Subversion Repositories HelenOS

Rev

Rev 3628 | Rev 3633 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /*
  2.  * Copyright (c) 2008 Jakub Jermar
  3.  * All rights reserved.
  4.  *
  5.  * Redistribution and use in source and binary forms, with or without
  6.  * modification, are permitted provided that the following conditions
  7.  * are met:
  8.  *
  9.  * - Redistributions of source code must retain the above copyright
  10.  *   notice, this list of conditions and the following disclaimer.
  11.  * - Redistributions in binary form must reproduce the above copyright
  12.  *   notice, this list of conditions and the following disclaimer in the
  13.  *   documentation and/or other materials provided with the distribution.
  14.  * - The name of the author may not be used to endorse or promote products
  15.  *   derived from this software without specific prior written permission.
  16.  *
  17.  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
  18.  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  19.  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  20.  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  21.  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  22.  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  23.  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  24.  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  25.  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  26.  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  27.  */
  28.  
  29. /** @addtogroup fs
  30.  * @{
  31.  */
  32.  
  33. /**
  34.  * @file    fat_ops.c
  35.  * @brief   Implementation of VFS operations for the FAT file system server.
  36.  */
  37.  
  38. #include "fat.h"
  39. #include "fat_dentry.h"
  40. #include "fat_fat.h"
  41. #include "../../vfs/vfs.h"
  42. #include <libfs.h>
  43. #include <libblock.h>
  44. #include <ipc/ipc.h>
  45. #include <ipc/services.h>
  46. #include <ipc/devmap.h>
  47. #include <async.h>
  48. #include <errno.h>
  49. #include <string.h>
  50. #include <byteorder.h>
  51. #include <libadt/hash_table.h>
  52. #include <libadt/list.h>
  53. #include <assert.h>
  54. #include <futex.h>
  55. #include <sys/mman.h>
  56. #include <align.h>
  57.  
  58. /** Futex protecting the list of cached free FAT nodes. */
  59. static futex_t ffn_futex = FUTEX_INITIALIZER;
  60.  
  61. /** List of cached free FAT nodes. */
  62. static LIST_INITIALIZE(ffn_head);
  63.  
  64. static void fat_node_initialize(fat_node_t *node)
  65. {
  66.     futex_initialize(&node->lock, 1);
  67.     node->idx = NULL;
  68.     node->type = 0;
  69.     link_initialize(&node->ffn_link);
  70.     node->size = 0;
  71.     node->lnkcnt = 0;
  72.     node->refcnt = 0;
  73.     node->dirty = false;
  74. }
  75.  
  76. static void fat_node_sync(fat_node_t *node)
  77. {
  78.     block_t *b;
  79.     fat_bs_t *bs;
  80.     fat_dentry_t *d;
  81.     uint16_t bps;
  82.     unsigned dps;
  83.    
  84.     assert(node->dirty);
  85.  
  86.     bs = block_bb_get(node->idx->dev_handle);
  87.     bps = uint16_t_le2host(bs->bps);
  88.     dps = bps / sizeof(fat_dentry_t);
  89.    
  90.     /* Read the block that contains the dentry of interest. */
  91.     b = _fat_block_get(bs, node->idx->dev_handle, node->idx->pfc,
  92.         (node->idx->pdi * sizeof(fat_dentry_t)) / bps, BLOCK_FLAGS_NONE);
  93.  
  94.     d = ((fat_dentry_t *)b->data) + (node->idx->pdi % dps);
  95.  
  96.     d->firstc = host2uint16_t_le(node->firstc);
  97.     if (node->type == FAT_FILE) {
  98.         d->size = host2uint32_t_le(node->size);
  99.     } else if (node->type == FAT_DIRECTORY) {
  100.         d->attr = FAT_ATTR_SUBDIR;
  101.     }
  102.    
  103.     /* TODO: update other fields? (e.g time fields) */
  104.    
  105.     b->dirty = true;        /* need to sync block */
  106.     block_put(b);
  107. }
  108.  
  109. static fat_node_t *fat_node_get_new(void)
  110. {
  111.     fat_node_t *nodep;
  112.  
  113.     futex_down(&ffn_futex);
  114.     if (!list_empty(&ffn_head)) {
  115.         /* Try to use a cached free node structure. */
  116.         fat_idx_t *idxp_tmp;
  117.         nodep = list_get_instance(ffn_head.next, fat_node_t, ffn_link);
  118.         if (futex_trydown(&nodep->lock) == ESYNCH_WOULD_BLOCK)
  119.             goto skip_cache;
  120.         idxp_tmp = nodep->idx;
  121.         if (futex_trydown(&idxp_tmp->lock) == ESYNCH_WOULD_BLOCK) {
  122.             futex_up(&nodep->lock);
  123.             goto skip_cache;
  124.         }
  125.         list_remove(&nodep->ffn_link);
  126.         futex_up(&ffn_futex);
  127.         if (nodep->dirty)
  128.             fat_node_sync(nodep);
  129.         idxp_tmp->nodep = NULL;
  130.         futex_up(&nodep->lock);
  131.         futex_up(&idxp_tmp->lock);
  132.     } else {
  133. skip_cache:
  134.         /* Try to allocate a new node structure. */
  135.         futex_up(&ffn_futex);
  136.         nodep = (fat_node_t *)malloc(sizeof(fat_node_t));
  137.         if (!nodep)
  138.             return NULL;
  139.     }
  140.     fat_node_initialize(nodep);
  141.    
