Subversion Repositories HelenOS

Rev

Rev 3533 | Rev 3539 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /*
  2.  * Copyright (c) 2008 Jakub Jermar
  3.  * All rights reserved.
  4.  *
  5.  * Redistribution and use in source and binary forms, with or without
  6.  * modification, are permitted provided that the following conditions
  7.  * are met:
  8.  *
  9.  * - Redistributions of source code must retain the above copyright
  10.  *   notice, this list of conditions and the following disclaimer.
  11.  * - Redistributions in binary form must reproduce the above copyright
  12.  *   notice, this list of conditions and the following disclaimer in the
  13.  *   documentation and/or other materials provided with the distribution.
  14.  * - The name of the author may not be used to endorse or promote products
  15.  *   derived from this software without specific prior written permission.
  16.  *
  17.  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
  18.  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  19.  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  20.  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  21.  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  22.  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  23.  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  24.  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  25.  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  26.  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  27.  */
  28.  
  29. /** @addtogroup fs
  30.  * @{
  31.  */
  32.  
  33. /**
  34.  * @file    fat_ops.c
  35.  * @brief   Implementation of VFS operations for the FAT file system server.
  36.  */
  37.  
  38. #include "fat.h"
  39. #include "fat_dentry.h"
  40. #include "fat_fat.h"
  41. #include "../../vfs/vfs.h"
  42. #include <libfs.h>
  43. #include <libblock.h>
  44. #include <ipc/ipc.h>
  45. #include <ipc/services.h>
  46. #include <ipc/devmap.h>
  47. #include <async.h>
  48. #include <errno.h>
  49. #include <string.h>
  50. #include <byteorder.h>
  51. #include <libadt/hash_table.h>
  52. #include <libadt/list.h>
  53. #include <assert.h>
  54. #include <futex.h>
  55. #include <sys/mman.h>
  56. #include <align.h>
  57.  
  58. /** Futex protecting the list of cached free FAT nodes. */
  59. static futex_t ffn_futex = FUTEX_INITIALIZER;
  60.  
  61. /** List of cached free FAT nodes. */
  62. static LIST_INITIALIZE(ffn_head);
  63.  
  64. static void fat_node_initialize(fat_node_t *node)
  65. {
  66.     futex_initialize(&node->lock, 1);
  67.     node->idx = NULL;
  68.     node->type = 0;
  69.     link_initialize(&node->ffn_link);
  70.     node->size = 0;
  71.     node->lnkcnt = 0;
  72.     node->refcnt = 0;
  73.     node->dirty = false;
  74. }
  75.  
  76. static void fat_node_sync(fat_node_t *node)
  77. {
  78.     block_t *b;
  79.     fat_bs_t *bs;
  80.     fat_dentry_t *d;
  81.     uint16_t bps;
  82.     unsigned dps;
  83.    
  84.     assert(node->dirty);
  85.  
  86.     bs = block_bb_get(node->idx->dev_handle);
  87.     bps = uint16_t_le2host(bs->bps);
  88.     dps = bps / sizeof(fat_dentry_t);
  89.    
  90.     /* Read the block that contains the dentry of interest. */
  91.     b = _fat_block_get(bs, node->idx->dev_handle, node->idx->pfc,
  92.         (node->idx->pdi * sizeof(fat_dentry_t)) / bps);
  93.  
  94.     d = ((fat_dentry_t *)b->data) + (node->idx->pdi % dps);
  95.  
  96.     d->firstc = host2uint16_t_le(node->firstc);
  97.     if (node->type == FAT_FILE)
  98.         d->size = host2uint32_t_le(node->size);
  99.     /* TODO: update other fields? (e.g time fields, attr field) */
  100.    
  101.     b->dirty = true;        /* need to sync block */
  102.     block_put(b);
  103. }
  104.  
  105. /** Internal version of fat_node_get().
  106.  *
  107.  * @param idxp      Locked index structure.
  108.  */
  109. static void *fat_node_get_core(fat_idx_t *idxp)
  110. {
  111.     block_t *b;
  112.     fat_bs_t *bs;
  113.     fat_dentry_t *d;
  114.     fat_node_t *nodep = NULL;
  115.     unsigned bps;
  116.     unsigned dps;
  117.  
