Subversion Repositories HelenOS

Rev

Rev 2133 | Rev 2170 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. /*
  2.  * Copyright (c) 2001-2006 Jakub Jermar
  3.  * All rights reserved.
  4.  *
  5.  * Redistribution and use in source and binary forms, with or without
  6.  * modification, are permitted provided that the following conditions
  7.  * are met:
  8.  *
  9.  * - Redistributions of source code must retain the above copyright
  10.  *   notice, this list of conditions and the following disclaimer.
  11.  * - Redistributions in binary form must reproduce the above copyright
  12.  *   notice, this list of conditions and the following disclaimer in the
  13.  *   documentation and/or other materials provided with the distribution.
  14.  * - The name of the author may not be used to endorse or promote products
  15.  *   derived from this software without specific prior written permission.
  16.  *
  17.  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
  18.  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  19.  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  20.  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  21.  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  22.  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  23.  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  24.  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  25.  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  26.  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  27.  */
  28.  
  29. /** @addtogroup genericmm
  30.  * @{
  31.  */
  32.  
  33. /**
  34.  * @file
  35.  * @brief   Address space related functions.
  36.  *
  37.  * This file contains address space manipulation functions.
  38.  * Roughly speaking, this is a higher-level client of
  39.  * Virtual Address Translation (VAT) subsystem.
  40.  *
  41.  * Functionality provided by this file allows one to
  42.  * create address spaces and create, resize and share
  43.  * address space areas.
  44.  *
  45.  * @see page.c
  46.  *
  47.  */
  48.  
  49. #include <mm/as.h>
  50. #include <arch/mm/as.h>
  51. #include <mm/page.h>
  52. #include <mm/frame.h>
  53. #include <mm/slab.h>
  54. #include <mm/tlb.h>
  55. #include <arch/mm/page.h>
  56. #include <genarch/mm/page_pt.h>
  57. #include <genarch/mm/page_ht.h>
  58. #include <mm/asid.h>
  59. #include <arch/mm/asid.h>
  60. #include <synch/spinlock.h>
  61. #include <synch/mutex.h>
  62. #include <adt/list.h>
  63. #include <adt/btree.h>
  64. #include <proc/task.h>
  65. #include <proc/thread.h>
  66. #include <arch/asm.h>
  67. #include <panic.h>
  68. #include <debug.h>
  69. #include <print.h>
  70. #include <memstr.h>
  71. #include <macros.h>
  72. #include <arch.h>
  73. #include <errno.h>
  74. #include <config.h>
  75. #include <align.h>
  76. #include <arch/types.h>
  77. #include <syscall/copy.h>
  78. #include <arch/interrupt.h>
  79.  
  80. #ifdef CONFIG_VIRT_IDX_DCACHE
  81. #include <arch/mm/cache.h>
  82. #endif /* CONFIG_VIRT_IDX_DCACHE */
  83.  
  84. #ifndef __OBJC__
  85. /**
  86.  * Each architecture decides what functions will be used to carry out
  87.  * address space operations such as creating or locking page tables.
  88.  */
  89. as_operations_t *as_operations = NULL;
  90.  
  91. /**
  92.  * Slab for as_t objects.
  93.  */
  94. static slab_cache_t *as_slab;
  95. #endif
  96.  
  97. /**
  98.  * This lock protects inactive_as_with_asid_head list. It must be acquired
  99.  * before as_t mutex.
  100.  */
  101. SPINLOCK_INITIALIZE(inactive_as_with_asid_lock);
  102.  
  103. /**
  104.  * This list contains address spaces that are not active on any
  105.  * processor and that have valid ASID.
  106.  */
  107. LIST_INITIALIZE(inactive_as_with_asid_head);
  108.  
  109. /** Kernel address space. */
  110. as_t *AS_KERNEL = NULL;
  111.  
  112. static int area_flags_to_page_flags(int aflags);
  113. static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
  114. static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
  115.     as_area_t *avoid_area);
  116. static void sh_info_remove_reference(share_info_t *sh_info);
  117.  
  118. #ifndef __OBJC__
  119. static int as_constructor(void *obj, int flags)
  120. {
  121.     as_t *as = (as_t *) obj;
  122.     int rc;
  123.  
  124.     link_initialize(&as->inactive_as_with_asid_link);
  125.     mutex_initialize(&as->lock);   
  126.    
  127.     rc = as_constructor_arch(as, flags);
  128.    
  129.     return rc;
  130. }
  131.  
  132. static int as_destructor(void *obj)
  133. {
  134.     as_t *as = (as_t *) obj;
  135.  
  136.     return as_destructor_arch(as);
  137. }
  138. #endif
  139.  
  140. /** Initialize address space subsystem. */
  141. void as_init(void)
  142. {
  143.     as_arch_init();
  144.  
  145. #ifndef __OBJC__
  146.     as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
  147.         as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
  148. #endif
  149.    
  150.     AS_KERNEL = as_create(FLAG_AS_KERNEL);
  151.     if (!AS_KERNEL)
  152.         panic("can't create kernel address space\n");
  153.    
  154. }
  155.  
  156. /** Create address space.
  157.  *
  158.  * @param flags Flags that influence way in wich the address space is created.
  159.  */
  160. as_t *as_create(int flags)
  161. {
  162.     as_t *as;
  163.  
  164. #ifdef __OBJC__
  165.     as = [as_t new];
  166.     link_initialize(&as->inactive_as_with_asid_link);
  167.     mutex_initialize(&as->lock);   
  168.     (void) as_constructor_arch(as, flags);
  169. #else
  170.     as = (as_t *) slab_alloc(as_slab, 0);
  171. #endif
  172.     (void) as_create_arch(as, 0);
  173.    
  174.     btree_create(&as->as_area_btree);
  175.    
  176.     if (flags & FLAG_AS_KERNEL)
  177.         as->asid = ASID_KERNEL;
  178.     else
  179.         as->asid = ASID_INVALID;
  180.    
  181.     as->refcount = 0;
  182.     as->cpu_refcount = 0;
  183. #ifdef AS_PAGE_TABLE
  184.     as->genarch.page_table = page_table_create(flags);
  185. #else
  186.     page_table_create(flags);
  187. #endif
  188.  
  189.     return as;
  190. }
  191.  
  192. /** Destroy adress space.
