Subversion Repositories HelenOS-doc

Rev

Rev 17 | Rev 26 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. <?xml version="1.0" encoding="UTF-8"?>
  2. <chapter id="mm">
  3.   <?dbhtml filename="mm.html"?>
  4.  
  5.   <title>Memory management</title>
  6.  
  7.  
  8.  
  9.   <section><!-- VM -->
  10.     <title>Virtual memory management</title>
  11.  
  12.     <section>
  13.       <title>Address spaces</title>
  14.  
  15.       <para></para>
  16.     </section>
  17.  
  18.     <section>
  19.       <title>Virtual address translation</title>
  20.  
  21.       <para></para>
  22.     </section>
  23.   </section><!-- End of VM -->
  24.  
  25.  
  26.   <section><!-- Phys mem -->
  27.     <title>Physical memory management</title>
  28.  
  29.  
  30.     <section id="zones_and_frames">
  31.       <title>Zones and frames</title>
  32.     <para>        <graphic fileref="images/mm2.png" /> </para>
  33.  
  34.  
  35.       <para>On some architectures not whole physical memory is available for conventional usage. This limitations
  36.       require from kernel to maintain a table of available and unavailable ranges of physical memory addresses.
  37.       Main idea of zones is in creating memory zone entity, that is a continuous chunk of memory available for allocation.
  38.       If some chunk is not available, we simply do not put it in any zone.
  39.       </para>
  40.      
  41.       <para>
  42.       Zone is also serves for informational purposes, containing information about number of free and busy frames. Physical memory
  43.       allocation is also done inside the certain zone. Allocation of zone frame must be organized by the
  44.       <link linkend="frame_allocator">frame allocator</link> associated with the zone.
  45.       </para>
  46.      
  47.       <para>Some of the architectures (mips32, ppc32) have only one zone, that covers whole
  48.       physical memory, and the others (like ia32) may have multiple zones.  Information about zones on current machine is stored
  49.       in BIOS hardware tables or can be hardcoded into kernel during compile time.</para>
  50.      
  51.     </section>
  52.  
  53.     <section id="frame_allocator">
  54.       <title>Frame allocator</title>
  55.  
  56.     <formalpara>
  57.     <title>Overview</title>
  58.         <para>Frame allocator provides physical memory allocation for the kernel. Because of zonal organization of physical memory,
  59.     frame allocator is always working in context of some zone, thus making impossible to allocate a piece of memory, which lays in different zone, which
  60.     cannot happen, because two adjacent zones can be merged into one. Frame allocator is also being responsible to update information on
  61.     the number of free/busy frames in zone.
  62.     Physical memory allocation inside one <link
  63.         linkend="zones_and_frames">memory zone</link> is being handled by an
  64.         instance of <link linkend="buddy_allocator">buddy allocator</link>
  65.         tailored to allocate blocks of physical memory frames.
  66.     </para>
  67.     </formalpara>
  68.    
  69.    
  70.    
  71.    
  72.     <formalpara>
  73.     <title>Allocation / deallocation</title>
  74.     <para>
  75.     Upon allocation request, frame allocator tries to find first zone, that can satisfy the incoming request (has required amount of free frames to allocate).
  76.     During deallocation, frame allocator needs to find zone, that contain deallocated frame.
  77.    
  78.     This approach could bring up two potential problems:
  79.     <itemizedlist>
  80.         <listitem>
  81.             Linear search of zones does not any good to performance, but number of zones is not expected to be high. And if yes, list of zones can be replaced with more time-efficient B-tree.
  82.         </listitem>
  83.         <listitem>
  84.             Quickly find out if zone contains required number of frames to allocate and if this chunk of memory is properly aligned. This issue is perfectly solved bu the buddy allocator.
  85.         </listitem>
  86.     </itemizedlist>
  87.    
  88.    
  89.     </para>
  90.     </formalpara>
  91.    
  92.       </section>
  93.  
  94.     </section>
  95.  
  96.  
  97.  
  98.     <section id="buddy_allocator">
  99.       <title>Buddy allocator</title>
  100.  
  101.       <section>
  102.         <title>Overview</title>
  103.  
  104.         <para>In buddy allocator, memory is broken down into power-of-two
  105.         sized naturally aligned blocks. These blocks are organized in an array
  106.         of lists in which list with index i contains all unallocated blocks of
  107.         the size <mathphrase>2<superscript>i</superscript></mathphrase>. The
  108.         index i is called the order of block. Should there be two adjacent
  109.         equally sized blocks in list <mathphrase>i</mathphrase> (i.e.
  110.         buddies), the buddy allocator would coalesce them and put the
  111.         resulting block in list <mathphrase>i + 1</mathphrase>, provided that
  112.         the resulting block would be naturally aligned. Similarily, when the
  113.         allocator is asked to allocate a block of size
  114.         <mathphrase>2<superscript>i</superscript></mathphrase>, it first tries
  115.         to satisfy the request from list with index i. If the request cannot
  116.         be satisfied (i.e. the list i is empty), the buddy allocator will try
  117.         to allocate and split larger block from list with index i + 1. Both of
  118.         these algorithms are recursive. The recursion ends either when there
  119.         are no blocks to coalesce in the former case or when there are no
  120.         blocks that can be split in the latter case.</para>
  121.  