  118.     if (idxp->nodep) {
  119.         /*
  120.          * We are lucky.
  121.          * The node is already instantiated in memory.
  122.          */
  123.         futex_down(&idxp->nodep->lock);
  124.         if (!idxp->nodep->refcnt++)
  125.             list_remove(&idxp->nodep->ffn_link);
  126.         futex_up(&idxp->nodep->lock);
  127.         return idxp->nodep;
  128.     }
  129.  
  130.     /*
  131.      * We must instantiate the node from the file system.
  132.      */
  133.    
  134.     assert(idxp->pfc);
  135.  
  136.     futex_down(&ffn_futex);
  137.     if (!list_empty(&ffn_head)) {
  138.         /* Try to use a cached free node structure. */
  139.         fat_idx_t *idxp_tmp;
  140.         nodep = list_get_instance(ffn_head.next, fat_node_t, ffn_link);
  141.         if (futex_trydown(&nodep->lock) == ESYNCH_WOULD_BLOCK)
  142.             goto skip_cache;
  143.         idxp_tmp = nodep->idx;
  144.         if (futex_trydown(&idxp_tmp->lock) == ESYNCH_WOULD_BLOCK) {
  145.             futex_up(&nodep->lock);
  146.             goto skip_cache;
  147.         }
  148.         list_remove(&nodep->ffn_link);
  149.         futex_up(&ffn_futex);
  150.         if (nodep->dirty)
  151.             fat_node_sync(nodep);
  152.         idxp_tmp->nodep = NULL;
  153.         futex_up(&nodep->lock);
  154.         futex_up(&idxp_tmp->lock);
  155.     } else {
  156. skip_cache:
  157.         /* Try to allocate a new node structure. */
  158.         futex_up(&ffn_futex);
  159.         nodep = (fat_node_t *)malloc(sizeof(fat_node_t));
  160.         if (!nodep)
  161.             return NULL;
  162.     }
  163.     fat_node_initialize(nodep);
  164.  
  165.     bs = block_bb_get(idxp->dev_handle);
  166.     bps = uint16_t_le2host(bs->bps);
  167.     dps = bps / sizeof(fat_dentry_t);
  168.  
  169.     /* Read the block that contains the dentry of interest. */
  170.     b = _fat_block_get(bs, idxp->dev_handle, idxp->pfc,
  171.         (idxp->pdi * sizeof(fat_dentry_t)) / bps);
  172.     assert(b);
  173.  
  174.     d = ((fat_dentry_t *)b->data) + (idxp->pdi % dps);
  175.     if (d->attr & FAT_ATTR_SUBDIR) {
  176.         /*
  177.          * The only directory which does not have this bit set is the
  178.          * root directory itself. The root directory node is handled
  179.          * and initialized elsewhere.
  180.          */
  181.         nodep->type = FAT_DIRECTORY;
  182.         /*
  183.          * Unfortunately, the 'size' field of the FAT dentry is not
  184.          * defined for the directory entry type. We must determine the
  185.          * size of the directory by walking the FAT.
  186.          */
  187.         nodep->size = bps * _fat_blcks_get(bs, idxp->dev_handle,
  188.             uint16_t_le2host(d->firstc), NULL);
  189.     } else {
  190.         nodep->type = FAT_FILE;
  191.         nodep->size = uint32_t_le2host(d->size);
  192.     }
  193.     nodep->firstc = uint16_t_le2host(d->firstc);
  194.     nodep->lnkcnt = 1;
  195.     nodep->refcnt = 1;
  196.  
  197.     block_put(b);
  198.  
  199.     /* Link the idx structure with the node structure. */
  200.     nodep->idx = idxp;
  201.     idxp->nodep = nodep;
  202.  
  203.     return nodep;
  204. }
  205.  
  206. /** Instantiate a FAT in-core node. */
  207. static void *fat_node_get(dev_handle_t dev_handle, fs_index_t index)
  208. {
  209.     void *node;
  210.     fat_idx_t *idxp;
  211.  