  142.     return nodep;
  143. }
  144.  
  145. /** Internal version of fat_node_get().
  146.  *
  147.  * @param idxp      Locked index structure.
  148.  */
  149. static void *fat_node_get_core(fat_idx_t *idxp)
  150. {
  151.     block_t *b;
  152.     fat_bs_t *bs;
  153.     fat_dentry_t *d;
  154.     fat_node_t *nodep = NULL;
  155.     unsigned bps;
  156.     unsigned spc;
  157.     unsigned dps;
  158.  
  159.     if (idxp->nodep) {
  160.         /*
  161.          * We are lucky.
  162.          * The node is already instantiated in memory.
  163.          */
  164.         futex_down(&idxp->nodep->lock);
  165.         if (!idxp->nodep->refcnt++)
  166.             list_remove(&idxp->nodep->ffn_link);
  167.         futex_up(&idxp->nodep->lock);
  168.         return idxp->nodep;
  169.     }
  170.  
  171.     /*
  172.      * We must instantiate the node from the file system.
  173.      */
  174.    
  175.     assert(idxp->pfc);
  176.  
  177.     nodep = fat_node_get_new();
  178.     if (!nodep)
  179.         return NULL;
  180.  
  181.     bs = block_bb_get(idxp->dev_handle);
  182.     bps = uint16_t_le2host(bs->bps);
  183.     spc = bs->spc;
  184.     dps = bps / sizeof(fat_dentry_t);
  185.  
  186.     /* Read the block that contains the dentry of interest. */
  187.     b = _fat_block_get(bs, idxp->dev_handle, idxp->pfc,
  188.         (idxp->pdi * sizeof(fat_dentry_t)) / bps, BLOCK_FLAGS_NONE);
  189.     assert(b);
  190.  
  191.     d = ((fat_dentry_t *)b->data) + (idxp->pdi % dps);
  192.     if (d->attr & FAT_ATTR_SUBDIR) {
  193.         /*
  194.          * The only directory which does not have this bit set is the
  195.          * root directory itself. The root directory node is handled
  196.          * and initialized elsewhere.
  197.          */
  198.         nodep->type = FAT_DIRECTORY;
  199.         /*
  200.          * Unfortunately, the 'size' field of the FAT dentry is not
  201.          * defined for the directory entry type. We must determine the
  202.          * size of the directory by walking the FAT.
  203.          */
  204.         nodep->size = bps * spc * fat_clusters_get(bs, idxp->dev_handle,
  205.             uint16_t_le2host(d->firstc));
  206.     } else {
  207.         nodep->type = FAT_FILE;
  208.         nodep->size = uint32_t_le2host(d->size);
  209.     }
  210.     nodep->firstc = uint16_t_le2host(d->firstc);
  211.     nodep->lnkcnt = 1;
  212.     nodep->refcnt = 1;
  213.  
  214.     block_put(b);
  215.  
  216.     /* Link the idx structure with the node structure. */
  217.     nodep->idx = idxp;
  218.     idxp->nodep = nodep;
  219.  
  220.     return nodep;
  221. }
  222.  
  223. /*
  224.  * Forward declarations of FAT libfs operations.
  225.  */
  226. static void *fat_node_get(dev_handle_t, fs_index_t);
  227. static void fat_node_put(void *);
  228. static void *fat_create_node(dev_handle_t, int);
  229. static int fat_destroy_node(void *);
  230. static int fat_link(void *, void *, const char *);
  231. static int fat_unlink(void *, void *);
  232. static void *fat_match(void *, const char *);
  233. static fs_index_t fat_index_get(void *);
  234. static size_t fat_size_get(void *);
  235. static unsigned fat_lnkcnt_get(void *);
  236. static bool fat_has_children(void *);
  237. static void *fat_root_get(dev_handle_t);
  238. static char fat_plb_get_char(unsigned);
  239. static bool fat_is_directory(void *);
  240. static bool fat_is_file(void *node);
  241.  
  242. /*
  243.  * FAT libfs operations.
  244.  */
  245.  
  246. /** Instantiate a FAT in-core node. */
  247. void *fat_node_get(dev_handle_t dev_handle, fs_index_t index)
  248. {
  249.     void *node;
  250.     fat_idx_t *idxp;
  251.  
  252.     idxp = fat_idx_get_by_index(dev_handle, index);
  253.     if (!idxp)
  254.         return NULL;
  255.     /* idxp->lock held */
  256.     node = fat_node_get_core(idxp);
  257.     futex_up(&idxp->lock);
  258.     return node;
  259. }
  260.  
