Subversion Repositories HelenOS-doc

Rev

Rev 11 | Rev 17 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. <?xml version="1.0" encoding="UTF-8"?>
  2. <chapter id="mm">
  3.   <?dbhtml filename="mm.html"?>
  4.  
  5.   <title>Memory management</title>
  6.  
  7.   <section>
  8.     <title>Virtual memory management</title>
  9.  
  10.     <section>
  11.       <title>Address spaces</title>
  12.  
  13.       <para></para>
  14.     </section>
  15.  
  16.     <section>
  17.       <title>Virtual address translation</title>
  18.  
  19.       <para></para>
  20.     </section>
  21.   </section>
  22.  
  23.   <section>
  24.     <title>Physical memory management</title>
  25.  
  26.     <section id="zones_and_frames">
  27.       <title>Zones and frames</title>
  28.  
  29.       <para>Physical memory is divided into zones. Each zone represents
  30.       continuous area of physical memory frames. Allocation of frames is
  31.       handled by the <link linkend="buddy_allocator">buddy allocator</link>
  32.       associated with the zone. Zone also contains information about free and
  33.       occupied frames and its base addresss in the memory. Some of the
  34.       architectures (Mips, PPC) have only one zone, that covers whole physical
  35.       memory. Other architectures (IA32) have multiple zones.</para>
  36.     </section>
  37.  
  38.     <section id="buddy_allocator">
  39.       <title>Buddy allocator</title>
  40.  
  41.       <section>
  42.         <title>Overview</title>
  43.  
  44.         <para>Physical memory allocation inside one <link
  45.         linkend="zones_and_frames">memory zone</link> is being handled by
  46.         buddy allocation system. This approach greatly reduces possibility of
  47.         outer memory fragmentation and helps in allocating bigger continious
  48.         blocks of physical memory aligned to their size. Problem of inner
  49.         memory fragmentation is being solved by <link linkend="slab">SLAB
  50.         allocation system.</link></para>
  51.  
  52.         <graphic fileref="images/mm1.png" />
  53.  
  54.         <para>Frames are grouped into bigger blocks and blocks of the size
  55.         <mathphrase>2<superscript>i</superscript></mathphrase> are stored in
  56.         the list indexed with <varname>i</varname> (so called order index). If
  57.         list contains 2 ajacent blocks (of a same size of cause) they can be
  58.         merged into the bigger one and moved into the list with higher order
  59.         index, thus making possible allocation of a bigger block.</para>
  60.       </section>
  61.  
  62.       <section>
  63.         <title>Implementation</title>
  64.  
  65.         <formalpara>
  66.           <title>Data organization</title>
  67.  
  68.           <para>Buddy allocator always uses first frame to represent frame
  69.           block. This frame contains <varname>buddy_order</varname> variable
  70.           to provide information about the block size it actually represents (
  71.           <mathphrase>2<superscript>buddy_order</superscript></mathphrase>
  72.           frames block). Other frames in block have this value set to magic
  73.           <constant>BUDDY_INNER_BLOCK</constant> that is much greater than
  74.           buddy <varname>max_order</varname> value.</para>
  75.  
  76.           <para>Each <varname>frame_t</varname> also contains pointer member
  77.           to hold frame structure in the linked list inside one order.</para>
  78.         </formalpara>
  79.  
  80.         <formalpara>
  81.           <title>Allocation algorithm</title>
  82.  
  83.           <para>Upon <mathphrase>2<superscript>i</superscript></mathphrase>
  84.           frames block allocation request, allocator checks if there are any
  85.           blocks available at the order list <varname>i</varname>. If yes,
  86.           removes block from order list and returns its address. If no,
  87.           recursively allocates
  88.           <mathphrase>2<superscript>i+1</superscript></mathphrase> frame
  89.           block, splits it into two
  90.           <mathphrase>2<superscript>i</superscript></mathphrase> frame blocks.
  91.           Then adds one of the blocks to the <varname>i</varname> order list
  92.           and returns address of another.</para>
  93.         </formalpara>
  94.  
  95.         <formalpara>
  96.           <title>Deallocation algorithm</title>
  97.  
  98.           <para>Check if block has so called buddy (another free
  99.           <mathphrase>2<superscript>i</superscript></mathphrase> frame block
  100.           that can be linked with freed block into the
  101.           <mathphrase>2<superscript>i+1</superscript></mathphrase> block).
  102.           Technically, buddy is a odd/even block for even/odd block
  103.           respectively. Plus we can put an extra requirement, that resulting
  104.           block must be aligned to its size. This requirement guarantees
  105.           natural block alignment for the blocks coming out the allocation
  106.           system.
  107.       </para>
  108.      
  109.       <para>
  110.       Using direct pointer arithmetics, <varname>frame_t::ref_count</varname> and <varname>frame_t::buddy_order</varname> variables,
  111.       finding buddy is done at constant time.
  112.       </para>
  113.         </formalpara>
  114.       </section>
  115.     </section>
  116.  
  117.     <section id="slab">
  118.       <title>Slab allocator</title>
  119.  
  120.       <para>Kernel memory allocation is handled by slab.</para>
  121.     </section>
  122.  
  123.     <section>
  124.       <title>Memory sharing</title>
  125.  
  126.       <para>Not implemented yet(?)</para>
  127.     </section>
  128.   </section>
  129. </chapter>