  212.     idxp = fat_idx_get_by_index(dev_handle, index);
  213.     if (!idxp)
  214.         return NULL;
  215.     /* idxp->lock held */
  216.     node = fat_node_get_core(idxp);
  217.     futex_up(&idxp->lock);
  218.     return node;
  219. }
  220.  
  221. static void fat_node_put(void *node)
  222. {
  223.     fat_node_t *nodep = (fat_node_t *)node;
  224.  
  225.     futex_down(&nodep->lock);
  226.     if (!--nodep->refcnt) {
  227.         futex_down(&ffn_futex);
  228.         list_append(&nodep->ffn_link, &ffn_head);
  229.         futex_up(&ffn_futex);
  230.     }
  231.     futex_up(&nodep->lock);
  232. }
  233.  
  234. static void *fat_create(int flags)
  235. {
  236.     return NULL;    /* not supported at the moment */
  237. }
  238.  
  239. static int fat_destroy(void *node)
  240. {
  241.     return ENOTSUP; /* not supported at the moment */
  242. }
  243.  
  244. static bool fat_link(void *prnt, void *chld, const char *name)
  245. {
  246.     return false;   /* not supported at the moment */
  247. }
  248.  
  249. static int fat_unlink(void *prnt, void *chld)
  250. {
  251.     return ENOTSUP; /* not supported at the moment */
  252. }
  253.  
  254. static void *fat_match(void *prnt, const char *component)
  255. {
  256.     fat_bs_t *bs;
  257.     fat_node_t *parentp = (fat_node_t *)prnt;
  258.     char name[FAT_NAME_LEN + 1 + FAT_EXT_LEN + 1];
  259.     unsigned i, j;
  260.     unsigned bps;       /* bytes per sector */
  261.     unsigned dps;       /* dentries per sector */
  262.     unsigned blocks;
  263.     fat_dentry_t *d;
  264.     block_t *b;
  265.  
  266.     futex_down(&parentp->idx->lock);
  267.     bs = block_bb_get(parentp->idx->dev_handle);
  268.     bps = uint16_t_le2host(bs->bps);
  269.     dps = bps / sizeof(fat_dentry_t);
  270.     blocks = parentp->size / bps;
  271.     for (i = 0; i < blocks; i++) {
  272.         b = fat_block_get(bs, parentp, i);
  273.         for (j = 0; j < dps; j++) {
  274.             d = ((fat_dentry_t *)b->data) + j;
  275.             switch (fat_classify_dentry(d)) {
  276.             case FAT_DENTRY_SKIP:
  277.                 continue;
  278.             case FAT_DENTRY_LAST:
  279.                 block_put(b);
  280.                 futex_up(&parentp->idx->lock);
  281.                 return NULL;
  282.             default:
  283.             case FAT_DENTRY_VALID:
  284.                 dentry_name_canonify(d, name);
  285.                 break;
  286.             }
  287.             if (stricmp(name, component) == 0) {
  288.                 /* hit */
  289.                 void *node;
  290.                 /*
  291.                  * Assume tree hierarchy for locking.  We
  292.                  * already have the parent and now we are going
  293.                  * to lock the child.  Never lock in the oposite
  294.                  * order.
  295.                  */
  296.                 fat_idx_t *idx = fat_idx_get_by_pos(
  297.                     parentp->idx->dev_handle, parentp->firstc,
  298.                     i * dps + j);
  299.                 futex_up(&parentp->idx->lock);
  300.                 if (!idx) {
  301.                     /*
  302.                      * Can happen if memory is low or if we
  303.                      * run out of 32-bit indices.
  304.                      */
  305.                     block_put(b);
  306.                     return NULL;
  307.                 }
  308.                 node = fat_node_get_core(idx);
  309.                 futex_up(&idx->lock);
  310.                 block_put(b);
  311.                 return node;
  312.             }
  313.         }
  314.         block_put(b);
  315.     }
  316.  
  317.     futex_up(&parentp->idx->lock);
  318.     return NULL;
  319. }
  320.  
