce blocks,
  147.       manipulate block order and mark blocks busy or available. For precize
  148.       documentation of this interface, refer to <link linkend="???">HelenOS
  149.       Generic Kernel Reference Manual</link>.</para>
  150.  
  151.       <formalpara>
  152.         <title>Data organization</title>
  153.  
  154.         <para>Each entity allocable by the buddy allocator is required to
  155.         contain space for storing block order number and a link variable used
  156.         to interconnect blocks within the same order.</para>
  157.  
  158.         <para>Whatever entities are allocated by the buddy allocator, the
  159.         first entity within a block is used to represent the entire block. The
  160.         first entity keeps the order of the whole block. Other entities within
  161.         the block are assigned the magic value
  162.         <constant>BUDDY_INNER_BLOCK</constant>. This is especially important
  163.         for effective identification of buddies in one-dimensional array
  164.         because the entity that represents a potential buddy cannot be
  165.         associated with <constant>BUDDY_INNER_BLOCK</constant> (i.e. if it is
  166.         associated with <constant>BUDDY_INNER_BLOCK</constant> then it is not
  167.         a buddy).</para>
  168.       </formalpara>
  169.  
  170.       <formalpara>
  171.         <title>Data organization</title>
  172.  
  173.         <para>Buddy allocator always uses first frame to represent frame
  174.         block. This frame contains <varname>buddy_order</varname> variable to
  175.         provide information about the block size it actually represents (
  176.         <mathphrase>2<superscript>buddy_order</superscript></mathphrase>
  177.         frames block). Other frames in block have this value set to magic
  178.         <constant>BUDDY_INNER_BLOCK</constant> that is much greater than buddy
  179.         <varname>max_order</varname> value.</para>
  180.  
  181.         <para>Each <varname>frame_t</varname> also contains pointer member to
  182.         hold frame structure in the linked list inside one order.</para>
  183.       </formalpara>
  184.  
  185.       <formalpara>
  186.         <title>Allocation algorithm</title>
  187.  
  188.         <para>Upon <mathphrase>2<superscript>i</superscript></mathphrase>
  189.         frames block allocation request, allocator checks if there are any
  190.         blocks available at the order list <varname>i</varname>. If yes,
  191.         removes block from order list and returns its address. If no,
  192.         recursively allocates
  193.         <mathphrase>2<superscript>i+1</superscript></mathphrase> frame block,
  194.         splits it into two
  195.         <mathphrase>2<superscript>i</superscript></mathphrase> frame blocks.
  196.         Then adds one of the blocks to the <varname>i</varname> order list and
  197.         returns address of another.</para>
  198.       </formalpara>
  199.  
  200.       <formalpara>
  201.         <title>Deallocation algorithm</title>
  202.  
  203.         <para>Check if block has so called buddy (another free
  204.         <mathphrase>2<superscript>i</superscript></mathphrase> frame block
  205.         that can be linked with freed block into the
  206.         <mathphrase>2<superscript>i+1</superscript></mathphrase> block).
  207.         Technically, buddy is a odd/even block for even/odd block
  208.         respectively. Plus we can put an extra requirement, that resulting
  209.         block must be aligned to its size. This requirement guarantees natural
  210.         block alignment for the blocks coming out the allocation
  211.         system.</para>
  212.  
  213.         <para>Using direct pointer arithmetics,
  214.         <varname>frame_t::ref_count</varname> and
  215.         <varname>frame_t::buddy_order</varname> variables, finding buddy is
  216.         done at constant time.</para>
  217.       </formalpara>
  218.     </section>
  219.  
  220.     <section id="slab">
  221.       <title>Slab allocator</title>
  222.  
  223.       <section>
  224.         <title>Introduction</title>
  225.  
  226.         <para>The majority of memory allocation requests in the kernel are for
  227.         small, frequently used data structures. For this purpose the slab
  228.         allocator is a perfect solution. The basic idea behind a slab
  229.         allocator is to have lists of commonly used objects available packed
  230.         into pages. This avoids the overhead of allocating and destroying
  231.         commonly used types of objects such as inodes, threads, virtual memory
  232.         structures etc.</para>
  233.  
  234.         <para>Original slab allocator locking mechanism has become a
  235.         significant preformance bottleneck on SMP architectures. <termdef>Slab
  236.         SMP perfromance bottleneck was resolved by introducing a per-CPU
  237.         caching scheme called as <glossterm>magazine
  238.         layer</glossterm></termdef>.</para>
  239.       </section>
  240.  