  193.  *
  194.  * When there are no tasks referencing this address space (i.e. its refcount is
  195.  * zero), the address space can be destroyed.
  196.  */
  197. void as_destroy(as_t *as)
  198. {
  199.     ipl_t ipl;
  200.     bool cond;
  201.  
  202.     ASSERT(as->refcount == 0);
  203.    
  204.     /*
  205.      * Since there is no reference to this area,
  206.      * it is safe not to lock its mutex.
  207.      */
  208.     ipl = interrupts_disable();
  209.     spinlock_lock(&inactive_as_with_asid_lock);
  210.     if (as->asid != ASID_INVALID && as != AS_KERNEL) {
  211.         if (as != AS && as->cpu_refcount == 0)
  212.             list_remove(&as->inactive_as_with_asid_link);
  213.         asid_put(as->asid);
  214.     }
  215.     spinlock_unlock(&inactive_as_with_asid_lock);
  216.  
  217.     /*
  218.      * Destroy address space areas of the address space.
  219.      * The B+tree must be walked carefully because it is
  220.      * also being destroyed.
  221.      */
  222.     for (cond = true; cond; ) {
  223.         btree_node_t *node;
  224.  
  225.         ASSERT(!list_empty(&as->as_area_btree.leaf_head));
  226.         node = list_get_instance(as->as_area_btree.leaf_head.next,
  227.             btree_node_t, leaf_link);
  228.  
  229.         if ((cond = node->keys)) {
  230.             as_area_destroy(as, node->key[0]);
  231.         }
  232.     }
  233.  
  234.     btree_destroy(&as->as_area_btree);
  235. #ifdef AS_PAGE_TABLE
  236.     page_table_destroy(as->genarch.page_table);
  237. #else
  238.     page_table_destroy(NULL);
  239. #endif
  240.  
  241.     interrupts_restore(ipl);
  242.  
  243. #ifdef __OBJC__
  244.     [as free];
  245. #else
  246.     slab_free(as_slab, as);
  247. #endif
  248. }
  249.  
  250. /** Create address space area of common attributes.
  251.  *
  252.  * The created address space area is added to the target address space.
  253.  *
  254.  * @param as Target address space.
  255.  * @param flags Flags of the area memory.
  256.  * @param size Size of area.
  257.  * @param base Base address of area.
  258.  * @param attrs Attributes of the area.
  259.  * @param backend Address space area backend. NULL if no backend is used.
  260.  * @param backend_data NULL or a pointer to an array holding two void *.
  261.  *
  262.  * @return Address space area on success or NULL on failure.
  263.  */
  264. as_area_t *
  265. as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
  266.            mem_backend_t *backend, mem_backend_data_t *backend_data)
  267. {
  268.     ipl_t ipl;
  269.     as_area_t *a;
  270.    
  271.     if (base % PAGE_SIZE)
  272.         return NULL;
  273.  
  274.     if (!size)
  275.         return NULL;
  276.  
  277.     /* Writeable executable areas are not supported. */
  278.     if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
  279.         return NULL;
  280.    
  281.     ipl = interrupts_disable();
  282.     mutex_lock(&as->lock);
  283.    
  284.     if (!check_area_conflicts(as, base, size, NULL)) {
  285.         mutex_unlock(&as->lock);
  286.         interrupts_restore(ipl);
  287.         return NULL;
  288.     }
  289.    
  290.     a = (as_area_t *) malloc(sizeof(as_area_t), 0);
  291.  
  292.     mutex_initialize(&a->lock);
  293.    
  294.     a->as = as;
  295.     a->flags = flags;
  296.     a->attributes = attrs;
  297.     a->pages = SIZE2FRAMES(size);
  298.     a->base = base;
  299.     a->sh_info = NULL;
  300.     a->backend = backend;
  301.     if (backend_data)
  302.         a->backend_data = *backend_data;
  303.     else
  304.         memsetb((uintptr_t) &a->backend_data, sizeof(a->backend_data),
  305.             0);
  306.  
  307.     btree_create(&a->used_space);
  308.    
  309.     btree_insert(&as->as_area_btree, base, (void *) a, NULL);
  310.  
  311.     mutex_unlock(&as->lock);
  312.     interrupts_restore(ipl);
  313.  
  314.     return a;
  315. }
  316.  
  317. /** Find address space area and change it.
  318.  *
  319.  * @param as Address space.
  320.  * @param address Virtual address belonging to the area to be changed. Must be
  321.  *     page-aligned.
  322.  * @param size New size of the virtual memory block starting at address.
  323.  * @param flags Flags influencing the remap operation. Currently unused.
  324.  *
  325.  * @return Zero on success or a value from @ref errno.h otherwise.
  326.  */
  327. int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
  328. {
  329.     as_area_t *area;
  330.     ipl_t ipl;
  331.     size_t pages;
  332.    
  333.     ipl = interrupts_disable();
  334.     mutex_lock(&as->lock);
  335.    
  336.     /*
  337.      * Locate the area.
  338.      */
  339.     area = find_area_and_lock(as, address);
  340.     if (!area) {
  341.         mutex_unlock(&as->lock);
  342.         interrupts_restore(ipl);
  343.         return ENOENT;
  344.     }
  345.  
  346.     if (area->backend == &phys_backend) {
  347.         /*
  348.          * Remapping of address space areas associated
  349.          * with memory mapped devices is not supported.
  350.          */
  351.         mutex_unlock(&area->lock);
  352.         mutex_unlock(&as->lock);
  353.         interrupts_restore(ipl);
  354.         return ENOTSUP;
  355.     }
  356.     if (area->sh_info) {
  357.         /*
  358.          * Remapping of shared address space areas
  359.          * is not supported.
  360.          */
  361.         mutex_unlock(&area->lock);
  362.         mutex_unlock(&as->lock);
  363.         interrupts_restore(ipl);
  364.         return ENOTSUP;
  365.     }
  366.  
  367.     pages = SIZE2FRAMES((address - area->base) + size);
  368.     if (!pages) {
  369.         /*
  370.          * Zero size address space areas are not allowed.
  371.          */
  372.         mutex_unlock(&area->lock);
  373.         mutex_unlock(&as->lock);
  374.         interrupts_restore(ipl);
  375.         return EPERM;
  376.     }
  377.    
