Subversion Repositories HelenOS

Rev

Rev 1962 | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /*
  2.  * Copyright (C) 2001-2004 Jakub Jermar
  3.  * All rights reserved.
  4.  *
  5.  * Redistribution and use in source and binary forms, with or without
  6.  * modification, are permitted provided that the following conditions
  7.  * are met:
  8.  *
  9.  * - Redistributions of source code must retain the above copyright
  10.  *   notice, this list of conditions and the following disclaimer.
  11.  * - Redistributions in binary form must reproduce the above copyright
  12.  *   notice, this list of conditions and the following disclaimer in the
  13.  *   documentation and/or other materials provided with the distribution.
  14.  * - The name of the author may not be used to endorse or promote products
  15.  *   derived from this software without specific prior written permission.
  16.  *
  17.  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
  18.  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  19.  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  20.  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  21.  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  22.  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  23.  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  24.  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  25.  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  26.  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  27.  */
  28.  
  29. #include <arch/pm.h>
  30. #include <arch/mm/page.h>
  31. #include <arch/types.h>
  32. #include <arch/interrupt.h>
  33. #include <arch/asm.h>
  34.  
  35. #include <config.h>
  36.  
  37. #include <memstr.h>
  38. #include <mm/heap.h>
  39. #include <debug.h>
  40.  
  41. /*
  42.  * There is no segmentation in long mode so we set up flat mode. In this
  43.  * mode, we use, for each privilege level, two segments spanning the
  44.  * whole memory. One is for code and one is for data.
  45.  */
  46.  
  47. struct descriptor gdt[GDT_ITEMS] = {
  48.     /* NULL descriptor */
  49.     { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
  50.     /* KTEXT descriptor */
  51.     { .limit_0_15  = 0xffff,
  52.       .base_0_15   = 0,
  53.       .base_16_23  = 0,
  54.       .access      = AR_PRESENT | AR_CODE | DPL_KERNEL | AR_READABLE ,
  55.       .limit_16_19 = 0xf,
  56.       .available   = 0,
  57.       .longmode    = 1,
  58.       .special     = 0,
  59.       .granularity = 1,
  60.       .base_24_31  = 0 },
  61.     /* KDATA descriptor */
  62.     { .limit_0_15  = 0xffff,
  63.       .base_0_15   = 0,
  64.       .base_16_23  = 0,
  65.       .access      = AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_KERNEL,
  66.       .limit_16_19 = 0xf,
  67.       .available   = 0,
  68.       .longmode    = 0,
  69.       .special     = 0,
  70.       .granularity = 1,
  71.       .base_24_31  = 0 },
  72.     /* UTEXT descriptor */
  73.     { .limit_0_15  = 0xffff,
  74.       .base_0_15   = 0,
  75.       .base_16_23  = 0,
  76.       .access      = AR_PRESENT | AR_CODE | DPL_USER,
  77.       .limit_16_19 = 0xf,
  78.       .available   = 0,
  79.       .longmode    = 1,
  80.       .special     = 0,
  81.       .granularity = 1,
  82.       .base_24_31  = 0 },
  83.     /* UDATA descriptor */
  84.     { .limit_0_15  = 0xffff,
  85.       .base_0_15   = 0,
  86.       .base_16_23  = 0,
  87.       .access      = AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_USER,
  88.       .limit_16_19 = 0xf,
  89.       .available   = 0,
  90.       .longmode    = 0,
  91.       .special     = 1,
  92.       .granularity = 1,
  93.       .base_24_31  = 0 },
  94.     /* KTEXT 32-bit protected, for protected mode before long mode */
  95.     { .limit_0_15  = 0xffff,
  96.       .base_0_15   = 0,
  97.       .base_16_23  = 0,
  98.       .access      = AR_PRESENT | AR_CODE | DPL_KERNEL | AR_READABLE,
  99.       .limit_16_19 = 0xf,
  100.       .available   = 0,
  101.       .longmode    = 0,
  102.       .special     = 1,
  103.       .granularity = 1,
  104.       .base_24_31  = 0 },
  105.     /* TSS descriptor - set up will be completed later,
  106.      * on AMD64 it is 64-bit - 2 items in table */
  107.     { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
  108.     { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }
  109. };
  110.  
  111. struct idescriptor idt[IDT_ITEMS];
  112.  
  113. struct ptr_16_64 gdtr = {.limit = sizeof(gdt), .base= (__u64) gdt };
  114. struct ptr_16_64 idtr = {.limit = sizeof(idt), .base= (__u64) idt };
  115.  
  116. static struct tss tss;
  117. struct tss *tss_p = NULL;
  118.  
  119. void gdt_tss_setbase(struct descriptor *d, __address base)
  120. {
  121.     struct tss_descriptor *td = (struct tss_descriptor *) d;
  122.  
  123.     td->base_0_15 = base & 0xffff;
  124.     td->base_16_23 = ((base) >> 16) & 0xff;
  125.     td->base_24_31 = ((base) >> 24) & 0xff;
  126.     td->base_32_63 = ((base) >> 32);
  127. }
  128.  
