Subversion Repositories HelenOS

Rev

Rev 4307 | Rev 4332 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /*
  2.  * Copyright (c) 2009 Lukas Mejdrech
  3.  * All rights reserved.
  4.  *
  5.  * Redistribution and use in source and binary forms, with or without
  6.  * modification, are permitted provided that the following conditions
  7.  * are met:
  8.  *
  9.  * - Redistributions of source code must retain the above copyright
  10.  *   notice, this list of conditions and the following disclaimer.
  11.  * - Redistributions in binary form must reproduce the above copyright
  12.  *   notice, this list of conditions and the following disclaimer in the
  13.  *   documentation and/or other materials provided with the distribution.
  14.  * - The name of the author may not be used to endorse or promote products
  15.  *   derived from this software without specific prior written permission.
  16.  *
  17.  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
  18.  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  19.  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  20.  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  21.  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  22.  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  23.  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  24.  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  25.  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  26.  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  27.  */
  28.  
  29. /** @addtogroup arp
  30.  *  @{
  31.  */
  32.  
  33. /** @file
  34.  *  ARP module implementation.
  35.  *  @see arp.h
  36.  */
  37.  
  38. #include <async.h>
  39. #include <malloc.h>
  40. #include <mem.h>
  41. #include <rwlock.h>
  42. #include <stdio.h>
  43. #include <string.h>
  44. #include <task.h>
  45.  
  46. #include <ipc/ipc.h>
  47. #include <ipc/services.h>
  48.  
  49. #include "../../err.h"
  50. #include "../../messages.h"
  51. #include "../../modules.h"
  52.  
  53. #include "../../include/byteorder.h"
  54. #include "../../include/device.h"
  55. #include "../../include/arp_interface.h"
  56. #include "../../include/nil_interface.h"
  57. #include "../../include/protocol_map.h"
  58.  
  59. #include "../../structures/measured_strings.h"
  60. #include "../../structures/packet/packet.h"
  61. #include "../../structures/packet/packet_client.h"
  62.  
  63. #include "../il_messages.h"
  64.  
  65. #include "arp.h"
  66. #include "arp_header.h"
  67. #include "arp_oc.h"
  68. #include "arp_module.h"
  69. #include "arp_messages.h"
  70.  
  71. /** ARP global data.
  72.  */
  73. arp_globals_t   arp_globals;
  74.  
  75. int arp_device_req( int arp_phone, device_id_t device_id, services_t protocol, services_t netif, measured_string_ref address );
  76. int arp_translate_req( int arp_phone, device_id_t device_id, services_t protocol, measured_string_ref address, measured_string_ref * translation, char ** data );
  77.  
  78. /** Clears the whole cache.
  79.  *  @returns EOK on success.
  80.  */
  81. int arp_clean_cache_req( int arp_phone );
  82.  
  83. /** Clears the device specific data from the cache.
  84.  *  @param device_id The device identifier. Input parameter.
  85.  *  @returns EOK on success.
  86.  *  @returns ENOENT  if the device is not found in the cache.
  87.  */
  88. int arp_clear_device_req( int arp_phone, device_id_t device_id );
  89.  
  90. /** Creates new protocol specific data.
  91.  *  @param proto Protocol specific data. Output parameter.
  92.  *  @param service Protocol module service. Input parameter.
  93.  *  @param address Actual protocol device address. Input parameter.
  94.  *  @returns EOK on success.
  95.  *  @returns ENOMEM if there is not enough memory left.
  96.  */
  97. int arp_proto_create( arp_proto_ref * proto, services_t service, measured_string_ref address );
  98.  
  99. /** Registers the device.
  100.  *  Creates new device entry in the cache or updates the protocol address if the device with the device identifier and the driver service exists.
  101.  *  @param device_id The device identifier. Input parameter.
  102.  *  @param service The device driver service. Input parameter.
  103.  *  @param protocol The protocol service. Input parameter.
  104.  *  @param address The actual device protocol address.
  105.  *  @returns EOK on success.
  106.  *  @returns EEXIST if another device with the same device identifier and different driver service exists.
  107.  *  @returns ENOMEM if there is not enough memory left.
  108.  *  @returns Other error codes as defined for the measured_strings_return() function.