  378.     if (pages < area->pages) {
  379.         bool cond;
  380.         uintptr_t start_free = area->base + pages*PAGE_SIZE;
  381.  
  382.         /*
  383.          * Shrinking the area.
  384.          * No need to check for overlaps.
  385.          */
  386.  
  387.         /*
  388.          * Start TLB shootdown sequence.
  389.          */
  390.         tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base +
  391.             pages * PAGE_SIZE, area->pages - pages);
  392.  
  393.         /*
  394.          * Remove frames belonging to used space starting from
  395.          * the highest addresses downwards until an overlap with
  396.          * the resized address space area is found. Note that this
  397.          * is also the right way to remove part of the used_space
  398.          * B+tree leaf list.
  399.          */    
  400.         for (cond = true; cond;) {
  401.             btree_node_t *node;
  402.        
  403.             ASSERT(!list_empty(&area->used_space.leaf_head));
  404.             node =
  405.                 list_get_instance(area->used_space.leaf_head.prev,
  406.                 btree_node_t, leaf_link);
  407.             if ((cond = (bool) node->keys)) {
  408.                 uintptr_t b = node->key[node->keys - 1];
  409.                 count_t c =
  410.                     (count_t) node->value[node->keys - 1];
  411.                 int i = 0;
  412.            
  413.                 if (overlaps(b, c * PAGE_SIZE, area->base,
  414.                     pages * PAGE_SIZE)) {
  415.                    
  416.                     if (b + c * PAGE_SIZE <= start_free) {
  417.                         /*
  418.                          * The whole interval fits
  419.                          * completely in the resized
  420.                          * address space area.
  421.                          */
  422.                         break;
  423.                     }
  424.        
  425.                     /*
  426.                      * Part of the interval corresponding
  427.                      * to b and c overlaps with the resized
  428.                      * address space area.
  429.                      */
  430.        
  431.                     cond = false;   /* we are almost done */
  432.                     i = (start_free - b) >> PAGE_WIDTH;
  433.                     if (!used_space_remove(area, start_free,
  434.                         c - i))
  435.                         panic("Could not remove used "
  436.                             "space.\n");
  437.                 } else {
  438.                     /*
  439.                      * The interval of used space can be
  440.                      * completely removed.
  441.                      */
  442.                     if (!used_space_remove(area, b, c))
  443.                         panic("Could not remove used "
  444.                             "space.\n");
  445.                 }
  446.            
  447.                 for (; i < c; i++) {
  448.                     pte_t *pte;
  449.            
  450.                     page_table_lock(as, false);
  451.                     pte = page_mapping_find(as, b +
  452.                         i * PAGE_SIZE);
  453.                     ASSERT(pte && PTE_VALID(pte) &&
  454.                         PTE_PRESENT(pte));
  455.                     if (area->backend &&
  456.                         area->backend->frame_free) {
  457.                         area->backend->frame_free(area,
  458.                             b + i * PAGE_SIZE,
  459.                             PTE_GET_FRAME(pte));
  460.                     }
  461.                     page_mapping_remove(as, b +
  462.                         i * PAGE_SIZE);
  463.                     page_table_unlock(as, false);
  464.                 }
  465.             }
  466.         }
  467.  
  468.         /*
  469.          * Finish TLB shootdown sequence.
  470.          */
  471.         tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
  472.             area->pages - pages);
  473.         tlb_shootdown_finalize();
  474.        
  475.         /*
  476.          * Invalidate software translation caches (e.g. TSB on sparc64).
  477.          */
  478.         as_invalidate_translation_cache(as, area->base +
  479.             pages * PAGE_SIZE, area->pages - pages);
  480.     } else {
  481.         /*
  482.          * Growing the area.
  483.          * Check for overlaps with other address space areas.
  484.          */
  485.         if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
  486.             area)) {
  487.             mutex_unlock(&area->lock);
  488.             mutex_unlock(&as->lock);       
  489.             interrupts_restore(ipl);
  490.             return EADDRNOTAVAIL;
  491.         }
  492.     }
  493.  
  494.     area->pages = pages;
  495.    
  496.     mutex_unlock(&area->lock);
  497.     mutex_unlock(&as->lock);
  498.     interrupts_restore(ipl);
  499.  
  500.     return 0;
  501. }
  502.  
  503. /** Destroy address space area.
  504.  *
  505.  * @param as Address space.
  506.  * @param address Address withing the area to be deleted.
  507.  *
  508.  * @return Zero on success or a value from @ref errno.h on failure.
  509.  */
  510. int as_area_destroy(as_t *as, uintptr_t address)
  511. {
  512.     as_area_t *area;
  513.     uintptr_t base;
  514.     link_t *cur;
  515.     ipl_t ipl;
  516.  
  517.     ipl = interrupts_disable();
  518.     mutex_lock(&as->lock);
  519.  
  520.     area = find_area_and_lock(as, address);
  521.     if (!area) {
  522.         mutex_unlock(&as->lock);
  523.         interrupts_restore(ipl);
  524.         return ENOENT;
  525.     }
  526.  
  527.     base = area->base;
  528.  
  529.     /*
  530.      * Start TLB shootdown sequence.
  531.      */
  532.     tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
  533.  
  534.     /*
  535.      * Visit only the pages mapped by used_space B+tree.
  536.      */
  537.     for (cur = area->used_space.leaf_head.next;
  538.         cur != &area->used_space.leaf_head; cur = cur->next) {
  539.         btree_node_t *node;
  540.         int i;
  541.        
  542.         node = list_get_instance(cur, btree_node_t, leaf_link);
  543.         for (i = 0; i < node->keys; i++) {
  544.             uintptr_t b = node->key[i];
  545.             count_t j;
  546.             pte_t *pte;
  547.            
  548.             for (j = 0; j < (count_t) node->value[i]; j++) {
  549.                 page_table_lock(as, false);
  550.                 pte = page_mapping_find(as, b + j * PAGE_SIZE);
  551.                 ASSERT(pte && PTE_VALID(pte) &&
  552.                     PTE_PRESENT(pte));
  553.                 if (area->backend &&
  554.                     area->backend->frame_free) {
  555.                     area->backend->frame_free(area, b +
  556.                         j * PAGE_SIZE, PTE_GET_FRAME(pte));
  557.                 }
  558.                 page_mapping_remove(as, b + j * PAGE_SIZE);            
  559.                 page_table_unlock(as, false);
  560.             }
  561.         }
  562.     }
  563.  