  261. void fat_node_put(void *node)
  262. {
  263.     fat_node_t *nodep = (fat_node_t *)node;
  264.     bool destroy = false;
  265.  
  266.     futex_down(&nodep->lock);
  267.     if (!--nodep->refcnt) {
  268.         if (nodep->idx) {
  269.             futex_down(&ffn_futex);
  270.             list_append(&nodep->ffn_link, &ffn_head);
  271.             futex_up(&ffn_futex);
  272.         } else {
  273.             /*
  274.              * The node does not have any index structure associated
  275.              * with itself. This can only mean that we are releasing
  276.              * the node after a failed attempt to allocate the index
  277.              * structure for it.
  278.              */
  279.             destroy = true;
  280.         }
  281.     }
  282.     futex_up(&nodep->lock);
  283.     if (destroy)
  284.         free(node);
  285. }
  286.  
  287. void *fat_create_node(dev_handle_t dev_handle, int flags)
  288. {
  289.     fat_idx_t *idxp;
  290.     fat_node_t *nodep;
  291.  
  292.     nodep = fat_node_get_new();
  293.     if (!nodep)
  294.         return NULL;
  295.     idxp = fat_idx_get_new(dev_handle);
  296.     if (!idxp) {
  297.         fat_node_put(nodep);
  298.         return NULL;
  299.     }
  300.     /* idxp->lock held */
  301.     if (flags & L_DIRECTORY) {
  302.         nodep->type = FAT_DIRECTORY;
  303.     } else {
  304.         nodep->type = FAT_FILE;
  305.     }
  306.     nodep->size = 0;
  307.     nodep->firstc = FAT_CLST_RES0;
  308.     nodep->lnkcnt = 0;  /* not linked anywhere */
  309.     nodep->refcnt = 1;
  310.  
  311.     nodep->idx = idxp;
  312.     idxp->nodep = nodep;
  313.  
  314.     futex_up(&idxp->lock);
  315.     return nodep;
  316. }
  317.  
  318. int fat_destroy_node(void *node)
  319. {
  320.     fat_node_t *nodep = (fat_node_t *)node;
  321.     fat_bs_t *bs;
  322.  
  323.     /*
  324.      * The node is not reachable from the file system. This means that the
  325.      * link count should be zero and that the index structure cannot be
  326.      * found in the position hash. Obviously, we don't need to lock the node
  327.      * nor its index structure.
  328.      */
  329.     assert(nodep->lnkcnt == 0);
  330.  
  331.     /*
  332.      * The node may not have any children.
  333.      */
  334.     assert(fat_has_children(node) == false);
  335.  
  336.     bs = block_bb_get(nodep->idx->dev_handle);
  337.     if (nodep->firstc != FAT_CLST_RES0) {
  338.         assert(nodep->size);
  339.         /* Free all clusters allocated to the node. */
  340.         fat_free_clusters(bs, nodep->idx->dev_handle, nodep->firstc);
  341.     }
  342.  
  343.     fat_idx_destroy(nodep->idx);
  344.     free(nodep);
  345.     return EOK;
  346. }
  347.  
  348. int fat_link(void *prnt, void *chld, const char *name)
  349. {
  350.     fat_node_t *parentp = (fat_node_t *)prnt;
  351.     fat_node_t *childp = (fat_node_t *)chld;
  352.     fat_dentry_t *d;
  353.     fat_bs_t *bs;
  354.     block_t *b;
  355.     int i, j;
  356.     uint16_t bps;
  357.     unsigned dps;
  358.     unsigned blocks;
  359.  
  360.     futex_down(&childp->lock);
  361.     if (childp->lnkcnt == 1) {
  362.         /*
  363.          * On FAT, we don't support multiple hard links.
  364.          */
  365.         futex_up(&childp->lock);
  366.         return EMLINK;
  367.     }
  368.     assert(childp->lnkcnt == 0);
  369.     futex_up(&childp->lock);
  370.  
  371.     if (!fat_dentry_name_verify(name)) {
  372.         /*
  373.          * Attempt to create unsupported name.
  374.          */
  375.         return ENOTSUP;
  376.     }
  377.  
  378.     /*
  379.      * Get us an unused parent node's dentry or grow the parent and allocate
  380.      * a new one.
  381.      */
  382.    
  383.     futex_down(&parentp->idx->lock);
  384.     bs = block_bb_get(parentp->idx->dev_handle);
  385.     bps = uint16_t_le2host(bs->bps);
  386.     dps = bps / sizeof(fat_dentry_t);
  387.  
  388.     blocks = parentp->size / bps;
  389.  