  109.  */
  110. int arp_device_message( device_id_t device_id, services_t service, services_t protocol, measured_string_ref address );
  111.  
  112. /** Returns the hardware address for the given protocol address.
  113.  *  Sends the ARP request packet if the hardware address is not found in the cache.
  114.  *  @param device_id The device identifier. Input parameter.
  115.  *  @param protocol The protocol service. Input parameter.
  116.  *  @param target The target protocol address. Input parameter.
  117.  *  @returns The hardware address of the target.
  118.  *  @returns NULL if the target parameter is NULL.
  119.  *  @returns NULL if the device is not found.
  120.  *  @returns NULL if the device packet is too small to send a&nbsp;request.
  121.  *  @returns NULL if the hardware address is not found in the cache.
  122.  */
  123. measured_string_ref arp_translate_message( device_id_t device_id, services_t protocol, measured_string_ref target );
  124.  
  125. /** Processes the received ARP packet.
  126.  *  Updates the source hardware address if the source entry exists or the packet is targeted to my protocol address.
  127.  *  Responses to the ARP request if the packet is the ARP request and is targeted to my address.
  128.  *  @param device_id The source device identifier. Input parameter.
  129.  *  @param packet The received packet. Input/output parameter.
  130.  *  @returns EOK on success.
  131.  *  @returns EINVAL if the packet is too small to carry the ARP packet.
  132.  *  @returns EINVAL if the received address lengths differs from the registered values.
  133.  *  @returns ENOENT if the device is not found in the cache.
  134.  *  @returns ENOENT if the protocol for the device is not found in the cache.
  135.  *  @returns ENOMEM if there is not enough memory left.
  136.  */
  137. int arp_receive_message( device_id_t device_id, packet_t packet );
  138.  
  139. /** Clears the device specific data.
  140.  *  @param device The device specific data.
  141.  */
  142. void    clear_device( arp_device_ref device );
  143.  
  144. /** Processes IPC messages from the registered device driver modules in an infinite loop.
  145.  *  @param iid The message identifier. Input parameter.
  146.  *  @param icall The message parameters. Input/output parameter.
  147.  */
  148. void    arp_receiver( ipc_callid_t iid, ipc_call_t * icall );
  149.  
  150. DEVICE_MAP_IMPLEMENT( arp_cache, arp_device_t )
  151.  
  152. INT_MAP_IMPLEMENT( arp_protos, arp_proto_t )
  153.  
  154. GENERIC_CHAR_MAP_IMPLEMENT( arp_addr, measured_string_t )
  155.  
  156. int arp_task_get_id( void ){
  157.     return task_get_id();
  158. }
  159.  
  160. int arp_clear_device_req( int arp_phone, device_id_t device_id ){
  161.     arp_device_ref  device;
  162.  
  163.     rwlock_write_lock( & arp_globals.lock );
  164.     device = arp_cache_find( & arp_globals.cache, device_id );
  165.     if( ! device ){
  166.         rwlock_write_unlock( & arp_globals.lock );
  167.         return ENOENT;
  168.     }
  169.     clear_device( device );
  170.     printf( "Device %d cleared\n", device_id );
  171.     rwlock_write_unlock( & arp_globals.lock );
  172.     return EOK;
  173. }
  174.  
  175. int arp_clean_cache_req( int arp_phone ){
  176.     int             count;
  177.     arp_device_ref  device;
  178.  
  179.     rwlock_write_lock( & arp_globals.lock );
  180.     for( count = arp_cache_count( & arp_globals.cache ) - 1; count >= 0; -- count ){
  181.         device = arp_cache_get_index( & arp_globals.cache, count );
  182.         if( device ){
  183.             clear_device( device );
  184.             if( device->addr_data ) free( device->addr_data );
  185.             if( device->broadcast_data ) free( device->broadcast_data );
  186.         }
  187.     }
  188.     arp_cache_clear( & arp_globals.cache );
  189.     rwlock_write_unlock( & arp_globals.lock );
  190.     printf( "Cache cleaned\n" );
  191.     return EOK;
  192. }
  193.  
  194. int arp_device_req( int arp_phone, device_id_t device_id, services_t protocol, services_t netif, measured_string_ref address ){
  195.     ERROR_DECLARE;
  196.  
  197.     measured_string_ref tmp;
  198.  