  564.     /*
  565.      * Finish TLB shootdown sequence.
  566.      */
  567.     tlb_invalidate_pages(as->asid, area->base, area->pages);
  568.     tlb_shootdown_finalize();
  569.    
  570.     /*
  571.      * Invalidate potential software translation caches (e.g. TSB on
  572.      * sparc64).
  573.      */
  574.     as_invalidate_translation_cache(as, area->base, area->pages);
  575.    
  576.     btree_destroy(&area->used_space);
  577.  
  578.     area->attributes |= AS_AREA_ATTR_PARTIAL;
  579.    
  580.     if (area->sh_info)
  581.         sh_info_remove_reference(area->sh_info);
  582.        
  583.     mutex_unlock(&area->lock);
  584.  
  585.     /*
  586.      * Remove the empty area from address space.
  587.      */
  588.     btree_remove(&as->as_area_btree, base, NULL);
  589.    
  590.     free(area);
  591.    
  592.     mutex_unlock(&as->lock);
  593.     interrupts_restore(ipl);
  594.     return 0;
  595. }
  596.  
  597. /** Share address space area with another or the same address space.
  598.  *
  599.  * Address space area mapping is shared with a new address space area.
  600.  * If the source address space area has not been shared so far,
  601.  * a new sh_info is created. The new address space area simply gets the
  602.  * sh_info of the source area. The process of duplicating the
  603.  * mapping is done through the backend share function.
  604.  *
  605.  * @param src_as Pointer to source address space.
  606.  * @param src_base Base address of the source address space area.
  607.  * @param acc_size Expected size of the source area.
  608.  * @param dst_as Pointer to destination address space.
  609.  * @param dst_base Target base address.
  610.  * @param dst_flags_mask Destination address space area flags mask.
  611.  *
  612.  * @return Zero on success or ENOENT if there is no such task or if there is no
  613.  * such address space area, EPERM if there was a problem in accepting the area
  614.  * or ENOMEM if there was a problem in allocating destination address space
  615.  * area. ENOTSUP is returned if the address space area backend does not support
  616.  * sharing.
  617.  */
  618. int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
  619.           as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
  620. {
  621.     ipl_t ipl;
  622.     int src_flags;
  623.     size_t src_size;
  624.     as_area_t *src_area, *dst_area;
  625.     share_info_t *sh_info;
  626.     mem_backend_t *src_backend;
  627.     mem_backend_data_t src_backend_data;
  628.    
  629.     ipl = interrupts_disable();
  630.     mutex_lock(&src_as->lock);
  631.     src_area = find_area_and_lock(src_as, src_base);
  632.     if (!src_area) {
  633.         /*
  634.          * Could not find the source address space area.
  635.          */
  636.         mutex_unlock(&src_as->lock);
  637.         interrupts_restore(ipl);
  638.         return ENOENT;
  639.     }
  640.  
  641.     if (!src_area->backend || !src_area->backend->share) {
  642.         /*
  643.          * There is no backend or the backend does not
  644.          * know how to share the area.
  645.          */
  646.         mutex_unlock(&src_area->lock);
  647.         mutex_unlock(&src_as->lock);
  648.         interrupts_restore(ipl);
  649.         return ENOTSUP;
  650.     }
  651.    
  652.     src_size = src_area->pages * PAGE_SIZE;
  653.     src_flags = src_area->flags;
  654.     src_backend = src_area->backend;
  655.     src_backend_data = src_area->backend_data;
  656.  
  657.     /* Share the cacheable flag from the original mapping */
  658.     if (src_flags & AS_AREA_CACHEABLE)
  659.         dst_flags_mask |= AS_AREA_CACHEABLE;
  660.  
  661.     if (src_size != acc_size ||
  662.         (src_flags & dst_flags_mask) != dst_flags_mask) {
  663.         mutex_unlock(&src_area->lock);
  664.         mutex_unlock(&src_as->lock);
  665.         interrupts_restore(ipl);
  666.         return EPERM;
  667.     }
  668.  
  669.     /*
  670.      * Now we are committed to sharing the area.
  671.      * First, prepare the area for sharing.
  672.      * Then it will be safe to unlock it.
  673.      */
  674.     sh_info = src_area->sh_info;
  675.     if (!sh_info) {
  676.         sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
  677.         mutex_initialize(&sh_info->lock);
  678.         sh_info->refcount = 2;
  679.         btree_create(&sh_info->pagemap);
  680.         src_area->sh_info = sh_info;
  681.     } else {
  682.         mutex_lock(&sh_info->lock);
  683.         sh_info->refcount++;
  684.         mutex_unlock(&sh_info->lock);
  685.     }
  686.  
  687.     src_area->backend->share(src_area);
  688.  
  689.     mutex_unlock(&src_area->lock);
  690.     mutex_unlock(&src_as->lock);
  691.  
  692.     /*
  693.      * Create copy of the source address space area.
  694.      * The destination area is created with AS_AREA_ATTR_PARTIAL
  695.      * attribute set which prevents race condition with
  696.      * preliminary as_page_fault() calls.
  697.      * The flags of the source area are masked against dst_flags_mask
  698.      * to support sharing in less privileged mode.
  699.      */
  700.     dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
  701.         AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
  702.     if (!dst_area) {
  703.         /*
  704.          * Destination address space area could not be created.
  705.          */
  706.         sh_info_remove_reference(sh_info);
  707.        
  708.         interrupts_restore(ipl);
  709.         return ENOMEM;
  710.     }
  711.  
  712.     /*
  713.      * Now the destination address space area has been
  714.      * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
  715.      * attribute and set the sh_info.
  716.      */
  717.     mutex_lock(&dst_as->lock); 
  718.     mutex_lock(&dst_area->lock);
  719.     dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
  720.     dst_area->sh_info = sh_info;
  721.     mutex_unlock(&dst_area->lock);
  722.     mutex_unlock(&dst_as->lock);   
  723.  
  724.     interrupts_restore(ipl);
  725.    
  726.     return 0;
  727. }
  728.  
  729. /** Check access mode for address space area.
  730.  *
  731.  * The address space area must be locked prior to this call.
