Subversion Repositories HelenOS

Rev

Go to most recent revision | Blame | Last modification | View Log | Download | RSS feed

/*
 * Copyright (c) 2001-2007 Jakub Jermar
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * - Redistributions of source code must retain the above copyright
 *   notice, this list of conditions and the following disclaimer.
 * - Redistributions in binary form must reproduce the above copyright
 *   notice, this list of conditions and the following disclaimer in the
 *   documentation and/or other materials provided with the distribution.
 * - The name of the author may not be used to endorse or promote products
 *   derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/** @addtogroup genericproc
 * @{
 */

/**
 * @file
 * @brief   Scheduler and load balancing.
 *
 * This file contains the scheduler and kcpulb kernel thread which
 * performs load-balancing of per-CPU run queues.
 */

#include <proc/scheduler.h>
#include <proc/thread.h>
#include <proc/task.h>
#include <mm/frame.h>
#include <mm/page.h>
#include <mm/as.h>
#include <time/timeout.h>
#include <time/delay.h>
#include <arch/asm.h>
#include <arch/faddr.h>
#include <arch/cycle.h>
#include <atomic.h>
#include <synch/spinlock.h>
#include <config.h>
#include <context.h>
#include <fpu_context.h>
#include <func.h>
#include <arch.h>
#include <adt/list.h>
#include <panic.h>
#include <cpu.h>
#include <print.h>
#include <debug.h>
#include <proc/tasklet.h>

static void before_task_runs(void);
static void before_thread_runs(void);
static void after_thread_ran(void);
static void scheduler_separated_stack(void);

atomic_t nrdy;  /**< Number of ready threads in the system. */

/** Carry out actions before new task runs. */
void before_task_runs(void)
{
    before_task_runs_arch();
}

/** Take actions before new thread runs.
 *
 * Perform actions that need to be
 * taken before the newly selected
 * tread is passed control.
 *
 * THREAD->lock is locked on entry
 *
 */
void before_thread_runs(void)
{
    before_thread_runs_arch();
#ifdef CONFIG_FPU_LAZY
    if(THREAD == CPU->fpu_owner) 
        fpu_enable();
    else
        fpu_disable(); 
#else
    fpu_enable();
    if (THREAD->fpu_context_exists)
        fpu_context_restore(THREAD->saved_fpu_context);
    else {
        fpu_init();
        THREAD->fpu_context_exists = 1;
    }
#endif
}

/** Take actions after THREAD had run.
 *
 * Perform actions that need to be
 * taken after the running thread
 * had been preempted by the scheduler.
 *
 * THREAD->lock is locked on entry
 *
 */
void after_thread_ran(void)
{
    after_thread_ran_arch();
}

#ifdef CONFIG_FPU_LAZY
void scheduler_fpu_lazy_request(void)
{
restart:
    fpu_enable();
    spinlock_lock(&CPU->lock);

    /* Save old context */
    if (CPU->fpu_owner != NULL) {  
        spinlock_lock(&CPU->fpu_owner->lock);
        fpu_context_save(CPU->fpu_owner->saved_fpu_context);
        /* don't prevent migration */
        CPU->fpu_owner->fpu_context_engaged = 0;
        spinlock_unlock(&CPU->fpu_owner->lock);
        CPU->fpu_owner = NULL;
    }

    spinlock_lock(&THREAD->lock);
    if (THREAD->fpu_context_exists) {
        fpu_context_restore(THREAD->saved_fpu_context);
    } else {
        /* Allocate FPU context */
        if (!THREAD->saved_fpu_context) {
            /* Might sleep */
            spinlock_unlock(&THREAD->lock);
            spinlock_unlock(&CPU->lock);
            THREAD->saved_fpu_context =
                (fpu_context_t *) slab_alloc(fpu_context_slab, 0);
            /* We may have switched CPUs during slab_alloc */
            goto restart; 
        }
        fpu_init();
        THREAD->fpu_context_exists = 1;
    }
    CPU->fpu_owner = THREAD;
    THREAD->fpu_context_engaged = 1;
    spinlock_unlock(&THREAD->lock);

    spinlock_unlock(&CPU->lock);
}
#endif

/** Initialize scheduler
 *
 * Initialize kernel scheduler.
 *
 */
void scheduler_init(void)
{
}