  199.     tmp = measured_string_copy( address );
  200.     if( ERROR_OCCURRED( arp_device_message( device_id, netif, protocol, tmp ))){
  201.         free( tmp->value );
  202.         free( tmp );
  203.     }
  204.     return ERROR_CODE;
  205. }
  206.  
  207. int arp_translate_req( int arp_phone, device_id_t device_id, services_t protocol, measured_string_ref address, measured_string_ref * translation, char ** data ){
  208.     measured_string_ref tmp;
  209.  
  210.     rwlock_read_lock( & arp_globals.lock );
  211.     tmp = arp_translate_message( device_id, protocol, address );
  212.     if( tmp ){
  213.         * translation = measured_string_copy( tmp );
  214.         rwlock_read_unlock( & arp_globals.lock );
  215.         if( * translation ){
  216.             * data = ( ** translation ).value;
  217.             return EOK;
  218.         }else{
  219.             return ENOMEM;
  220.         }
  221.     }else{
  222.         rwlock_read_unlock( & arp_globals.lock );
  223.         return ENOENT;
  224.     }
  225. }
  226.  
  227. int arp_initialize( void ){
  228.     ERROR_DECLARE;
  229.  
  230.     rwlock_initialize( & arp_globals.lock );
  231.     rwlock_write_lock( & arp_globals.lock );
  232.     ERROR_PROPAGATE( arp_cache_initialize( & arp_globals.cache ));
  233.     rwlock_write_unlock( & arp_globals.lock );
  234.     return EOK;
  235. }
  236.  
  237. int arp_proto_create( arp_proto_ref * proto, services_t service, measured_string_ref address ){
  238.     ERROR_DECLARE;
  239.  
  240.     * proto = ( arp_proto_ref ) malloc( sizeof( arp_proto_t ));
  241.     if( !( * proto )) return ENOMEM;
  242.     ( ** proto ).service = service;
  243.     ( ** proto ).addr = address;
  244.     ( ** proto ).addr_data = address->value;
  245.     if( ERROR_OCCURRED( arp_addr_initialize( &( ** proto).addresses ))){
  246.         free( * proto );
  247.         return ERROR_CODE;
  248.     }
  249.     return EOK;
  250. }
  251.  
  252. int arp_device_message( device_id_t device_id, services_t service, services_t protocol, measured_string_ref address ){
  253.     ERROR_DECLARE;
  254.  
  255.     arp_device_ref  device;
  256.     arp_proto_ref   proto;
  257.     int             index;
  258.  
  259.     rwlock_write_lock( & arp_globals.lock );
  260.     // an existing device?
  261.     device = arp_cache_find( & arp_globals.cache, device_id );
  262.     if( device ){
  263.         if( device->service != service ){
  264.             printf( "Device %d already exists\n", device->device_id );
  265.             rwlock_write_unlock( & arp_globals.lock );
  266.             return EEXIST;
  267.         }
  268.         proto = arp_protos_find( & device->protos, protocol );
  269.         if( proto ){
  270.             free( proto->addr );
  271.             free( proto->addr_data );
  272.             proto->addr = address;
  273.             proto->addr_data = address->value;
  274.         }else{
  275.             if( ERROR_OCCURRED( arp_proto_create( & proto, protocol, address ))){
  276.                 rwlock_write_unlock( & arp_globals.lock );
  277.                 return ERROR_CODE;
  278.             }
  279.             index = arp_protos_add( & device->protos, proto->service, proto );
  280.             if( index < 0 ){
  281.                 rwlock_write_unlock( & arp_globals.lock );
  282.                 free( proto );
  283.                 return index;
  284.             }
  285.         }
  286.         printf( "Cache of the existing device %d cleaned\n", device->device_id );
  287.     }else{
  288.         index = hardware_map( service );
  289.         if( ! index ) return ENOENT;
  290.         // create a new device
  291.         device = ( arp_device_ref ) malloc( sizeof( arp_device_t ));
  292.         if( ! device ){
  293.             rwlock_write_unlock( & arp_globals.lock );
  294.             return ENOMEM;
  295.         }
  296.         device->hardware = index;
  297.         device->device_id = device_id;
  298.         if( ERROR_OCCURRED( arp_protos_initialize( & device->protos ))
  299.         || ERROR_OCCURRED( arp_proto_create( & proto, protocol, address ))){
  300.             rwlock_write_unlock( & arp_globals.lock );
  301.             free( device );
  302.             return ERROR_CODE;
  303.         }
  304.         index = arp_protos_add( & device->protos, proto->service, proto );
  305.         if( index < 0 ){
  306.             rwlock_write_unlock( & arp_globals.lock );
  307.             arp_protos_destroy( & device->protos );
  308.             free( device );
  309.             return index;
  310.         }
  311.         device->service = service;
  312.         // bind the new one