  129. void gdt_tss_setlimit(struct descriptor *d, __u32 limit)
  130. {
  131.     struct tss_descriptor *td = (struct tss_descriptor *) d;
  132.  
  133.     td->limit_0_15 = limit & 0xffff;
  134.     td->limit_16_19 = (limit >> 16) & 0xf;
  135. }
  136.  
  137. void idt_setoffset(struct idescriptor *d, __address offset)
  138. {
  139.     /*
  140.      * Offset is a linear address.
  141.      */
  142.     d->offset_0_15 = offset & 0xffff;
  143.     d->offset_16_31 = offset >> 16 & 0xffff;
  144.     d->offset_32_63 = offset >> 32;
  145. }
  146.  
  147. void tss_initialize(struct tss *t)
  148. {
  149.     memsetb((__address) t, sizeof(struct tss), 0);
  150. }
  151.  
  152. /*
  153.  * This function takes care of proper setup of IDT and IDTR.
  154.  */
  155. void idt_init(void)
  156. {
  157.     struct idescriptor *d;
  158.     int i;
  159.  
  160.     for (i = 0; i < IDT_ITEMS; i++) {
  161.         d = &idt[i];
  162.  
  163.         d->unused = 0;
  164.         d->selector = gdtselector(KTEXT_DES);
  165.  
  166.         d->present = 1;
  167.         d->type = AR_INTERRUPT; /* masking interrupt */
  168.  
  169.         if (i == VECTOR_SYSCALL) {
  170.             /*
  171.              * The syscall interrupt gate must be calleable from userland.
  172.              */
  173.             d->dpl |= PL_USER;
  174.         }
  175.        
  176.         idt_setoffset(d, ((__address) interrupt_handlers) + i*interrupt_handler_size);
  177.         trap_register(i, null_interrupt);
  178.     }
  179.     trap_register(13, gp_fault);
  180.     trap_register( 7, nm_fault);
  181.     trap_register(12, ss_fault);   
  182. }
  183.  
  184.  
  185. /* Clean IOPL(12,13) and NT(14) flags in EFLAGS register */
  186. static void clean_IOPL_NT_flags(void)
  187. {
  188.     asm
  189.     (
  190.         "pushfq;"
  191.         "pop %%rax;"
  192.         "and $~(0x7000),%%rax;"
  193.         "pushq %%rax;"
  194.         "popfq;"
  195.         :
  196.         :
  197.         :"%rax"
  198.     );
  199. }
  200.  
  201. /* Clean AM(18) flag in CR0 register */
  202. static void clean_AM_flag(void)
  203. {
  204.     asm
  205.     (
  206.         "mov %%cr0,%%rax;"
  207.         "and $~(0x40000),%%rax;"
  208.         "mov %%rax,%%cr0;"
  209.         :
  210.         :
  211.         :"%rax"
  212.     );
  213. }
  214.  
  215. void pm_init(void)
  216. {
  217.     struct descriptor *gdt_p = (struct descriptor *) gdtr.base;
  218.     struct tss_descriptor *tss_desc;
  219.  
  220.     /*
  221.      * Each CPU has its private GDT and TSS.
  222.      * All CPUs share one IDT.
  223.      */
  224.  
  225.     if (config.cpu_active == 1) {
  226.         idt_init();
  227.         /*
  228.          * NOTE: bootstrap CPU has statically allocated TSS, because
  229.          * the heap hasn't been initialized so far.
  230.          */
  231.         tss_p = &tss;
  232.     }
  233.     else {
  234.         tss_p = (struct tss *) malloc(sizeof(struct tss));
  235.         if (!tss_p)
  236.             panic("could not allocate TSS\n");
  237.     }
  238.  
  239.     tss_initialize(tss_p);
  240.  
  241.     tss_desc = (struct tss_descriptor *) (&gdt_p[TSS_DES]);
  242.     tss_desc->present = 1;
  243.     tss_desc->type = AR_TSS;
  244.     tss_desc->dpl = PL_KERNEL;
  245.    
  246.     gdt_tss_setbase(&gdt_p[TSS_DES], (__address) tss_p);
  247.     gdt_tss_setlimit(&gdt_p[TSS_DES], sizeof(struct tss) - 1);
  248.  
  249.     __asm__("lgdt %0" : : "m"(gdtr));
  250.     __asm__("lidt %0" : : "m"(idtr));
  251.     /*
  252.      * As of this moment, the current CPU has its own GDT pointing
  253.      * to its own TSS. We just need to load the TR register.
  254.      */
  255.     __asm__("ltr %0" : : "r" ((__u16) gdtselector(TSS_DES)));
  256.    
  257.     clean_IOPL_NT_flags();    /* Disable I/O on nonprivileged levels */
  258.     clean_AM_flag();          /* Disable alignment check */
  259. }
  260.