/** Get thread to be scheduled
 *
 * Get the optimal thread to be scheduled
 * according to thread accounting and scheduler
 * policy.
 *
 * @return Thread to be scheduled.
 *
 */
static thread_t *find_best_thread(void)
{
    thread_t *t;
    runq_t *r;
    int i;

    ASSERT(CPU != NULL);

loop:
    interrupts_enable();
    
    if (atomic_get(&CPU->nrdy) == 0) {
        /*
         * For there was nothing to run, the CPU goes to sleep
         * until a hardware interrupt or an IPI comes.
         * This improves energy saving and hyperthreading.
         */

        /*
         * An interrupt might occur right now and wake up a thread.
         * In such case, the CPU will continue to go to sleep
         * even though there is a runnable thread.
         */

         cpu_sleep();
         goto loop;
    }

    interrupts_disable();
    
    for (i = 0; i<RQ_COUNT; i++) {
        r = &CPU->rq[i];
        spinlock_lock(&r->lock);
        if (r->n == 0) {
            /*
             * If this queue is empty, try a lower-priority queue.
             */
            spinlock_unlock(&r->lock);
            continue;
        }

        atomic_dec(&CPU->nrdy);
        atomic_dec(&nrdy);
        r->n--;

        /*
         * Take the first thread from the queue.
         */
        t = list_get_instance(r->rq_head.next, thread_t, rq_link);
        if (verbose)
            printf("cpu%d removing, rq_head %x, t: %x, next: %x, link: %x \n",CPU->id, r->rq_head, t, r->rq_head.next, t->rq_link);
        list_remove(&t->rq_link);
        if (verbose)
            printf("cpu%d  removed, rq_head %x, t: %x, next: %x, link: %x \n",CPU->id, r->rq_head, t, r->rq_head.next, t->rq_link);

        spinlock_unlock(&r->lock);

        spinlock_lock(&t->lock);
        t->cpu = CPU;

        t->ticks = us2ticks((i + 1) * 10000);
        t->priority = i;    /* correct rq index */

        /*
         * Clear the THREAD_FLAG_STOLEN flag so that t can be migrated
         * when load balancing needs emerge.
         */
        t->flags &= ~THREAD_FLAG_STOLEN;
        spinlock_unlock(&t->lock);

        return t;
    }
    goto loop;

}

/** Prevent rq starvation
 *
 * Prevent low priority threads from starving in rq's.
 *
 * When the function decides to relink rq's, it reconnects
 * respective pointers so that in result threads with 'pri'
 * greater or equal start are moved to a higher-priority queue.
 *
 * @param start Threshold priority.
 *
 */
static void relink_rq(int start)
{
    link_t head;
    runq_t *r;
    int i, n;

    list_initialize(&head);
    spinlock_lock(&CPU->lock);
    if (CPU->needs_relink > NEEDS_RELINK_MAX) {
        for (i = start; i < RQ_COUNT - 1; i++) {
            /* remember and empty rq[i + 1] */
            r = &CPU->rq[i + 1];
            spinlock_lock(&r->lock);
            list_concat(&head, &r->rq_head);
            n = r->n;
            r->n = 0;
            spinlock_unlock(&r->lock);
        
            /* append rq[i + 1] to rq[i] */
            r = &CPU->rq[i];
            spinlock_lock(&r->lock);
            list_concat(&r->rq_head, &head);
            r->n += n;
            spinlock_unlock(&r->lock);
        }
        CPU->needs_relink = 0;
    }
    spinlock_unlock(&CPU->lock);

}

/** The scheduler
 *
 * The thread scheduling procedure.
 * Passes control directly to
 * scheduler_separated_stack().
 *
 */
void scheduler(void)
{
    volatile ipl_t ipl;