  321. static fs_index_t fat_index_get(void *node)
  322. {
  323.     fat_node_t *fnodep = (fat_node_t *)node;
  324.     if (!fnodep)
  325.         return 0;
  326.     return fnodep->idx->index;
  327. }
  328.  
  329. static size_t fat_size_get(void *node)
  330. {
  331.     return ((fat_node_t *)node)->size;
  332. }
  333.  
  334. static unsigned fat_lnkcnt_get(void *node)
  335. {
  336.     return ((fat_node_t *)node)->lnkcnt;
  337. }
  338.  
  339. static bool fat_has_children(void *node)
  340. {
  341.     fat_bs_t *bs;
  342.     fat_node_t *nodep = (fat_node_t *)node;
  343.     unsigned bps;
  344.     unsigned dps;
  345.     unsigned blocks;
  346.     block_t *b;
  347.     unsigned i, j;
  348.  
  349.     if (nodep->type != FAT_DIRECTORY)
  350.         return false;
  351.    
  352.     futex_down(&nodep->idx->lock);
  353.     bs = block_bb_get(nodep->idx->dev_handle);
  354.     bps = uint16_t_le2host(bs->bps);
  355.     dps = bps / sizeof(fat_dentry_t);
  356.  
  357.     blocks = nodep->size / bps;
  358.  
  359.     for (i = 0; i < blocks; i++) {
  360.         fat_dentry_t *d;
  361.    
  362.         b = fat_block_get(bs, nodep, i);
  363.         for (j = 0; j < dps; j++) {
  364.             d = ((fat_dentry_t *)b->data) + j;
  365.             switch (fat_classify_dentry(d)) {
  366.             case FAT_DENTRY_SKIP:
  367.                 continue;
  368.             case FAT_DENTRY_LAST:
  369.                 block_put(b);
  370.                 futex_up(&nodep->idx->lock);
  371.                 return false;
  372.             default:
  373.             case FAT_DENTRY_VALID:
  374.                 block_put(b);
  375.                 futex_up(&nodep->idx->lock);
  376.                 return true;
  377.             }
  378.             block_put(b);
  379.             futex_up(&nodep->idx->lock);
  380.             return true;
  381.         }
  382.         block_put(b);
  383.     }
  384.  
  385.     futex_up(&nodep->idx->lock);
  386.     return false;
  387. }
  388.  
  389. static void *fat_root_get(dev_handle_t dev_handle)
  390. {
  391.     return fat_node_get(dev_handle, 0);
  392. }
  393.  
  394. static char fat_plb_get_char(unsigned pos)
  395. {
  396.     return fat_reg.plb_ro[pos % PLB_SIZE];
  397. }
  398.  
  399. static bool fat_is_directory(void *node)
  400. {
  401.     return ((fat_node_t *)node)->type == FAT_DIRECTORY;
  402. }
  403.  
  404. static bool fat_is_file(void *node)
  405. {
  406.     return ((fat_node_t *)node)->type == FAT_FILE;
  407. }
  408.  
  409. /** libfs operations */
  410. libfs_ops_t fat_libfs_ops = {
  411.     .match = fat_match,
  412.     .node_get = fat_node_get,
  413.     .node_put = fat_node_put,
  414.     .create = fat_create,
  415.     .destroy = fat_destroy,
  416.     .link = fat_link,
  417.     .unlink = fat_unlink,
  418.     .index_get = fat_index_get,
  419.     .size_get = fat_size_get,
  420.     .lnkcnt_get = fat_lnkcnt_get,
  421.     .has_children = fat_has_children,
  422.     .root_get = fat_root_get,
  423.     .plb_get_char = fat_plb_get_char,
  424.     .is_directory = fat_is_directory,
  425.     .is_file = fat_is_file
  426. };
  427.  
  428. void fat_mounted(ipc_callid_t rid, ipc_call_t *request)
  429. {
  430.     dev_handle_t dev_handle = (dev_handle_t) IPC_GET_ARG1(*request);
  431.     fat_bs_t *bs;
  432.     uint16_t bps;
  433.     uint16_t rde;
  434.     int rc;
  435.  