  122.         <graphic fileref="images/mm1.png" format="EPS" />
  123.  
  124.         <para>This approach greatly reduces external fragmentation of memory
  125.         and helps in allocating bigger continuous blocks of memory aligned to
  126.         their size. On the other hand, the buddy allocator suffers increased
  127.         internal fragmentation of memory and is not suitable for general
  128.         kernel allocations. This purpose is better addressed by the <link
  129.         linkend="slab">slab allocator</link>.</para>
  130.       </section>
  131.  
  132.       <section>
  133.         <title>Implementation</title>
  134.  
  135.         <para>The buddy allocator is, in fact, an abstract framework wich can
  136.         be easily specialized to serve one particular task. It knows nothing
  137.         about the nature of memory it helps to allocate. In order to beat the
  138.         lack of this knowledge, the buddy allocator exports an interface that
  139.         each of its clients is required to implement. When supplied an
  140.         implementation of this interface, the buddy allocator can use
  141.         specialized external functions to find buddy for a block, split and
  142.         coalesce blocks, manipulate block order and mark blocks busy or
  143.         available. For precize documentation of this interface, refer to <link
  144.         linkend="???">HelenOS Generic Kernel Reference Manual</link>.</para>
  145.  
  146.         <formalpara>
  147.           <title>Data organization</title>
  148.  
  149.           <para>Each entity allocable by the buddy allocator is required to
  150.           contain space for storing block order number and a link variable
  151.           used to interconnect blocks within the same order.</para>
  152.  
  153.           <para>Whatever entities are allocated by the buddy allocator, the
  154.           first entity within a block is used to represent the entire block.
  155.           The first entity keeps the order of the whole block. Other entities
  156.           within the block are assigned the magic value
  157.           <constant>BUDDY_INNER_BLOCK</constant>. This is especially important
  158.           for effective identification of buddies in one-dimensional array
  159.           because the entity that represents a potential buddy cannot be
  160.           associated with <constant>BUDDY_INNER_BLOCK</constant> (i.e. if it
  161.           is associated with <constant>BUDDY_INNER_BLOCK</constant> then it is
  162.           not a buddy).</para>
  163.         </formalpara>
  164.    
  165.         <formalpara>
  166.           <title>Data organization</title>
  167.  
  168.           <para>Buddy allocator always uses first frame to represent frame
  169.           block. This frame contains <varname>buddy_order</varname> variable
  170.           to provide information about the block size it actually represents (
  171.           <mathphrase>2<superscript>buddy_order</superscript></mathphrase>
  172.           frames block). Other frames in block have this value set to magic
  173.           <constant>BUDDY_INNER_BLOCK</constant> that is much greater than
  174.           buddy <varname>max_order</varname> value.</para>
  175.  
  176.           <para>Each <varname>frame_t</varname> also contains pointer member
  177.           to hold frame structure in the linked list inside one order.</para>
  178.         </formalpara>
  179.  
  180.         <formalpara>
  181.           <title>Allocation algorithm</title>
  182.  
  183.           <para>Upon <mathphrase>2<superscript>i</superscript></mathphrase>
  184.           frames block allocation request, allocator checks if there are any
  185.           blocks available at the order list <varname>i</varname>. If yes,
  186.           removes block from order list and returns its address. If no,
  187.           recursively allocates
  188.           <mathphrase>2<superscript>i+1</superscript></mathphrase> frame
  189.           block, splits it into two
  190.           <mathphrase>2<superscript>i</superscript></mathphrase> frame blocks.
  191.           Then adds one of the blocks to the <varname>i</varname> order list
  192.           and returns address of another.</para>
  193.         </formalpara>
  194.  
  195.         <formalpara>
  196.           <title>Deallocation algorithm</title>
  197.  
  198.           <para>Check if block has so called buddy (another free
  199.           <mathphrase>2<superscript>i</superscript></mathphrase> frame block
  200.           that can be linked with freed block into the
  201.           <mathphrase>2<superscript>i+1</superscript></mathphrase> block).
  202.           Technically, buddy is a odd/even block for even/odd block
  203.           respectively. Plus we can put an extra requirement, that resulting
  204.           block must be aligned to its size. This requirement guarantees
  205.           natural block alignment for the blocks coming out the allocation
  206.           system.</para>
  207.  
  208.           <para>Using direct pointer arithmetics,
  209.           <varname>frame_t::ref_count</varname> and
  210.           <varname>frame_t::buddy_order</varname> variables, finding buddy is
  211.           done at constant time.</para>
  212.         </formalpara>
  213.    
  214.       </section>
  215.  
  216.  
  217.     <section id="slab">
  218.       <title>Slab allocator</title>
  219.  
  220.       <para>Kernel memory allocation is handled by slab.</para>
  221.     </section><!-- End of Physmem -->
  222.  
  223.   </section>
  224.  
  225.  
  226.     <section>
  227.       <title>Memory sharing</title>
  228.  
  229.       <para>Not implemented yet(?)</para>
  230.     </section>
  231. </chapter>