    ASSERT(CPU != NULL);

    ipl = interrupts_disable();

    if (atomic_get(&haltstate))
        halt();
    
    if (THREAD) {
        spinlock_lock(&THREAD->lock);
        
        /* Update thread accounting */
        THREAD->cycles += get_cycle() - THREAD->last_cycle;
        
#ifndef CONFIG_FPU_LAZY
        fpu_context_save(THREAD->saved_fpu_context);
#endif
        if (!context_save(&THREAD->saved_context)) {
            /*
             * This is the place where threads leave scheduler();
             */
            
            /* Save current CPU cycle */
            THREAD->last_cycle = get_cycle();
            
            spinlock_unlock(&THREAD->lock);
            interrupts_restore(THREAD->saved_context.ipl);
            
            return;
        }

        /*
         * Interrupt priority level of preempted thread is recorded
         * here to facilitate scheduler() invocations from
         * interrupts_disable()'d code (e.g. waitq_sleep_timeout()). 
         */
        THREAD->saved_context.ipl = ipl;
    }

    /*
     * Through the 'THE' structure, we keep track of THREAD, TASK, CPU, VM
     * and preemption counter. At this point THE could be coming either
     * from THREAD's or CPU's stack.
     */
    the_copy(THE, (the_t *) CPU->stack);

    /*
     * We may not keep the old stack.
     * Reason: If we kept the old stack and got blocked, for instance, in
     * find_best_thread(), the old thread could get rescheduled by another
     * CPU and overwrite the part of its own stack that was also used by
     * the scheduler on this CPU.
     *
     * Moreover, we have to bypass the compiler-generated POP sequence
     * which is fooled by SP being set to the very top of the stack.
     * Therefore the scheduler() function continues in
     * scheduler_separated_stack().
     */
    context_save(&CPU->saved_context);
    context_set(&CPU->saved_context, FADDR(scheduler_separated_stack),
        (uintptr_t) CPU->stack, CPU_STACK_SIZE);
    context_restore(&CPU->saved_context);
    /* not reached */
}

/** Scheduler stack switch wrapper
 *
 * Second part of the scheduler() function
 * using new stack. Handling the actual context
 * switch to a new thread.
 *
 * Assume THREAD->lock is held.
 */
void scheduler_separated_stack(void)
{
    int priority;
    
    ASSERT(CPU != NULL);
    
    if (THREAD) {
        /* must be run after the switch to scheduler stack */
        after_thread_ran();

        switch (THREAD->state) {
        case Running:
            spinlock_unlock(&THREAD->lock);
            thread_ready(THREAD);
            break;

        case Exiting:
repeat:
            if (THREAD->detached) {
                thread_destroy(THREAD);
            } else {
                /*
                 * The thread structure is kept allocated until
                 * somebody calls thread_detach() on it.
                 */
                if (!spinlock_trylock(&THREAD->join_wq.lock)) {
                    /*
                     * Avoid deadlock.
                     */
                    spinlock_unlock(&THREAD->lock);
                    delay(10);
                    spinlock_lock(&THREAD->lock);
                    goto repeat;
                }
                _waitq_wakeup_unsafe(&THREAD->join_wq, false);
                spinlock_unlock(&THREAD->join_wq.lock);
                
                THREAD->state = Undead;
                spinlock_unlock(&THREAD->lock);
            }
            break;
            
        case Sleeping:
            /*
             * Prefer the thread after it's woken up.
             */
            THREAD->priority = -1;

            /*
             * We need to release wq->lock which we locked in
             * waitq_sleep(). Address of wq->lock is kept in
             * THREAD->sleep_queue.
             */
            spinlock_unlock(&THREAD->sleep_queue->lock);

            /*
             * Check for possible requests for out-of-context
             * invocation.
             */
            if (THREAD->call_me) {
                THREAD->call_me(THREAD->call_me_with);
                THREAD->call_me = NULL;
                THREAD->call_me_with = NULL;
            }
            if (verbose)
                printf("cpu%d, Sleeping unlocking \n", CPU->id);
            spinlock_unlock(&THREAD->lock);

            break;

        default:
            /*
             * Entering state is unexpected.
             */
            panic("tid%d: unexpected state %s\n", THREAD->tid,
                thread_states[THREAD->state]);
            break;
        }