  390.     for (i = 0; i < blocks; i++) {
  391.         b = fat_block_get(bs, parentp, i, BLOCK_FLAGS_NONE);
  392.         for (j = 0; j < dps; j++) {
  393.             d = ((fat_dentry_t *)b->data) + j;
  394.             switch (fat_classify_dentry(d)) {
  395.             case FAT_DENTRY_SKIP:
  396.             case FAT_DENTRY_VALID:
  397.                 /* skipping used and meta entries */
  398.                 continue;
  399.             case FAT_DENTRY_FREE:
  400.             case FAT_DENTRY_LAST:
  401.                 /* found an empty slot */
  402.                 goto hit;
  403.             }
  404.         }
  405.         block_put(b);
  406.     }
  407.    
  408.     /*
  409.      * We need to grow the parent in order to create a new unused dentry.
  410.      */
  411.     futex_up(&parentp->idx->lock);
  412.     return ENOTSUP; /* XXX */
  413.  
  414. hit:
  415.     /*
  416.      * At this point we only establish the link between the parent and the
  417.      * child.  The dentry, except of the name and the extension, will remain
  418.      * uninitialized until the the corresponding node is synced. Thus the
  419.      * valid dentry data is kept in the child node structure.
  420.      */
  421.     memset(d, 0, sizeof(fat_dentry_t));
  422.     fat_dentry_name_set(d, name);
  423.     b->dirty = true;        /* need to sync block */
  424.     block_put(b);
  425.     futex_up(&parentp->idx->lock);
  426.  
  427.     futex_down(&childp->idx->lock);
  428.     childp->idx->pfc = parentp->firstc;
  429.     childp->idx->pdi = i * dps + j;
  430.     futex_up(&childp->idx->lock);
  431.  
  432.     futex_down(&childp->lock);
  433.     childp->lnkcnt = 1;
  434.     childp->dirty = true;       /* need to sync node */
  435.     futex_up(&childp->lock);
  436.  
  437.     /*
  438.      * Hash in the index structure into the position hash.
  439.      */
  440.     fat_idx_hashin(childp->idx);
  441.  
  442.     return EOK;
  443. }
  444.  
  445. int fat_unlink(void *prnt, void *chld)
  446. {
  447.     return ENOTSUP; /* not supported at the moment */
  448. }
  449.  
  450. void *fat_match(void *prnt, const char *component)
  451. {
  452.     fat_bs_t *bs;
  453.     fat_node_t *parentp = (fat_node_t *)prnt;
  454.     char name[FAT_NAME_LEN + 1 + FAT_EXT_LEN + 1];
  455.     unsigned i, j;
  456.     unsigned bps;       /* bytes per sector */
  457.     unsigned dps;       /* dentries per sector */
  458.     unsigned blocks;
  459.     fat_dentry_t *d;
  460.     block_t *b;
  461.  
  462.     futex_down(&parentp->idx->lock);
  463.     bs = block_bb_get(parentp->idx->dev_handle);
  464.     bps = uint16_t_le2host(bs->bps);
  465.     dps = bps / sizeof(fat_dentry_t);
  466.     blocks = parentp->size / bps;
  467.     for (i = 0; i < blocks; i++) {
  468.         b = fat_block_get(bs, parentp, i, BLOCK_FLAGS_NONE);
  469.         for (j = 0; j < dps; j++) {
  470.             d = ((fat_dentry_t *)b->data) + j;
  471.             switch (fat_classify_dentry(d)) {
  472.             case FAT_DENTRY_SKIP:
  473.             case FAT_DENTRY_FREE:
  474.                 continue;
  475.             case FAT_DENTRY_LAST:
  476.                 block_put(b);
  477.                 futex_up(&parentp->idx->lock);
  478.                 return NULL;
  479.             default:
  480.             case FAT_DENTRY_VALID:
  481.                 fat_dentry_name_get(d, name);
  482.                 break;
  483.             }
  484.             if (stricmp(name, component) == 0) {
  485.                 /* hit */
  486.                 void *node;
  487.                 /*
  488.                  * Assume tree hierarchy for locking.  We
  489.                  * already have the parent and now we are going
  490.                  * to lock the child.  Never lock in the oposite
  491.                  * order.
  492.                  */
  493.                 fat_idx_t *idx = fat_idx_get_by_pos(
  494.                     parentp->idx->dev_handle, parentp->firstc,
  495.                     i * dps + j);
  496.                 futex_up(&parentp->idx->lock);
  497.                 if (!idx) {
  498.                     /*
  499.                      * Can happen if memory is low or if we
  500.                      * run out of 32-bit indices.
  501.                      */
  502.                     block_put(b);
  503.                     return NULL;
  504.                 }
  505.                 node = fat_node_get_core(idx);
  506.                 futex_up(&idx->lock);
  507.                 block_put(b);
  508.                 return node;
  509.             }
  510.         }
  511.         block_put(b);
  512.     }
  513.  
  514.     futex_up(&parentp->idx->lock);
  515.     return NULL;
  516. }
  517.  
  518. fs_index_t fat_index_get(void *node)
  519. {
  520.     fat_node_t *fnodep = (fat_node_t *)node;
  521.     if (!fnodep)
  522.         return 0;
  523.     return fnodep->idx->index;
  524. }
  525.  