  436.     /* initialize libblock */
  437.     rc = block_init(dev_handle, BS_SIZE);
  438.     if (rc != EOK) {
  439.         ipc_answer_0(rid, rc);
  440.         return;
  441.     }
  442.  
  443.     /* prepare the boot block */
  444.     rc = block_bb_read(dev_handle, BS_BLOCK * BS_SIZE, BS_SIZE);
  445.     if (rc != EOK) {
  446.         block_fini(dev_handle);
  447.         ipc_answer_0(rid, rc);
  448.         return;
  449.     }
  450.  
  451.     /* get the buffer with the boot sector */
  452.     bs = block_bb_get(dev_handle);
  453.    
  454.     /* Read the number of root directory entries. */
  455.     bps = uint16_t_le2host(bs->bps);
  456.     rde = uint16_t_le2host(bs->root_ent_max);
  457.  
  458.     if (bps != BS_SIZE) {
  459.         block_fini(dev_handle);
  460.         ipc_answer_0(rid, ENOTSUP);
  461.         return;
  462.     }
  463.  
  464.     rc = fat_idx_init_by_dev_handle(dev_handle);
  465.     if (rc != EOK) {
  466.         block_fini(dev_handle);
  467.         ipc_answer_0(rid, rc);
  468.         return;
  469.     }
  470.  
  471.     /* Initialize the root node. */
  472.     fat_node_t *rootp = (fat_node_t *)malloc(sizeof(fat_node_t));
  473.     if (!rootp) {
  474.         block_fini(dev_handle);
  475.         fat_idx_fini_by_dev_handle(dev_handle);
  476.         ipc_answer_0(rid, ENOMEM);
  477.         return;
  478.     }
  479.     fat_node_initialize(rootp);
  480.  
  481.     fat_idx_t *ridxp = fat_idx_get_by_pos(dev_handle, FAT_CLST_ROOTPAR, 0);
  482.     if (!ridxp) {
  483.         block_fini(dev_handle);
  484.         free(rootp);
  485.         fat_idx_fini_by_dev_handle(dev_handle);
  486.         ipc_answer_0(rid, ENOMEM);
  487.         return;
  488.     }
  489.     assert(ridxp->index == 0);
  490.     /* ridxp->lock held */
  491.  
  492.     rootp->type = FAT_DIRECTORY;
  493.     rootp->firstc = FAT_CLST_ROOT;
  494.     rootp->refcnt = 1;
  495.     rootp->lnkcnt = 0;  /* FS root is not linked */
  496.     rootp->size = rde * sizeof(fat_dentry_t);
  497.     rootp->idx = ridxp;
  498.     ridxp->nodep = rootp;
  499.    
  500.     futex_up(&ridxp->lock);
  501.  
  502.     ipc_answer_3(rid, EOK, ridxp->index, rootp->size, rootp->lnkcnt);
  503. }
  504.  
  505. void fat_mount(ipc_callid_t rid, ipc_call_t *request)
  506. {
  507.     ipc_answer_0(rid, ENOTSUP);
  508. }
  509.  
  510. void fat_lookup(ipc_callid_t rid, ipc_call_t *request)
  511. {
  512.     libfs_lookup(&fat_libfs_ops, fat_reg.fs_handle, rid, request);
  513. }
  514.  
  515. void fat_read(ipc_callid_t rid, ipc_call_t *request)
  516. {
  517.     dev_handle_t dev_handle = (dev_handle_t)IPC_GET_ARG1(*request);
  518.     fs_index_t index = (fs_index_t)IPC_GET_ARG2(*request);
  519.     off_t pos = (off_t)IPC_GET_ARG3(*request);
  520.     fat_node_t *nodep = (fat_node_t *)fat_node_get(dev_handle, index);
  521.     fat_bs_t *bs;
  522.     uint16_t bps;
  523.     size_t bytes;
  524.     block_t *b;
  525.  
  526.     if (!nodep) {
  527.         ipc_answer_0(rid, ENOENT);
  528.         return;
  529.     }
  530.  