  732.  *
  733.  * @param area Address space area.
  734.  * @param access Access mode.
  735.  *
  736.  * @return False if access violates area's permissions, true otherwise.
  737.  */
  738. bool as_area_check_access(as_area_t *area, pf_access_t access)
  739. {
  740.     int flagmap[] = {
  741.         [PF_ACCESS_READ] = AS_AREA_READ,
  742.         [PF_ACCESS_WRITE] = AS_AREA_WRITE,
  743.         [PF_ACCESS_EXEC] = AS_AREA_EXEC
  744.     };
  745.  
  746.     if (!(area->flags & flagmap[access]))
  747.         return false;
  748.    
  749.     return true;
  750. }
  751.  
  752. /** Handle page fault within the current address space.
  753.  *
  754.  * This is the high-level page fault handler. It decides
  755.  * whether the page fault can be resolved by any backend
  756.  * and if so, it invokes the backend to resolve the page
  757.  * fault.
  758.  *
  759.  * Interrupts are assumed disabled.
  760.  *
  761.  * @param page Faulting page.
  762.  * @param access Access mode that caused the fault (i.e. read/write/exec).
  763.  * @param istate Pointer to interrupted state.
  764.  *
  765.  * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
  766.  *     fault was caused by copy_to_uspace() or copy_from_uspace().
  767.  */
  768. int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
  769. {
  770.     pte_t *pte;
  771.     as_area_t *area;
  772.    
  773.     if (!THREAD)
  774.         return AS_PF_FAULT;
  775.        
  776.     ASSERT(AS);
  777.  
  778.     mutex_lock(&AS->lock);
  779.     area = find_area_and_lock(AS, page);   
  780.     if (!area) {
  781.         /*
  782.          * No area contained mapping for 'page'.
  783.          * Signal page fault to low-level handler.
  784.          */
  785.         mutex_unlock(&AS->lock);
  786.         goto page_fault;
  787.     }
  788.  
  789.     if (area->attributes & AS_AREA_ATTR_PARTIAL) {
  790.         /*
  791.          * The address space area is not fully initialized.
  792.          * Avoid possible race by returning error.
  793.          */
  794.         mutex_unlock(&area->lock);
  795.         mutex_unlock(&AS->lock);
  796.         goto page_fault;       
  797.     }
  798.  
  799.     if (!area->backend || !area->backend->page_fault) {
  800.         /*
  801.          * The address space area is not backed by any backend
  802.          * or the backend cannot handle page faults.
  803.          */
  804.         mutex_unlock(&area->lock);
  805.         mutex_unlock(&AS->lock);
  806.         goto page_fault;       
  807.     }
  808.  
  809.     page_table_lock(AS, false);
  810.    
  811.     /*
  812.      * To avoid race condition between two page faults
  813.      * on the same address, we need to make sure
  814.      * the mapping has not been already inserted.
  815.      */
  816.     if ((pte = page_mapping_find(AS, page))) {
  817.         if (PTE_PRESENT(pte)) {
  818.             if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
  819.                 (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
  820.                 (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
  821.                 page_table_unlock(AS, false);
  822.                 mutex_unlock(&area->lock);
  823.                 mutex_unlock(&AS->lock);
  824.                 return AS_PF_OK;
  825.             }
  826.         }
  827.     }
  828.    
  829.     /*
  830.      * Resort to the backend page fault handler.
  831.      */
  832.     if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
  833.         page_table_unlock(AS, false);
  834.         mutex_unlock(&area->lock);
  835.         mutex_unlock(&AS->lock);
  836.         goto page_fault;
  837.     }
  838.    
  839.     page_table_unlock(AS, false);
  840.     mutex_unlock(&area->lock);
  841.     mutex_unlock(&AS->lock);
  842.     return AS_PF_OK;
  843.  
  844. page_fault:
  845.     if (THREAD->in_copy_from_uspace) {
  846.         THREAD->in_copy_from_uspace = false;
  847.         istate_set_retaddr(istate,
  848.             (uintptr_t) &memcpy_from_uspace_failover_address);
  849.     } else if (THREAD->in_copy_to_uspace) {
  850.         THREAD->in_copy_to_uspace = false;
  851.         istate_set_retaddr(istate,
  852.             (uintptr_t) &memcpy_to_uspace_failover_address);
  853.     } else {
  854.         return AS_PF_FAULT;
  855.     }
  856.  
  857.     return AS_PF_DEFER;
  858. }
  859.  
  860. /** Switch address spaces.
  861.  *
  862.  * Note that this function cannot sleep as it is essentially a part of
  863.  * scheduling. Sleeping here would lead to deadlock on wakeup.
  864.  *
  865.  * @param old Old address space or NULL.
  866.  * @param new New address space.
  867.  */
  868. void as_switch(as_t *old_as, as_t *new_as)
  869. {
  870.     ipl_t ipl;
  871.     bool needs_asid = false;
  872.    
  873.     ipl = interrupts_disable();
  874.     spinlock_lock(&inactive_as_with_asid_lock);
  875.  
  876.     /*
  877.      * First, take care of the old address space.
  878.      */
  879.     if (old_as) {
  880.         mutex_lock_active(&old_as->lock);
  881.         ASSERT(old_as->cpu_refcount);
  882.         if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
  883.             /*
  884.              * The old address space is no longer active on
  885.              * any processor. It can be appended to the
  886.              * list of inactive address spaces with assigned
  887.              * ASID.
  888.              */
  889.             ASSERT(old_as->asid != ASID_INVALID);
  890.             list_append(&old_as->inactive_as_with_asid_link,
  891.                 &inactive_as_with_asid_head);
  892.         }
  893.         mutex_unlock(&old_as->lock);
  894.  
  895.         /*
  896.          * Perform architecture-specific tasks when the address space
  897.          * is being removed from the CPU.
  898.          */
  899.         as_deinstall_arch(old_as);
  900.     }
  901.  
  902.     /*
  903.      * Second, prepare the new address space.
  904.      */
  905.     mutex_lock_active(&new_as->lock);
  906.     if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
  907.         if (new_as->asid != ASID_INVALID) {
  908.             list_remove(&new_as->inactive_as_with_asid_link);
  909.         } else {
  910.             /*
  911.              * Defer call to asid_get() until new_as->lock is released.