  526. size_t fat_size_get(void *node)
  527. {
  528.     return ((fat_node_t *)node)->size;
  529. }
  530.  
  531. unsigned fat_lnkcnt_get(void *node)
  532. {
  533.     return ((fat_node_t *)node)->lnkcnt;
  534. }
  535.  
  536. bool fat_has_children(void *node)
  537. {
  538.     fat_bs_t *bs;
  539.     fat_node_t *nodep = (fat_node_t *)node;
  540.     unsigned bps;
  541.     unsigned dps;
  542.     unsigned blocks;
  543.     block_t *b;
  544.     unsigned i, j;
  545.  
  546.     if (nodep->type != FAT_DIRECTORY)
  547.         return false;
  548.    
  549.     futex_down(&nodep->idx->lock);
  550.     bs = block_bb_get(nodep->idx->dev_handle);
  551.     bps = uint16_t_le2host(bs->bps);
  552.     dps = bps / sizeof(fat_dentry_t);
  553.  
  554.     blocks = nodep->size / bps;
  555.  
  556.     for (i = 0; i < blocks; i++) {
  557.         fat_dentry_t *d;
  558.    
  559.         b = fat_block_get(bs, nodep, i, BLOCK_FLAGS_NONE);
  560.         for (j = 0; j < dps; j++) {
  561.             d = ((fat_dentry_t *)b->data) + j;
  562.             switch (fat_classify_dentry(d)) {
  563.             case FAT_DENTRY_SKIP:
  564.             case FAT_DENTRY_FREE:
  565.                 continue;
  566.             case FAT_DENTRY_LAST:
  567.                 block_put(b);
  568.                 futex_up(&nodep->idx->lock);
  569.                 return false;
  570.             default:
  571.             case FAT_DENTRY_VALID:
  572.                 block_put(b);
  573.                 futex_up(&nodep->idx->lock);
  574.                 return true;
  575.             }
  576.             block_put(b);
  577.             futex_up(&nodep->idx->lock);
  578.             return true;
  579.         }
  580.         block_put(b);
  581.     }
  582.  
  583.     futex_up(&nodep->idx->lock);
  584.     return false;
  585. }
  586.  
  587. void *fat_root_get(dev_handle_t dev_handle)
  588. {
  589.     return fat_node_get(dev_handle, 0);
  590. }
  591.  
  592. char fat_plb_get_char(unsigned pos)
  593. {
  594.     return fat_reg.plb_ro[pos % PLB_SIZE];
  595. }
  596.  
  597. bool fat_is_directory(void *node)
  598. {
  599.     return ((fat_node_t *)node)->type == FAT_DIRECTORY;
  600. }
  601.  
  602. bool fat_is_file(void *node)
  603. {
  604.     return ((fat_node_t *)node)->type == FAT_FILE;
  605. }
  606.  
  607. /** libfs operations */
  608. libfs_ops_t fat_libfs_ops = {
  609.     .match = fat_match,
  610.     .node_get = fat_node_get,
  611.     .node_put = fat_node_put,
  612.     .create = fat_create_node,
  613.     .destroy = fat_destroy_node,
  614.     .link = fat_link,
  615.     .unlink = fat_unlink,
  616.     .index_get = fat_index_get,
  617.     .size_get = fat_size_get,
  618.     .lnkcnt_get = fat_lnkcnt_get,
  619.     .has_children = fat_has_children,
  620.     .root_get = fat_root_get,
  621.     .plb_get_char = fat_plb_get_char,
  622.     .is_directory = fat_is_directory,
  623.     .is_file = fat_is_file
  624. };
  625.  
  626. /*
  627.  * VFS operations.
  628.  */
  629.  
  630. void fat_mounted(ipc_callid_t rid, ipc_call_t *request)
  631. {
  632.     dev_handle_t dev_handle = (dev_handle_t) IPC_GET_ARG1(*request);
  633.     fat_bs_t *bs;
  634.     uint16_t bps;
  635.     uint16_t rde;
  636.     int rc;
  637.  
  638.     /* initialize libblock */
  639.     rc = block_init(dev_handle, BS_SIZE);
  640.     if (rc != EOK) {
  641.         ipc_answer_0(rid, rc);
  642.         return;
  643.     }
  644.  
  645.     /* prepare the boot block */
  646.     rc = block_bb_read(dev_handle, BS_BLOCK * BS_SIZE, BS_SIZE);
  647.     if (rc != EOK) {
  648.         block_fini(dev_handle);
  649.         ipc_answer_0(rid, rc);
  650.         return;
  651.     }
  652.  
  653.     /* get the buffer with the boot sector */
  654.     bs = block_bb_get(dev_handle);
  655.    
  656.     /* Read the number of root directory entries. */
  657.     bps = uint16_t_le2host(bs->bps);
  658.     rde = uint16_t_le2host(bs->root_ent_max);
  659.  
