Subversion Repositories HelenOS-doc

Rev

Rev 133 | Rev 151 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. <?xml version="1.0" encoding="UTF-8"?>
  2. <appendix id="archspecs">
  3.   <?dbhtml filename="arch.html"?>
  4.  
  5.   <title>Architecture Specific Notes</title>
  6.  
  7.   <section>
  8.     <title>AMD64/Intel EM64T</title>
  9.  
  10.     <para>The amd64 architecture is a 64-bit extension of the older ia32
  11.     architecture. Only 64-bit applications are supported. Creating this port
  12.     was relatively easy, because it shares a lot of common code with ia32
  13.     platform. However, the 64-bit extension has some specifics, which made the
  14.     porting interesting.</para>
  15.  
  16.     <section>
  17.       <title>Virtual Memory</title>
  18.  
  19.       <para>The amd64 architecture uses standard processor defined 4-level
  20.       page mapping of 4KB pages. The NX(no-execute) flag on individual pages
  21.       is fully supported.</para>
  22.     </section>
  23.  
  24.     <section>
  25.       <title>TLB-only Paging</title>
  26.  
  27.       <para>All memory on the amd64 architecture is memory mapped, if the
  28.       kernel needs to access physical memory, a mapping must be created.
  29.       During boot process the boot loader creates mapping for the first 20MB
  30.       of physical memory. To correctly initialize the page mapping system, an
  31.       identity mapping of whole physical memory must be created. However, to
  32.       create the mapping it is unavoidable to allocate new - possibly unmapped
  33.       - frames from frame allocator. The ia32 solves it by mapping first 2GB
  34.       memory during boot process. The same solution on 64-bit platform becomes
  35.       unfeasible because of the size of the possible address space.</para>
  36.  
  37.       <para>As soon as the exception routines are initialized, a special page
  38.       fault exception handler is installed which provides a complete view of
  39.       physical memory until the real page mapping system is initialized. It
  40.       dynamically changes the page tables to always contain exactly the
  41.       faulting address. The page then becomes cached in the TLB and on the
  42.       next page fault the same tables can be utilized to handle another
  43.       mapping.</para>
  44.     </section>
  45.  
  46.     <section>
  47.       <title>Mapping of Physical Memory</title>
  48.  
  49.       <para>The amd64 ABI document describes several modes of program layout.
  50.       The operating system kernel should be compiled in a
  51.       <emphasis>kernel</emphasis> mode - the kernel is located in the negative
  52.       2 gigabytes (0xffffffff80000000-0xfffffffffffffffff) and can access data
  53.       anywhere in the 64-bit space. This wouldn't allow kernel to see directly
  54.      more than 2GB of physical memory. HelenOS duplicates the virtual mapping
  55.      of the physical memory starting at 0xffff800000000000 and accesses all
  56.      external references using this address range.</para>
  57.    </section>
  58.  
  59.    <section>
  60.      <title>Thread Local Storage</title>
  61.  
  62.      <para>The code accessing thread local storage uses a segment register FS
  63.      as a base. The thread local storage is stored in the hidden 64-bit part
  64.      of the FS register which must be written using priviledged machine
  65.      specific instructions. Special syscall to change this register is
  66.      provided to user applications. The TLS address for this platform is
  67.      expected to point just after the end of the thread local data. The
  68.      application sometimes need to get a real address of the thread local
  69.      data in its address space but it is impossible to read the base of the
  70.      FS segmentation register. The solution is to add the self-reference
  71.      address to the end of thread local data, so that the application can
  72.      read the address as %gs:0. </para>
  73.  
  74.      <figure float="1">
  75.        <title>IA32 &amp; AMD64</title>
  76.  
  77.        <mediaobject id="tldia32">
  78.          <imageobject role="pdf">
  79.            <imagedata fileref="images/tld_ia32.pdf" format="PDF" />
  80.          </imageobject>
  81.  
  82.          <imageobject role="html">
  83.            <imagedata fileref="images/tld_ia32.png" format="PNG" />
  84.          </imageobject>
  85.  
  86.          <imageobject role="fop">
  87.            <imagedata fileref="images/tld_ia32.svg" format="SVG" />
  88.          </imageobject>
  89.        </mediaobject>
  90.      </figure>
  91.    </section>
  92.  
  93.    <section>
  94.      <title>Fast SYSCALL/SYSRET Support</title>
  95.  