  912.              */
  913.             needs_asid = true;
  914.         }
  915.     }
  916. #ifdef AS_PAGE_TABLE
  917.     SET_PTL0_ADDRESS(new_as->genarch.page_table);
  918. #endif
  919.     mutex_unlock(&new_as->lock);
  920.  
  921.     if (needs_asid) {
  922.         /*
  923.          * Allocation of new ASID was deferred
  924.          * until now in order to avoid deadlock.
  925.          */
  926.         asid_t asid;
  927.        
  928.         asid = asid_get();
  929.         mutex_lock_active(&new_as->lock);
  930.         new_as->asid = asid;
  931.         mutex_unlock(&new_as->lock);
  932.     }
  933.     spinlock_unlock(&inactive_as_with_asid_lock);
  934.     interrupts_restore(ipl);
  935.    
  936.     /*
  937.      * Perform architecture-specific steps.
  938.      * (e.g. write ASID to hardware register etc.)
  939.      */
  940.     as_install_arch(new_as);
  941.    
  942.     AS = new_as;
  943. }
  944.  
  945. /** Convert address space area flags to page flags.
  946.  *
  947.  * @param aflags Flags of some address space area.
  948.  *
  949.  * @return Flags to be passed to page_mapping_insert().
  950.  */
  951. int area_flags_to_page_flags(int aflags)
  952. {
  953.     int flags;
  954.  
  955.     flags = PAGE_USER | PAGE_PRESENT;
  956.    
  957.     if (aflags & AS_AREA_READ)
  958.         flags |= PAGE_READ;
  959.        
  960.     if (aflags & AS_AREA_WRITE)
  961.         flags |= PAGE_WRITE;
  962.    
  963.     if (aflags & AS_AREA_EXEC)
  964.         flags |= PAGE_EXEC;
  965.    
  966.     if (aflags & AS_AREA_CACHEABLE)
  967.         flags |= PAGE_CACHEABLE;
  968.        
  969.     return flags;
  970. }
  971.  
  972. /** Compute flags for virtual address translation subsytem.
  973.  *
  974.  * The address space area must be locked.
  975.  * Interrupts must be disabled.
  976.  *
  977.  * @param a Address space area.
  978.  *
  979.  * @return Flags to be used in page_mapping_insert().
  980.  */
  981. int as_area_get_flags(as_area_t *a)
  982. {
  983.     return area_flags_to_page_flags(a->flags);
  984. }
  985.  
  986. /** Create page table.
  987.  *
  988.  * Depending on architecture, create either address space
  989.  * private or global page table.
  990.  *
  991.  * @param flags Flags saying whether the page table is for kernel address space.
  992.  *
  993.  * @return First entry of the page table.
  994.  */
  995. pte_t *page_table_create(int flags)
  996. {
  997. #ifdef __OBJC__
  998.     return [as_t page_table_create: flags];
  999. #else
  1000.     ASSERT(as_operations);
  1001.     ASSERT(as_operations->page_table_create);
  1002.    
  1003.     return as_operations->page_table_create(flags);
  1004. #endif
  1005. }
  1006.  
  1007. /** Destroy page table.
  1008.  *
  1009.  * Destroy page table in architecture specific way.
  1010.  *
  1011.  * @param page_table Physical address of PTL0.
  1012.  */
  1013. void page_table_destroy(pte_t *page_table)
  1014. {
  1015. #ifdef __OBJC__
  1016.     return [as_t page_table_destroy: page_table];
  1017. #else
  1018.     ASSERT(as_operations);
  1019.     ASSERT(as_operations->page_table_destroy);
  1020.    
  1021.     as_operations->page_table_destroy(page_table);
  1022. #endif
  1023. }
  1024.  
  1025. /** Lock page table.
  1026.  *
  1027.  * This function should be called before any page_mapping_insert(),
  1028.  * page_mapping_remove() and page_mapping_find().
  1029.  *
  1030.  * Locking order is such that address space areas must be locked
  1031.  * prior to this call. Address space can be locked prior to this
  1032.  * call in which case the lock argument is false.
  1033.  *
  1034.  * @param as Address space.
  1035.  * @param lock If false, do not attempt to lock as->lock.
  1036.  */
  1037. void page_table_lock(as_t *as, bool lock)
  1038. {
  1039. #ifdef __OBJC__
  1040.     [as page_table_lock: lock];
  1041. #else
  1042.     ASSERT(as_operations);
  1043.     ASSERT(as_operations->page_table_lock);
  1044.    
  1045.     as_operations->page_table_lock(as, lock);
  1046. #endif
  1047. }
  1048.  
  1049. /** Unlock page table.
  1050.  *
  1051.  * @param as Address space.
  1052.  * @param unlock If false, do not attempt to unlock as->lock.
  1053.  */
  1054. void page_table_unlock(as_t *as, bool unlock)
  1055. {
  1056. #ifdef __OBJC__
  1057.     [as page_table_unlock: unlock];
  1058. #else
  1059.     ASSERT(as_operations);
  1060.     ASSERT(as_operations->page_table_unlock);
  1061.    
  1062.     as_operations->page_table_unlock(as, unlock);
  1063. #endif
  1064. }
  1065.  
  1066.  
  1067. /** Find address space area and lock it.
  1068.  *
  1069.  * The address space must be locked and interrupts must be disabled.
  1070.  *
  1071.  * @param as Address space.
  1072.  * @param va Virtual address.
  1073.  *
  1074.  * @return Locked address space area containing va on success or NULL on
  1075.  *     failure.
  1076.  */
  1077. as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
  1078. {
  1079.     as_area_t *a;
  1080.     btree_node_t *leaf, *lnode;
  1081.     int i;
  1082.    
  1083.     a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
  1084.     if (a) {
  1085.         /* va is the base address of an address space area */
  1086.         mutex_lock(&a->lock);
  1087.         return a;
  1088.     }
  1089.    
  1090.     /*
  1091.      * Search the leaf node and the righmost record of its left neighbour
  1092.      * to find out whether this is a miss or va belongs to an address
  1093.      * space area found there.
  1094.      */
  1095.    
  1096.     /* First, search the leaf node itself. */
  1097.     for (i = 0; i < leaf->keys; i++) {
  1098.         a = (as_area_t *) leaf->value[i];
  1099.         mutex_lock(&a->lock);
  1100.         if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
  1101.             return a;
  1102.         }
  1103.         mutex_unlock(&a->lock);
  1104.     }
  1105.  