  660.     if (bps != BS_SIZE) {
  661.         block_fini(dev_handle);
  662.         ipc_answer_0(rid, ENOTSUP);
  663.         return;
  664.     }
  665.  
  666.     /* Initialize the block cache */
  667.     rc = block_cache_init(dev_handle, bps, 0 /* XXX */);
  668.     if (rc != EOK) {
  669.         block_fini(dev_handle);
  670.         ipc_answer_0(rid, rc);
  671.         return;
  672.     }
  673.  
  674.     rc = fat_idx_init_by_dev_handle(dev_handle);
  675.     if (rc != EOK) {
  676.         block_fini(dev_handle);
  677.         ipc_answer_0(rid, rc);
  678.         return;
  679.     }
  680.  
  681.     /* Initialize the root node. */
  682.     fat_node_t *rootp = (fat_node_t *)malloc(sizeof(fat_node_t));
  683.     if (!rootp) {
  684.         block_fini(dev_handle);
  685.         fat_idx_fini_by_dev_handle(dev_handle);
  686.         ipc_answer_0(rid, ENOMEM);
  687.         return;
  688.     }
  689.     fat_node_initialize(rootp);
  690.  
  691.     fat_idx_t *ridxp = fat_idx_get_by_pos(dev_handle, FAT_CLST_ROOTPAR, 0);
  692.     if (!ridxp) {
  693.         block_fini(dev_handle);
  694.         free(rootp);
  695.         fat_idx_fini_by_dev_handle(dev_handle);
  696.         ipc_answer_0(rid, ENOMEM);
  697.         return;
  698.     }
  699.     assert(ridxp->index == 0);
  700.     /* ridxp->lock held */
  701.  
  702.     rootp->type = FAT_DIRECTORY;
  703.     rootp->firstc = FAT_CLST_ROOT;
  704.     rootp->refcnt = 1;
  705.     rootp->lnkcnt = 0;  /* FS root is not linked */
  706.     rootp->size = rde * sizeof(fat_dentry_t);
  707.     rootp->idx = ridxp;
  708.     ridxp->nodep = rootp;
  709.    
  710.     futex_up(&ridxp->lock);
  711.  
  712.     ipc_answer_3(rid, EOK, ridxp->index, rootp->size, rootp->lnkcnt);
  713. }
  714.  
  715. void fat_mount(ipc_callid_t rid, ipc_call_t *request)
  716. {
  717.     ipc_answer_0(rid, ENOTSUP);
  718. }
  719.  
  720. void fat_lookup(ipc_callid_t rid, ipc_call_t *request)
  721. {
  722.     libfs_lookup(&fat_libfs_ops, fat_reg.fs_handle, rid, request);
  723. }
  724.  
  725. void fat_read(ipc_callid_t rid, ipc_call_t *request)
  726. {
  727.     dev_handle_t dev_handle = (dev_handle_t)IPC_GET_ARG1(*request);
  728.     fs_index_t index = (fs_index_t)IPC_GET_ARG2(*request);
  729.     off_t pos = (off_t)IPC_GET_ARG3(*request);
  730.     fat_node_t *nodep = (fat_node_t *)fat_node_get(dev_handle, index);
  731.     fat_bs_t *bs;
  732.     uint16_t bps;
  733.     size_t bytes;
  734.     block_t *b;
  735.  
  736.     if (!nodep) {
  737.         ipc_answer_0(rid, ENOENT);
  738.         return;
  739.     }
  740.  
  741.     ipc_callid_t callid;
  742.     size_t len;
  743.     if (!ipc_data_read_receive(&callid, &len)) {
  744.         fat_node_put(nodep);
  745.         ipc_answer_0(callid, EINVAL);
  746.         ipc_answer_0(rid, EINVAL);
  747.         return;
  748.     }
  749.  
  750.     bs = block_bb_get(dev_handle);
  751.     bps = uint16_t_le2host(bs->bps);
  752.  
  753.     if (nodep->type == FAT_FILE) {
  754.         /*
  755.          * Our strategy for regular file reads is to read one block at
  756.          * most and make use of the possibility to return less data than
  757.          * requested. This keeps the code very simple.
  758.          */
  759.         if (pos >= nodep->size) {
  760.             /* reading beyond the EOF */
  761.             bytes = 0;
  762.             (void) ipc_data_read_finalize(callid, NULL, 0);
  763.         } else {
  764.             bytes = min(len, bps - pos % bps);
  765.             bytes = min(bytes, nodep->size - pos);
  766.             b = fat_block_get(bs, nodep, pos / bps,
  767.                 BLOCK_FLAGS_NONE);
  768.             (void) ipc_data_read_finalize(callid, b->data + pos % bps,
  769.                 bytes);
  770.             block_put(b);
  771.         }
  772.     } else {
  773.         unsigned bnum;
  774.         off_t spos = pos;
  775.         char name[FAT_NAME_LEN + 1 + FAT_EXT_LEN + 1];
  776.         fat_dentry_t *d;
  777.  