  531.     ipc_callid_t callid;
  532.     size_t len;
  533.     if (!ipc_data_read_receive(&callid, &len)) {
  534.         fat_node_put(nodep);
  535.         ipc_answer_0(callid, EINVAL);
  536.         ipc_answer_0(rid, EINVAL);
  537.         return;
  538.     }
  539.  
  540.     bs = block_bb_get(dev_handle);
  541.     bps = uint16_t_le2host(bs->bps);
  542.  
  543.     if (nodep->type == FAT_FILE) {
  544.         /*
  545.          * Our strategy for regular file reads is to read one block at
  546.          * most and make use of the possibility to return less data than
  547.          * requested. This keeps the code very simple.
  548.          */
  549.         if (pos >= nodep->size) {
  550.             /* reading beyond the EOF */
  551.             bytes = 0;
  552.             (void) ipc_data_read_finalize(callid, NULL, 0);
  553.         } else {
  554.             bytes = min(len, bps - pos % bps);
  555.             bytes = min(bytes, nodep->size - pos);
  556.             b = fat_block_get(bs, nodep, pos / bps);
  557.             (void) ipc_data_read_finalize(callid, b->data + pos % bps,
  558.                 bytes);
  559.             block_put(b);
  560.         }
  561.     } else {
  562.         unsigned bnum;
  563.         off_t spos = pos;
  564.         char name[FAT_NAME_LEN + 1 + FAT_EXT_LEN + 1];
  565.         fat_dentry_t *d;
  566.  
  567.         assert(nodep->type == FAT_DIRECTORY);
  568.         assert(nodep->size % bps == 0);
  569.         assert(bps % sizeof(fat_dentry_t) == 0);
  570.  
  571.         /*
  572.          * Our strategy for readdir() is to use the position pointer as
  573.          * an index into the array of all dentries. On entry, it points
  574.          * to the first unread dentry. If we skip any dentries, we bump
  575.          * the position pointer accordingly.
  576.          */
  577.         bnum = (pos * sizeof(fat_dentry_t)) / bps;
  578.         while (bnum < nodep->size / bps) {
  579.             off_t o;
  580.  
  581.             b = fat_block_get(bs, nodep, bnum);
  582.             for (o = pos % (bps / sizeof(fat_dentry_t));
  583.                 o < bps / sizeof(fat_dentry_t);
  584.                 o++, pos++) {
  585.                 d = ((fat_dentry_t *)b->data) + o;
  586.                 switch (fat_classify_dentry(d)) {
  587.                 case FAT_DENTRY_SKIP:
  588.                     continue;
  589.                 case FAT_DENTRY_LAST:
  590.                     block_put(b);
  591.                     goto miss;
  592.                 default:
  593.                 case FAT_DENTRY_VALID:
  594.                     dentry_name_canonify(d, name);
  595.                     block_put(b);
  596.                     goto hit;
  597.                 }
  598.             }
  599.             block_put(b);
  600.             bnum++;
  601.         }
  602. miss:
  603.         fat_node_put(nodep);
  604.         ipc_answer_0(callid, ENOENT);
  605.         ipc_answer_1(rid, ENOENT, 0);
  606.         return;
  607. hit:
  608.         (void) ipc_data_read_finalize(callid, name, strlen(name) + 1);
  609.         bytes = (pos - spos) + 1;
  610.     }
  611.  
  612.     fat_node_put(nodep);
  613.     ipc_answer_1(rid, EOK, (ipcarg_t)bytes);
  614. }
  615.  
  616. void fat_write(ipc_callid_t rid, ipc_call_t *request)
  617. {
  618.     dev_handle_t dev_handle = (dev_handle_t)IPC_GET_ARG1(*request);
  619.     fs_index_t index = (fs_index_t)IPC_GET_ARG2(*request);
  620.     off_t pos = (off_t)IPC_GET_ARG3(*request);
  621.     fat_node_t *nodep = (fat_node_t *)fat_node_get(dev_handle, index);
  622.     fat_bs_t *bs;
  623.     size_t bytes;
  624.     block_t *b;
  625.     uint16_t bps;
  626.     unsigned spc;
  627.     off_t boundary;
  628.    