  96.      <para>The entry point for system calls was traditionally a speed problem
  97.      on the ia32 architecture. The amd64 supports SYSCALL/SYSRET
  98.      instructions. Upon encountering the SYSCALL instruction, the processor
  99.      changes privilege mode and transfers control to an address stored in
  100.      machine specific register. Unlike other similar instructions it does not
  101.      change stack to a known kernel stack, which must be done by the syscall
  102.      entry routine. A hidden part of a GS register is provided to support the
  103.      entry routine with data needed for switching to kernel stack.</para>
  104.    </section>
  105.  
  106.    <section>
  107.      <title>Debugging Support</title>
  108.  
  109.      <para>To provide developers tools for finding bugs, hardware breakpoints
  110.      and watchpoints are supported. The kernel also supports self-debugging -
  111.      it sets watchpoints on certain data and upon every modification
  112.      automatically checks whether a correct value was written. It is
  113.      worthwhile to mention, that since this feature was implemented, the
  114.      watchpoint was never fired.</para>
  115.    </section>
  116.  </section>
  117.  
  118.  <section>
  119.    <title>Intel IA-32</title>
  120.  
  121.    <para>The ia32 architecture uses 4K pages and processor supported 2-level
  122.    page tables. Along with amd64 It is one of the 2 architectures that fully
  123.    supports SMP configurations. The architecture is mostly similar to amd64,
  124.    it even shares a lot of code. The debugging support is the same as with
  125.    amd64. The thread local storage uses GS register.</para>
  126.  </section>
  127.  
  128.  <section>
  129.    <title>32-bit MIPS</title>
  130.  
  131.    <para>Both little and big endian kernels are supported. In order to test
  132.    different page sizes, the mips32 page size was set to 16K. The mips32
  133.    architecture is TLB-only, the kernel simulates 2-level page tables. On
  134.    processors that support it, lazy FPU context switching is
  135.    implemented.</para>
  136.  
  137.    <section>
  138.      <title>Thread Local Storage</title>
  139.  
  140.      <para>The thread local storage support in compilers is a relatively
  141.      recent phenomena. The standardization of such support for the mips32
  142.      platform is very new and even the newest versions of GCC cannot generate
  143.      100% correct code. Because of some weird MIPS processor variants, it was
  144.      decided, that the TLS pointer will be gathered not from some of the free
  145.      registers, but a special instruction was devised and the kernel is
  146.      supposed to emulate it. HelenOS expects that the TLS pointer is in the
  147.      K1 register. Upon encountering the reserved instruction exception and
  148.      checking that the application is requesting a TLS pointer, it returns
  149.      the contents of the K1 register. The K1 register is expected to point
  150.      0x7000 bytes after the beginning of the thread local data.</para>
  151.  
  152.      <figure float="1">
  153.        <title>MIPS &amp; PPC</title>
  154.  
  155.        <mediaobject id="tldmips">
  156.          <imageobject role="pdf">
  157.            <imagedata fileref="images/tld_mips.pdf" format="PDF" />
  158.          </imageobject>
  159.  
  160.          <imageobject role="html">
  161.            <imagedata fileref="images/tld_mips.png" format="PNG" />
  162.          </imageobject>
  163.  
  164.          <imageobject role="fop">
  165.            <imagedata fileref="images/tld_mips.svg" format="SVG" />
  166.          </imageobject>
  167.        </mediaobject>
  168.      </figure>
  169.    </section>
  170.  </section>
  171.  
  172.  <section>
  173.    <title>Power PC</title>
  174.  
  175.    <para></para>
  176.  
  177.    <section>
  178.      <title>Thread Local Storage</title>
  179.  
  180.      <para>The Power PC thread local storage uses R2 register to hold an
  181.      address, that is 0x7000 bytes after the beginning of the thread local
  182.      data. Overally it is the same as on the MIPS architecture.</para>
  183.    </section>
  184.  </section>
  185.  
  186.  <section>
  187.    <title>IA-64</title>
  188.  
  189.    <para></para>
  190.  
  191.    <figure float="1">
  192.      <title>IA64</title>
  193.  
  194.      <mediaobject id="tldia64">
  195.        <imageobject role="pdf">
  196.          <imagedata fileref="images/tld_ia64.pdf" format="PDF" />
  197.        </imageobject>
  198.  
  199.        <imageobject role="html">
  200.          <imagedata fileref="images/tld_ia64.png" format="PNG" />
  201.        </imageobject>
  202.  
  203.        <imageobject role="fop">
  204.          <imagedata fileref="images/tld_ia64.svg" format="SVG" />
  205.        </imageobject>
  206.      </mediaobject>
  207.    </figure>
  208.  </section>
  209. </appendix>