  313.         device->phone = bind_service( device->service, device->device_id, SERVICE_ARP, 0, arp_receiver );
  314.         if( device->phone < 0 ){
  315.             rwlock_write_unlock( & arp_globals.lock );
  316.             arp_protos_destroy( & device->protos );
  317.             free( device );
  318.             return EREFUSED;
  319.         }
  320.         // get packet dimensions
  321.         if( ERROR_OCCURRED( nil_packet_size_req( device->phone, device_id, & device->addr_len, & device->prefix, & device->content, & device->suffix ))){
  322.             rwlock_write_unlock( & arp_globals.lock );
  323.             arp_protos_destroy( & device->protos );
  324.             free( device );
  325.             return ERROR_CODE;
  326.         }
  327.         // get hardware address
  328.         if( ERROR_OCCURRED( nil_get_addr( device->phone, device_id, & device->addr, & device->addr_data ))){
  329.             rwlock_write_unlock( & arp_globals.lock );
  330.             arp_protos_destroy( & device->protos );
  331.             free( device );
  332.             return ERROR_CODE;
  333.         }
  334.         // get broadcast address
  335.         if( ERROR_OCCURRED( nil_get_broadcast_addr( device->phone, device_id, & device->broadcast_addr, & device->broadcast_data ))){
  336.             rwlock_write_unlock( & arp_globals.lock );
  337.             free( device->addr );
  338.             free( device->addr_data );
  339.             arp_protos_destroy( & device->protos );
  340.             free( device );
  341.             return ERROR_CODE;
  342.         }
  343.         if( ERROR_OCCURRED( arp_cache_add( & arp_globals.cache, device->device_id, device ))){
  344.             rwlock_write_unlock( & arp_globals.lock );
  345.             free( device->addr );
  346.             free( device->addr_data );
  347.             free( device->broadcast_addr );
  348.             free( device->broadcast_data );
  349.             arp_protos_destroy( & device->protos );
  350.             free( device );
  351.             return ERROR_CODE;
  352.         }
  353.         printf( "New device registered:\n\tid\t= %d\n\ttype\t= 0x%x\n\tservice\t= %d\n", device->device_id, device->hardware, device->service );
  354.     }
  355.     rwlock_write_unlock( & arp_globals.lock );
  356.     return EOK;
  357. }
  358.  
  359. measured_string_ref arp_translate_message( device_id_t device_id, services_t protocol, measured_string_ref target ){
  360.     arp_device_ref      device;
  361.     arp_proto_ref       proto;
  362.     measured_string_ref addr;
  363.     size_t              length;
  364.     packet_t            packet;
  365.     arp_header_ref      header;
  366.  
  367.     if( ! target ) return NULL;
  368.     device = arp_cache_find( & arp_globals.cache, device_id );
  369.     if( ! device ) return NULL;
  370.     proto = arp_protos_find( & device->protos, protocol );
  371.     if(( ! proto ) || ( proto->addr->length != target->length )) return NULL;
  372.     addr = arp_addr_find( & proto->addresses, target->value, target->length );
  373.     if( addr ) return addr;
  374.     // ARP packet content size = header + ( address + translation ) * 2
  375.     length = 8 + ( CONVERT_SIZE( char, uint8_t, proto->addr->length ) + CONVERT_SIZE( char, uint8_t, device->addr->length )) * 2;
  376.     if( length > device->content ) return NULL;
  377.     packet = packet_get_4( arp_globals.net_phone, device->addr_len, device->prefix, length, device->suffix );
  378.     if( ! packet ) return NULL;
  379.     header = ( arp_header_ref ) packet_suffix( packet, length );
  380.     header->hardware = htons( device->hardware );
  381.     header->hardware_length = device->addr->length;
  382.     header->protocol = htons( protocol_map( device->service, protocol ));
  383.     header->protocol_length = proto->addr->length;
  384.     header->operation = htons( ARPOP_REQUEST );
  385.     length = sizeof( arp_header_t );
  386.     memcpy((( uint8_t * ) header ) + length, device->addr->value, device->addr->length );
  387.     length += device->addr->length;
  388.     memcpy((( uint8_t * ) header ) + length, proto->addr->value, proto->addr->length );
  389.     length += proto->addr->length;
  390.     bzero((( uint8_t * ) header ) + length, device->addr->length );
  391.     length += device->addr->length;
  392.     memcpy((( uint8_t * ) header ) + length, target->value, target->length );
  393.     packet_set_addr( packet, ( uint8_t * ) device->addr->value, ( uint8_t * ) device->broadcast_addr->value, CONVERT_SIZE( char, uint8_t, device->addr->length ));
  394.     nil_send_msg( device->phone, device_id, packet, SERVICE_ARP );
  395.     return NULL;
  396. }
  397.  