  629.     if (!nodep) {
  630.         ipc_answer_0(rid, ENOENT);
  631.         return;
  632.     }
  633.    
  634.     /* XXX remove me when you are ready */
  635.     {
  636.         ipc_answer_0(rid, ENOTSUP);
  637.         fat_node_put(nodep);
  638.         return;
  639.     }
  640.  
  641.     ipc_callid_t callid;
  642.     size_t len;
  643.     if (!ipc_data_write_receive(&callid, &len)) {
  644.         fat_node_put(nodep);
  645.         ipc_answer_0(callid, EINVAL);
  646.         ipc_answer_0(rid, EINVAL);
  647.         return;
  648.     }
  649.  
  650.     /*
  651.      * In all scenarios, we will attempt to write out only one block worth
  652.      * of data at maximum. There might be some more efficient approaches,
  653.      * but this one greatly simplifies fat_write(). Note that we can afford
  654.      * to do this because the client must be ready to handle the return
  655.      * value signalizing a smaller number of bytes written.
  656.      */
  657.     bytes = min(len, bps - pos % bps);
  658.  
  659.     bs = block_bb_get(dev_handle);
  660.     bps = uint16_t_le2host(bs->bps);
  661.     spc = bs->spc;
  662.    
  663.     boundary = ROUND_UP(nodep->size, bps * spc);
  664.     if (pos < boundary) {
  665.         /*
  666.          * This is the easier case - we are either overwriting already
  667.          * existing contents or writing behind the EOF, but still within
  668.          * the limits of the last cluster. The node size may grow to the
  669.          * next block size boundary.
  670.          */
  671.         fat_fill_gap(bs, nodep, FAT_CLST_RES0, pos);
  672.         b = fat_block_get(bs, nodep, pos / bps);
  673.         (void) ipc_data_write_finalize(callid, b->data + pos % bps,
  674.             bytes);
  675.         b->dirty = true;        /* need to sync block */
  676.         block_put(b);
  677.         if (pos + bytes > nodep->size) {
  678.             nodep->size = pos + bytes;
  679.             nodep->dirty = true;    /* need to sync node */
  680.         }
  681.         fat_node_put(nodep);
  682.         ipc_answer_1(rid, EOK, bytes); 
  683.         return;
  684.     } else {
  685.         /*
  686.          * This is the more difficult case. We must allocate new
  687.          * clusters for the node and zero them out.
  688.          */
  689.         int status;
  690.         unsigned nclsts;
  691.         fat_cluster_t mcl, lcl;
  692.    
  693.         nclsts = (ROUND_UP(pos + bytes, bps * spc) - boundary) /
  694.             bps * spc;
  695.         /* create an independent chain of nclsts clusters in all FATs */
  696.         status = fat_alloc_clusters(bs, dev_handle, nclsts, &mcl,
  697.             &lcl);
  698.         if (status != EOK) {
  699.             /* could not allocate a chain of nclsts clusters */
  700.             fat_node_put(nodep);
  701.             ipc_answer_0(callid, status);
  702.             ipc_answer_0(rid, status);
  703.             return;
  704.         }
  705.         /* zero fill any gaps */
  706.         fat_fill_gap(bs, nodep, mcl, pos);
  707.         b = _fat_block_get(bs, dev_handle, lcl,
  708.             (pos / bps) % spc);
  709.         (void) ipc_data_write_finalize(callid, b->data + pos % bps,
  710.             bytes);
  711.         b->dirty = true;        /* need to sync block */
  712.         block_put(b);
  713.         /*
  714.          * Append the cluster chain starting in mcl to the end of the
  715.          * node's cluster chain.
  716.          */
  717.         fat_append_clusters(bs, nodep, mcl);
  718.         nodep->size = pos + bytes;
  719.         nodep->dirty = true;        /* need to sync node */
  720.         fat_node_put(nodep);
  721.         ipc_answer_1(rid, EOK, bytes);
  722.         return;
  723.     }
  724. }
  725.  
  726. /**
  727.  * @}
  728.  */
  729.