        THREAD = NULL;
    }
    if (verbose)
        printf("cpu%d looking for next thread\n", CPU->id);
    THREAD = find_best_thread();
    
    if (verbose)
        printf("cpu%d t locking  THREAD:%x \n", CPU->id, THREAD);
    spinlock_lock(&THREAD->lock);
    priority = THREAD->priority;
    spinlock_unlock(&THREAD->lock); 
    if (verbose)
        printf("cpu%d t unlocked after priority THREAD:%x \n", CPU->id, THREAD);

    relink_rq(priority);        

    /*
     * If both the old and the new task are the same, lots of work is
     * avoided.
     */
    if (TASK != THREAD->task) {
        as_t *as1 = NULL;
        as_t *as2;

        if (TASK) {
            spinlock_lock(&TASK->lock);
            as1 = TASK->as;
            spinlock_unlock(&TASK->lock);
        }

        spinlock_lock(&THREAD->task->lock);
        as2 = THREAD->task->as;
        spinlock_unlock(&THREAD->task->lock);
        
        /*
         * Note that it is possible for two tasks to share one address
         * space.
         */
        if (as1 != as2) {
            /*
             * Both tasks and address spaces are different.
             * Replace the old one with the new one.
             */
            as_switch(as1, as2);
        }
        TASK = THREAD->task;
        before_task_runs();
    }

    spinlock_lock(&THREAD->lock);   
    THREAD->state = Running;

#ifdef SCHEDULER_VERBOSE
    printf("cpu%d: tid %d (priority=%d, ticks=%lld, nrdy=%ld)\n",
        CPU->id, THREAD->tid, THREAD->priority, THREAD->ticks,
        atomic_get(&CPU->nrdy));
#endif  

    /*
     * Some architectures provide late kernel PA2KA(identity)
     * mapping in a page fault handler. However, the page fault
     * handler uses the kernel stack of the running thread and
     * therefore cannot be used to map it. The kernel stack, if
     * necessary, is to be mapped in before_thread_runs(). This
     * function must be executed before the switch to the new stack.
     */
    before_thread_runs();

    /*
     * Copy the knowledge of CPU, TASK, THREAD and preemption counter to
     * thread's stack.
     */
    the_copy(THE, (the_t *) THREAD->kstack);
    
    context_restore(&THREAD->saved_context);
    /* not reached */
}

#ifdef CONFIG_SMP
/** Load balancing thread
 *
 * SMP load balancing thread, supervising thread supplies
 * for the CPU it's wired to.
 *
 * @param arg Generic thread argument (unused).
 *
 */
void kcpulb(void *arg)
{
    thread_t *t;
    int count, average, j, k = 0;
    unsigned int i;
    ipl_t ipl;

    /*
     * Detach kcpulb as nobody will call thread_join_timeout() on it.
     */
    thread_detach(THREAD);
    
loop:
    /*
     * Work in 1s intervals.
     */
    thread_sleep(1);

not_satisfied:
    /*
     * Calculate the number of threads that will be migrated/stolen from
     * other CPU's. Note that situation can have changed between two
     * passes. Each time get the most up to date counts.
     */
    average = atomic_get(&nrdy) / config.cpu_active + 1;
    count = average - atomic_get(&CPU->nrdy);

    if (count <= 0)
        goto satisfied;

    /*
     * Searching least priority queues on all CPU's first and most priority
     * queues on all CPU's last.
     */
    for (j= RQ_COUNT - 1; j >= 0; j--) {
        for (i = 0; i < config.cpu_active; i++) {
            link_t *l;
            runq_t *r;
            cpu_t *cpu;

            cpu = &cpus[(i + k) % config.cpu_active];