  778.         assert(nodep->type == FAT_DIRECTORY);
  779.         assert(nodep->size % bps == 0);
  780.         assert(bps % sizeof(fat_dentry_t) == 0);
  781.  
  782.         /*
  783.          * Our strategy for readdir() is to use the position pointer as
  784.          * an index into the array of all dentries. On entry, it points
  785.          * to the first unread dentry. If we skip any dentries, we bump
  786.          * the position pointer accordingly.
  787.          */
  788.         bnum = (pos * sizeof(fat_dentry_t)) / bps;
  789.         while (bnum < nodep->size / bps) {
  790.             off_t o;
  791.  
  792.             b = fat_block_get(bs, nodep, bnum, BLOCK_FLAGS_NONE);
  793.             for (o = pos % (bps / sizeof(fat_dentry_t));
  794.                 o < bps / sizeof(fat_dentry_t);
  795.                 o++, pos++) {
  796.                 d = ((fat_dentry_t *)b->data) + o;
  797.                 switch (fat_classify_dentry(d)) {
  798.                 case FAT_DENTRY_SKIP:
  799.                 case FAT_DENTRY_FREE:
  800.                     continue;
  801.                 case FAT_DENTRY_LAST:
  802.                     block_put(b);
  803.                     goto miss;
  804.                 default:
  805.                 case FAT_DENTRY_VALID:
  806.                     fat_dentry_name_get(d, name);
  807.                     block_put(b);
  808.                     goto hit;
  809.                 }
  810.             }
  811.             block_put(b);
  812.             bnum++;
  813.         }
  814. miss:
  815.         fat_node_put(nodep);
  816.         ipc_answer_0(callid, ENOENT);
  817.         ipc_answer_1(rid, ENOENT, 0);
  818.         return;
  819. hit:
  820.         (void) ipc_data_read_finalize(callid, name, strlen(name) + 1);
  821.         bytes = (pos - spos) + 1;
  822.     }
  823.  
  824.     fat_node_put(nodep);
  825.     ipc_answer_1(rid, EOK, (ipcarg_t)bytes);
  826. }
  827.  
  828. void fat_write(ipc_callid_t rid, ipc_call_t *request)
  829. {
  830.     dev_handle_t dev_handle = (dev_handle_t)IPC_GET_ARG1(*request);
  831.     fs_index_t index = (fs_index_t)IPC_GET_ARG2(*request);
  832.     off_t pos = (off_t)IPC_GET_ARG3(*request);
  833.     fat_node_t *nodep = (fat_node_t *)fat_node_get(dev_handle, index);
  834.     fat_bs_t *bs;
  835.     size_t bytes;
  836.     block_t *b;
  837.     uint16_t bps;
  838.     unsigned spc;
  839.     unsigned bpc;       /* bytes per cluster */
  840.     off_t boundary;
  841.     int flags = BLOCK_FLAGS_NONE;
  842.    
  843.     if (!nodep) {
  844.         ipc_answer_0(rid, ENOENT);
  845.         return;
  846.     }
  847.    
  848.     ipc_callid_t callid;
  849.     size_t len;
  850.     if (!ipc_data_write_receive(&callid, &len)) {
  851.         fat_node_put(nodep);
  852.         ipc_answer_0(callid, EINVAL);
  853.         ipc_answer_0(rid, EINVAL);
  854.         return;
  855.     }
  856.  
  857.     bs = block_bb_get(dev_handle);
  858.     bps = uint16_t_le2host(bs->bps);
  859.     spc = bs->spc;
  860.     bpc = bps * spc;
  861.  
  862.     /*
  863.      * In all scenarios, we will attempt to write out only one block worth
  864.      * of data at maximum. There might be some more efficient approaches,
  865.      * but this one greatly simplifies fat_write(). Note that we can afford
  866.      * to do this because the client must be ready to handle the return
  867.      * value signalizing a smaller number of bytes written.
  868.      */
  869.     bytes = min(len, bps - pos % bps);
  870.     if (bytes == bps)
  871.         flags |= BLOCK_FLAGS_NOREAD;
  872.    
  873.     boundary = ROUND_UP(nodep->size, bpc);
  874.     if (pos < boundary) {
  875.         /*
  876.          * This is the easier case - we are either overwriting already
  877.          * existing contents or writing behind the EOF, but still within
  878.          * the limits of the last cluster. The node size may grow to the
  879.          * next block size boundary.
  880.          */
  881.         fat_fill_gap(bs, nodep, FAT_CLST_RES0, pos);
  882.         b = fat_block_get(bs, nodep, pos / bps, flags);
  883.         (void) ipc_data_write_finalize(callid, b->data + pos % bps,
  884.             bytes);
  885.         b->dirty = true;        /* need to sync block */
  886.         block_put(b);
  887.         if (pos + bytes > nodep->size) {
  888.             nodep->size = pos + bytes;
  889.             nodep->dirty = true;    /* need to sync node */
  890.         }
  891.         ipc_answer_2(rid, EOK, bytes, nodep->size);
  892.         fat_node_put(nodep);
  893.         return;
  894.     } else {
  895.         /*
  896.          * This is the more difficult case. We must allocate new
  897.          * clusters for the node and zero them out.