  1106.     /*
  1107.      * Second, locate the left neighbour and test its last record.
  1108.      * Because of its position in the B+tree, it must have base < va.
  1109.      */
  1110.     lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
  1111.     if (lnode) {
  1112.         a = (as_area_t *) lnode->value[lnode->keys - 1];
  1113.         mutex_lock(&a->lock);
  1114.         if (va < a->base + a->pages * PAGE_SIZE) {
  1115.             return a;
  1116.         }
  1117.         mutex_unlock(&a->lock);
  1118.     }
  1119.  
  1120.     return NULL;
  1121. }
  1122.  
  1123. /** Check area conflicts with other areas.
  1124.  *
  1125.  * The address space must be locked and interrupts must be disabled.
  1126.  *
  1127.  * @param as Address space.
  1128.  * @param va Starting virtual address of the area being tested.
  1129.  * @param size Size of the area being tested.
  1130.  * @param avoid_area Do not touch this area.
  1131.  *
  1132.  * @return True if there is no conflict, false otherwise.
  1133.  */
  1134. bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
  1135.               as_area_t *avoid_area)
  1136. {
  1137.     as_area_t *a;
  1138.     btree_node_t *leaf, *node;
  1139.     int i;
  1140.    
  1141.     /*
  1142.      * We don't want any area to have conflicts with NULL page.
  1143.      */
  1144.     if (overlaps(va, size, NULL, PAGE_SIZE))
  1145.         return false;
  1146.    
  1147.     /*
  1148.      * The leaf node is found in O(log n), where n is proportional to
  1149.      * the number of address space areas belonging to as.
  1150.      * The check for conflicts is then attempted on the rightmost
  1151.      * record in the left neighbour, the leftmost record in the right
  1152.      * neighbour and all records in the leaf node itself.
  1153.      */
  1154.    
  1155.     if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
  1156.         if (a != avoid_area)
  1157.             return false;
  1158.     }
  1159.    
  1160.     /* First, check the two border cases. */
  1161.     if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
  1162.         a = (as_area_t *) node->value[node->keys - 1];
  1163.         mutex_lock(&a->lock);
  1164.         if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
  1165.             mutex_unlock(&a->lock);
  1166.             return false;
  1167.         }
  1168.         mutex_unlock(&a->lock);
  1169.     }
  1170.     node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
  1171.     if (node) {
  1172.         a = (as_area_t *) node->value[0];
  1173.         mutex_lock(&a->lock);
  1174.         if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
  1175.             mutex_unlock(&a->lock);
  1176.             return false;
  1177.         }
  1178.         mutex_unlock(&a->lock);
  1179.     }
  1180.    
  1181.     /* Second, check the leaf node. */
  1182.     for (i = 0; i < leaf->keys; i++) {
  1183.         a = (as_area_t *) leaf->value[i];
  1184.    
  1185.         if (a == avoid_area)
  1186.             continue;
  1187.    
  1188.         mutex_lock(&a->lock);
  1189.         if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
  1190.             mutex_unlock(&a->lock);
  1191.             return false;
  1192.         }
  1193.         mutex_unlock(&a->lock);
  1194.     }
  1195.  
  1196.     /*
  1197.      * So far, the area does not conflict with other areas.
  1198.      * Check if it doesn't conflict with kernel address space.
  1199.      */  
  1200.     if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
  1201.         return !overlaps(va, size,
  1202.             KERNEL_ADDRESS_SPACE_START,
  1203.             KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
  1204.     }
  1205.  
  1206.     return true;
  1207. }
  1208.  
  1209. /** Return size of the address space area with given base.  */
  1210. size_t as_get_size(uintptr_t base)
  1211. {
  1212.     ipl_t ipl;
  1213.     as_area_t *src_area;
  1214.     size_t size;
  1215.  
  1216.     ipl = interrupts_disable();
  1217.     src_area = find_area_and_lock(AS, base);
  1218.     if (src_area){
  1219.         size = src_area->pages * PAGE_SIZE;
  1220.         mutex_unlock(&src_area->lock);
  1221.     } else {
  1222.         size = 0;
  1223.     }
  1224.     interrupts_restore(ipl);
  1225.     return size;
  1226. }
  1227.  
  1228. /** Mark portion of address space area as used.
  1229.  *
  1230.  * The address space area must be already locked.
  1231.  *
  1232.  * @param a Address space area.
  1233.  * @param page First page to be marked.
  1234.  * @param count Number of page to be marked.
  1235.  *
  1236.  * @return 0 on failure and 1 on success.
  1237.  */
  1238. int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
  1239. {
  1240.     btree_node_t *leaf, *node;
  1241.     count_t pages;
  1242.     int i;
  1243.  
  1244.     ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
  1245.     ASSERT(count);
  1246.  
  1247.     pages = (count_t) btree_search(&a->used_space, page, &leaf);
  1248.     if (pages) {
  1249.         /*
  1250.          * We hit the beginning of some used space.
  1251.          */
  1252.         return 0;
  1253.     }
  1254.  
  1255.     if (!leaf->keys) {
  1256.         btree_insert(&a->used_space, page, (void *) count, leaf);
  1257.         return 1;
  1258.     }
  1259.  
  1260.     node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
  1261.     if (node) {
  1262.         uintptr_t left_pg = node->key[node->keys - 1];
  1263.         uintptr_t right_pg = leaf->key[0];
  1264.         count_t left_cnt = (count_t) node->value[node->keys - 1];
  1265.         count_t right_cnt = (count_t) leaf->value[0];
  1266.        
  1267.         /*
  1268.          * Examine the possibility that the interval fits
  1269.          * somewhere between the rightmost interval of
  1270.          * the left neigbour and the first interval of the leaf.
  1271.          */
  1272.          
  1273.         if (page >= right_pg) {
  1274.             /* Do nothing. */
  1275.         } else if (overlaps(page, count * PAGE_SIZE, left_pg,
  1276.             left_cnt * PAGE_SIZE)) {
  1277.             /* The interval intersects with the left interval. */
  1278.             return 0;
  1279.         } else if (overlaps(page, count * PAGE_SIZE, right_pg,
  1280.             right_cnt * PAGE_SIZE)) {
  1281.             /* The interval intersects with the right interval. */
  1282.             return 0;          
  1283.         } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
  1284.             (page + count * PAGE_SIZE == right_pg)) {
  1285.             /*
  1286.              * The interval can be added by merging the two already
  1287.              * present intervals.