  398. int arp_receive_message( device_id_t device_id, packet_t packet ){
  399.     ERROR_DECLARE;
  400.  
  401.     size_t              length;
  402.     arp_header_ref      header;
  403.     arp_device_ref      device;
  404.     arp_proto_ref       proto;
  405.     measured_string_ref hw_source;
  406.     uint8_t *           src_hw;
  407.     uint8_t *           src_proto;
  408.     uint8_t *           des_hw;
  409.     uint8_t *           des_proto;
  410.  
  411.     length = packet_get_data_length( packet );
  412.     if( length <= sizeof( arp_header_t )) return EINVAL;
  413.     device = arp_cache_find( & arp_globals.cache, device_id );
  414.     if( ! device ) return ENOENT;
  415.     header = ( arp_header_ref ) packet_get_data( packet );
  416.     if(( ntohs( header->hardware ) != device->hardware )
  417.     || ( length < sizeof( arp_header_t ) + ( header->hardware_length + header->protocol_length ) * 2 )){
  418.         return EINVAL;
  419.     }
  420.     proto = arp_protos_find( & device->protos, protocol_unmap( device->service, ntohs( header->protocol )));
  421.     if( ! proto ) return ENOENT;
  422.     src_hw = (( uint8_t * ) header ) + sizeof( arp_header_t );
  423.     src_proto = src_hw + header->hardware_length;
  424.     des_hw = src_proto + header->protocol_length;
  425.     des_proto = des_hw + header->hardware_length;
  426.     hw_source = arp_addr_find( & proto->addresses, ( char * ) src_proto, CONVERT_SIZE( uint8_t, char, header->protocol_length ));
  427.     // exists?
  428.     if( hw_source ){
  429.         if( hw_source->length != CONVERT_SIZE( uint8_t, char, header->hardware_length )){
  430.             return EINVAL;
  431.         }
  432.         memcpy( hw_source->value, src_hw, hw_source->length );
  433.     }
  434.     // is my protocol address?
  435.     if( proto->addr->length != CONVERT_SIZE( uint8_t, char, header->hardware_length )){
  436.         return EINVAL;
  437.     }
  438.     if( ! str_lcmp( proto->addr->value, ( char * ) des_proto, proto->addr->length )){
  439.         // not already upadted?
  440.         if( ! hw_source ){
  441.             hw_source = measured_string_create_bulk(( char * ) src_hw, CONVERT_SIZE( uint8_t, char, header->hardware_length ));
  442.             if( ! hw_source ) return ENOMEM;
  443.             ERROR_PROPAGATE( arp_addr_add( & proto->addresses, ( char * ) src_proto, CONVERT_SIZE( uint8_t, char, header->protocol_length ), hw_source ));
  444.         }
  445.         if( ntohs( header->operation ) == ARPOP_REQUEST ){
  446.             header->operation = htons( ARPOP_REPLY );
  447.             memcpy( des_proto, src_proto, header->protocol_length );
  448.             memcpy( src_proto, proto->addr->value, header->protocol_length );
  449.             memcpy( src_hw, des_hw, header->hardware_length );
  450.             memcpy( des_hw, hw_source->value, header->hardware_length );
  451.             packet_set_addr( packet, src_hw, des_hw, header->hardware_length );
  452.             nil_send_msg( device->phone, device_id, packet, SERVICE_ARP );
  453.         }else{
  454.             pq_release( arp_globals.net_phone, packet_get_id( packet ));
  455.         }
  456.     }
  457.     return EOK;
  458. }
  459.  