  241.       <section>
  242.         <title>Implementation details (needs revision)</title>
  243.  
  244.         <para>The SLAB allocator is closely modelled after <ulink
  245.         url="http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/">
  246.         OpenSolaris SLAB allocator by Jeff Bonwick and Jonathan Adams </ulink>
  247.         with the following exceptions: <itemizedlist>
  248.             <listitem>
  249.                empty SLABS are deallocated immediately (in Linux they are kept in linked list, in Solaris ???)
  250.             </listitem>
  251.  
  252.             <listitem>
  253.                empty magazines are deallocated when not needed (in Solaris they are held in linked list in slab cache)
  254.             </listitem>
  255.           </itemizedlist> Following features are not currently supported but
  256.         would be easy to do: <itemizedlist>
  257.             <listitem>
  258.                - cache coloring
  259.             </listitem>
  260.  
  261.             <listitem>
  262.                - dynamic magazine growing (different magazine sizes are already supported, but we would need to adjust allocation strategy)
  263.             </listitem>
  264.           </itemizedlist></para>
  265.  
  266.         <para>The SLAB allocator supports per-CPU caches ('magazines') to
  267.         facilitate good SMP scaling.</para>
  268.  
  269.         <para>When a new object is being allocated, it is first checked, if it
  270.         is available in CPU-bound magazine. If it is not found there, it is
  271.         allocated from CPU-shared SLAB - if partial full is found, it is used,
  272.         otherwise a new one is allocated.</para>
  273.  
  274.         <para>When an object is being deallocated, it is put to CPU-bound
  275.         magazine. If there is no such magazine, new one is allocated (if it
  276.         fails, the object is deallocated into SLAB). If the magazine is full,
  277.         it is put into cpu-shared list of magazines and new one is
  278.         allocated.</para>
  279.  
  280.         <para>The CPU-bound magazine is actually a pair of magazines to avoid
  281.         thrashing when somebody is allocating/deallocating 1 item at the
  282.         magazine size boundary. LIFO order is enforced, which should avoid
  283.         fragmentation as much as possible.</para>
  284.  
  285.         <para>Every cache contains list of full slabs and list of partialy
  286.         full slabs. Empty SLABS are immediately freed (thrashing will be
  287.         avoided because of magazines).</para>
  288.  
  289.         <para>The SLAB information structure is kept inside the data area, if
  290.         possible. The cache can be marked that it should not use magazines.
  291.         This is used only for SLAB related caches to avoid deadlocks and
  292.         infinite recursion (the SLAB allocator uses itself for allocating all
  293.         it's control structures).</para>
  294.  
  295.        <para>The SLAB allocator allocates lots of space and does not free it.
  296.        When frame allocator fails to allocate the frame, it calls
  297.        slab_reclaim(). It tries 'light reclaim' first, then brutal reclaim.
  298.        The light reclaim releases slabs from cpu-shared magazine-list, until
  299.        at least 1 slab is deallocated in each cache (this algorithm should
  300.        probably change). The brutal reclaim removes all cached objects, even
  301.        from CPU-bound magazines.</para>
  302.  
  303.        <para>TODO: <itemizedlist>
  304.            <listitem>
  305.               For better CPU-scaling the magazine allocation strategy should be extended. Currently, if the cache does not have magazine, it asks for non-cpu cached magazine cache to provide one. It might be feasible to add cpu-cached magazine cache (which would allocate it's magazines from non-cpu-cached mag. cache). This would provide a nice per-cpu buffer. The other possibility is to use the per-cache 'empty-magazine-list', which decreases competing for 1 per-system magazine cache.
  306.             </listitem>
  307.  
  308.             <listitem>
  309.                - it might be good to add granularity of locks even to slab level, we could then try_spinlock over all partial slabs and thus improve scalability even on slab level
  310.             </listitem>
  311.           </itemizedlist></para>
  312.       </section>
  313.     </section>
  314.  
  315.     <!-- End of Physmem -->
  316.   </section>
  317.  
  318.   <section>
  319.     <title>Memory sharing</title>
  320.  
  321.     <para>Not implemented yet(?)</para>
  322.   </section>
  323. </chapter>