            /*
             * Not interested in ourselves.
             * Doesn't require interrupt disabling for kcpulb has
             * THREAD_FLAG_WIRED.
             */
            if (CPU == cpu)
                continue;
            if (atomic_get(&cpu->nrdy) <= average)
                continue;

            ipl = interrupts_disable();
            r = &cpu->rq[j];
            spinlock_lock(&r->lock);
            if (r->n == 0) {
                spinlock_unlock(&r->lock);
                interrupts_restore(ipl);
                continue;
            }
        
            t = NULL;
            l = r->rq_head.prev;    /* search rq from the back */
            while (l != &r->rq_head) {
                t = list_get_instance(l, thread_t, rq_link);
                /*
                 * We don't want to steal CPU-wired threads
                 * neither threads already stolen. The latter
                 * prevents threads from migrating between CPU's
                 * without ever being run. We don't want to
                 * steal threads whose FPU context is still in
                 * CPU.
                 */
                spinlock_lock(&t->lock);
                if ((!(t->flags & (THREAD_FLAG_WIRED |
                    THREAD_FLAG_STOLEN))) &&
                    (!(t->fpu_context_engaged)) ) {
                    /*
                     * Remove t from r.
                     */
                    spinlock_unlock(&t->lock);
                    
                    atomic_dec(&cpu->nrdy);
                    atomic_dec(&nrdy);

                    r->n--;
                    list_remove(&t->rq_link);

                    break;
                }
                spinlock_unlock(&t->lock);
                l = l->prev;
                t = NULL;
            }
            spinlock_unlock(&r->lock);

            if (t) {
                /*
                 * Ready t on local CPU
                 */
                spinlock_lock(&t->lock);
#ifdef KCPULB_VERBOSE
                printf("kcpulb%d: TID %d -> cpu%d, nrdy=%ld, "
                    "avg=%nd\n", CPU->id, t->tid, CPU->id,
                    atomic_get(&CPU->nrdy),
                    atomic_get(&nrdy) / config.cpu_active);
#endif
                t->flags |= THREAD_FLAG_STOLEN;
                t->state = Entering;
                spinlock_unlock(&t->lock);
    
                thread_ready(t);

                interrupts_restore(ipl);
    
                if (--count == 0)
                    goto satisfied;
                    
                /*
                 * We are not satisfied yet, focus on another
                 * CPU next time.
                 */
                k++;
                
                continue;
            }
            interrupts_restore(ipl);
        }
    }

    if (atomic_get(&CPU->nrdy)) {
        /*
         * Be a little bit light-weight and let migrated threads run.
         */
        scheduler();
    } else {
        /*
         * We failed to migrate a single thread.
         * Give up this turn.
         */
        goto loop;
    }
        
    goto not_satisfied;

satisfied:
    goto loop;
}

#endif /* CONFIG_SMP */


/** Print information about threads & scheduler queues */
void sched_print_list(void)
{
    ipl_t ipl;
    unsigned int cpu, i;
    runq_t *r;
    thread_t *t;
    link_t *cur;

    /* We are going to mess with scheduler structures,
     * let's not be interrupted */
    ipl = interrupts_disable();
    for (cpu = 0; cpu < config.cpu_count; cpu++) {

        if (!cpus[cpu].active)
            continue;

        spinlock_lock(&cpus[cpu].lock);
        printf("cpu%d: address=%p, nrdy=%ld, needs_relink=%ld\n",
            cpus[cpu].id, &cpus[cpu], atomic_get(&cpus[cpu].nrdy),
            cpus[cpu].needs_relink);
        
        for (i = 0; i < RQ_COUNT; i++) {
            r = &cpus[cpu].rq[i];
            spinlock_lock(&r->lock);
            if (!r->n) {
                spinlock_unlock(&r->lock);
                continue;
            }
            printf("\trq[%d]: ", i);
            for (cur = r->rq_head.next; cur != &r->rq_head;
                cur = cur->next) {
                t = list_get_instance(cur, thread_t, rq_link);
                printf("%d(%s) ", t->tid,
                    thread_states[t->state]);
            }
            printf("\n");
            spinlock_unlock(&r->lock);
        }
        spinlock_unlock(&cpus[cpu].lock);
    }
    
    interrupts_restore(ipl);
}

/** @}
 */