  460. void clear_device( arp_device_ref device ){
  461.     int             count;
  462.     arp_proto_ref   proto;
  463.  
  464.     for( count = arp_protos_count( & device->protos ) - 1; count >= 0; -- count ){
  465.         proto = arp_protos_get_index( & device->protos, count );
  466.         if( proto ){
  467.             if( proto->addr ) free( proto->addr );
  468.             if( proto->addr_data ) free( proto->addr_data );
  469.             arp_addr_destroy( & proto->addresses );
  470.         }
  471.     }
  472.     arp_protos_clear( & device->protos );
  473. }
  474.  
  475. int arp_connect_module( services_t service ){
  476.     return EOK;
  477. }
  478.  
  479. int arp_message( ipc_callid_t callid, ipc_call_t * call, ipc_call_t * answer, int * answer_count ){
  480.     ERROR_DECLARE;
  481.  
  482.     measured_string_ref address;
  483.     measured_string_ref translation;
  484.     char *              data;
  485.  
  486. //  printf( "message %d - %d\n", IPC_GET_METHOD( * call ), NET_ARP_FIRST );
  487.     * answer_count = 0;
  488.     switch( IPC_GET_METHOD( * call )){
  489.         case IPC_M_PHONE_HUNGUP:
  490.             return EOK;
  491.         case NET_ARP_DEVICE:
  492.             ERROR_PROPAGATE( measured_strings_receive( & address, & data, 1 ));
  493.             if( ERROR_OCCURRED( arp_device_message( IPC_GET_DEVICE( call ), IPC_GET_SERVICE( call ), ARP_GET_NETIF( call ), address ))){
  494.                 free( address );
  495.                 free( data );
  496.             }
  497.             return ERROR_CODE;
  498.         case NET_ARP_TRANSLATE:
  499.             ERROR_PROPAGATE( measured_strings_receive( & address, & data, 1 ));
  500.             rwlock_read_lock( & arp_globals.lock );
  501.             translation = arp_translate_message( IPC_GET_DEVICE( call ), IPC_GET_SERVICE( call ), address );
  502.             free( address );
  503.             free( data );
  504.             if( ! translation ){
  505.                 rwlock_read_unlock( & arp_globals.lock );
  506.                 return ENOENT;
  507.             }
  508.             ERROR_CODE = measured_strings_reply( translation, 1 );
  509.             rwlock_read_unlock( & arp_globals.lock );
  510.             return ERROR_CODE;
  511.         case NET_ARP_CLEAR_DEVICE:
  512.             return arp_clear_device_req( 0, IPC_GET_DEVICE( call ));
  513.         case NET_ARP_CLEAN_CACHE:
  514.             return arp_clean_cache_req( 0 );
  515.     }
  516.     return ENOTSUP;
  517. }
  518.  
  519. void arp_receiver( ipc_callid_t iid, ipc_call_t * icall ){
  520.     ERROR_DECLARE;
  521.  
  522.     packet_t        packet;
  523.  
  524.     while( true ){
  525.         switch( IPC_GET_METHOD( * icall )){
  526.             case NET_IL_DEVICE_STATE:
  527.                 // do nothing - keep the cache
  528.                 ipc_answer_0( iid, EOK );
  529.                 break;
  530.             case NET_IL_RECEIVED:
  531.                 if( ! ERROR_OCCURRED( packet_translate( arp_globals.net_phone, & packet, IPC_GET_PACKET( icall )))){
  532.                     rwlock_read_lock( & arp_globals.lock );
  533.                     ERROR_CODE = arp_receive_message( IPC_GET_DEVICE( icall ), packet );
  534.                     rwlock_read_unlock( & arp_globals.lock );
  535.                 }
  536.                 ipc_answer_0( iid, ERROR_CODE );
  537.                 break;
  538.             default:
  539.                 ipc_answer_0( iid, ENOTSUP );
  540.         }
  541.         iid = async_get_call( icall );
  542.     }
  543. }
  544.  
  545. /** @}
  546.  */
  547.