  898.          */
  899.         int status;
  900.         unsigned nclsts;
  901.         fat_cluster_t mcl, lcl;
  902.  
  903.         nclsts = (ROUND_UP(pos + bytes, bpc) - boundary) / bpc;
  904.         /* create an independent chain of nclsts clusters in all FATs */
  905.         status = fat_alloc_clusters(bs, dev_handle, nclsts, &mcl, &lcl);
  906.         if (status != EOK) {
  907.             /* could not allocate a chain of nclsts clusters */
  908.             fat_node_put(nodep);
  909.             ipc_answer_0(callid, status);
  910.             ipc_answer_0(rid, status);
  911.             return;
  912.         }
  913.         /* zero fill any gaps */
  914.         fat_fill_gap(bs, nodep, mcl, pos);
  915.         b = _fat_block_get(bs, dev_handle, lcl, (pos / bps) % spc,
  916.             flags);
  917.         (void) ipc_data_write_finalize(callid, b->data + pos % bps,
  918.             bytes);
  919.         b->dirty = true;        /* need to sync block */
  920.         block_put(b);
  921.         /*
  922.          * Append the cluster chain starting in mcl to the end of the
  923.          * node's cluster chain.
  924.          */
  925.         fat_append_clusters(bs, nodep, mcl);
  926.         nodep->size = pos + bytes;
  927.         nodep->dirty = true;        /* need to sync node */
  928.         ipc_answer_2(rid, EOK, bytes, nodep->size);
  929.         fat_node_put(nodep);
  930.         return;
  931.     }
  932. }
  933.  
  934. void fat_truncate(ipc_callid_t rid, ipc_call_t *request)
  935. {
  936.     dev_handle_t dev_handle = (dev_handle_t)IPC_GET_ARG1(*request);
  937.     fs_index_t index = (fs_index_t)IPC_GET_ARG2(*request);
  938.     size_t size = (off_t)IPC_GET_ARG3(*request);
  939.     fat_node_t *nodep = (fat_node_t *)fat_node_get(dev_handle, index);
  940.     fat_bs_t *bs;
  941.     uint16_t bps;
  942.     uint8_t spc;
  943.     unsigned bpc;   /* bytes per cluster */
  944.     int rc;
  945.  
  946.     if (!nodep) {
  947.         ipc_answer_0(rid, ENOENT);
  948.         return;
  949.     }
  950.  
  951.     bs = block_bb_get(dev_handle);
  952.     bps = uint16_t_le2host(bs->bps);
  953.     spc = bs->spc;
  954.     bpc = bps * spc;
  955.  
  956.     if (nodep->size == size) {
  957.         rc = EOK;
  958.     } else if (nodep->size < size) {
  959.         /*
  960.          * The standard says we have the freedom to grow the node.
  961.          * For now, we simply return an error.
  962.          */
  963.         rc = EINVAL;
  964.     } else if (ROUND_UP(nodep->size, bpc) == ROUND_UP(size, bpc)) {
  965.         /*
  966.          * The node will be shrunk, but no clusters will be deallocated.
  967.          */
  968.         nodep->size = size;
  969.         nodep->dirty = true;        /* need to sync node */
  970.         rc = EOK;  
  971.     } else {
  972.         /*
  973.          * The node will be shrunk, clusters will be deallocated.
  974.          */
  975.         if (size == 0) {
  976.             fat_chop_clusters(bs, nodep, FAT_CLST_RES0);
  977.         } else {
  978.             fat_cluster_t lastc;
  979.             (void) fat_cluster_walk(bs, dev_handle, nodep->firstc,
  980.                 &lastc, (size - 1) / bpc);
  981.             fat_chop_clusters(bs, nodep, lastc);
  982.         }
  983.         nodep->size = size;
  984.         nodep->dirty = true;        /* need to sync node */
  985.         rc = EOK;  
  986.     }
  987.     fat_node_put(nodep);
  988.     ipc_answer_0(rid, rc);
  989.     return;
  990. }
  991.  
  992. void fat_destroy(ipc_callid_t rid, ipc_call_t *request)
  993. {
  994.     dev_handle_t dev_handle = (dev_handle_t)IPC_GET_ARG1(*request);
  995.     fs_index_t index = (fs_index_t)IPC_GET_ARG2(*request);
  996.     int rc;
  997.  
  998.     fat_node_t *nodep = fat_node_get(dev_handle, index);
  999.     if (!nodep) {
  1000.         ipc_answer_0(rid, ENOENT);
  1001.         return;
  1002.     }
  1003.  
  1004.     rc = fat_destroy_node(nodep);
  1005.     ipc_answer_0(rid, rc);
  1006. }
  1007.  
  1008. /**
  1009.  * @}
  1010.  */
  1011.