  1288.              */
  1289.             node->value[node->keys - 1] += count + right_cnt;
  1290.             btree_remove(&a->used_space, right_pg, leaf);
  1291.             return 1;
  1292.         } else if (page == left_pg + left_cnt * PAGE_SIZE) {
  1293.             /*
  1294.              * The interval can be added by simply growing the left
  1295.              * interval.
  1296.              */
  1297.             node->value[node->keys - 1] += count;
  1298.             return 1;
  1299.         } else if (page + count * PAGE_SIZE == right_pg) {
  1300.             /*
  1301.              * The interval can be addded by simply moving base of
  1302.              * the right interval down and increasing its size
  1303.              * accordingly.
  1304.              */
  1305.             leaf->value[0] += count;
  1306.             leaf->key[0] = page;
  1307.             return 1;
  1308.         } else {
  1309.             /*
  1310.              * The interval is between both neigbouring intervals,
  1311.              * but cannot be merged with any of them.
  1312.              */
  1313.             btree_insert(&a->used_space, page, (void *) count,
  1314.                 leaf);
  1315.             return 1;
  1316.         }
  1317.     } else if (page < leaf->key[0]) {
  1318.         uintptr_t right_pg = leaf->key[0];
  1319.         count_t right_cnt = (count_t) leaf->value[0];
  1320.    
  1321.         /*
  1322.          * Investigate the border case in which the left neighbour does
  1323.          * not exist but the interval fits from the left.
  1324.          */
  1325.          
  1326.         if (overlaps(page, count * PAGE_SIZE, right_pg,
  1327.             right_cnt * PAGE_SIZE)) {
  1328.             /* The interval intersects with the right interval. */
  1329.             return 0;
  1330.         } else if (page + count * PAGE_SIZE == right_pg) {
  1331.             /*
  1332.              * The interval can be added by moving the base of the
  1333.              * right interval down and increasing its size
  1334.              * accordingly.
  1335.              */
  1336.             leaf->key[0] = page;
  1337.             leaf->value[0] += count;
  1338.             return 1;
  1339.         } else {
  1340.             /*
  1341.              * The interval doesn't adjoin with the right interval.
  1342.              * It must be added individually.
  1343.              */
  1344.             btree_insert(&a->used_space, page, (void *) count,
  1345.                 leaf);
  1346.             return 1;
  1347.         }
  1348.     }
  1349.  
  1350.     node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
  1351.     if (node) {
  1352.         uintptr_t left_pg = leaf->key[leaf->keys - 1];
  1353.         uintptr_t right_pg = node->key[0];
  1354.         count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
  1355.         count_t right_cnt = (count_t) node->value[0];
  1356.        
  1357.         /*
  1358.          * Examine the possibility that the interval fits
  1359.          * somewhere between the leftmost interval of
  1360.          * the right neigbour and the last interval of the leaf.
  1361.          */
  1362.  
  1363.         if (page < left_pg) {
  1364.             /* Do nothing. */
  1365.         } else if (overlaps(page, count * PAGE_SIZE, left_pg,
  1366.             left_cnt * PAGE_SIZE)) {
  1367.             /* The interval intersects with the left interval. */
  1368.             return 0;
  1369.         } else if (overlaps(page, count * PAGE_SIZE, right_pg,
  1370.             right_cnt * PAGE_SIZE)) {
  1371.             /* The interval intersects with the right interval. */
  1372.             return 0;          
  1373.         } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
  1374.             (page + count * PAGE_SIZE == right_pg)) {
  1375.             /*
  1376.              * The interval can be added by merging the two already
  1377.              * present intervals.
  1378.              * */
  1379.             leaf->value[leaf->keys - 1] += count + right_cnt;
  1380.             btree_remove(&a->used_space, right_pg, node);
  1381.             return 1;
  1382.         } else if (page == left_pg + left_cnt * PAGE_SIZE) {
  1383.             /*
  1384.              * The interval can be added by simply growing the left
  1385.              * interval.
  1386.              * */
  1387.             leaf->value[leaf->keys - 1] +=  count;
  1388.             return 1;
  1389.         } else if (page + count * PAGE_SIZE == right_pg) {
  1390.             /*
  1391.              * The interval can be addded by simply moving base of
  1392.              * the right interval down and increasing its size
  1393.              * accordingly.
  1394.              */
  1395.             node->value[0] += count;
  1396.             node->key[0] = page;
  1397.             return 1;
  1398.         } else {
  1399.             /*
  1400.              * The interval is between both neigbouring intervals,
  1401.              * but cannot be merged with any of them.
  1402.              */
  1403.             btree_insert(&a->used_space, page, (void *) count,
  1404.                 leaf);
  1405.             return 1;
  1406.         }
  1407.     } else if (page >= leaf->key[leaf->keys - 1]) {
  1408.         uintptr_t left_pg = leaf->key[leaf->keys - 1];
  1409.         count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
  1410.    
  1411.         /*
  1412.          * Investigate the border case in which the right neighbour
  1413.          * does not exist but the interval fits from the right.
  1414.          */
  1415.          
  1416.         if (overlaps(page, count * PAGE_SIZE, left_pg,
  1417.             left_cnt * PAGE_SIZE)) {
  1418.             /* The interval intersects with the left interval. */
  1419.             return 0;
  1420.         } else if (left_pg + left_cnt * PAGE_SIZE == page) {
  1421.             /*
  1422.              * The interval can be added by growing the left
  1423.              * interval.
  1424.              */
  1425.             leaf->value[leaf->keys - 1] += count;
  1426.             return 1;
  1427.         } else {
  1428.             /*
  1429.              * The interval doesn't adjoin with the left interval.
  1430.              * It must be added individually.
  1431.              */
  1432.             btree_insert(&a->used_space, page, (void *) count,
  1433.                 leaf);
  1434.             return 1;
  1435.         }
  1436.     }
  1437.    
  1438.     /*
  1439.      * Note that if the algorithm made it thus far, the interval can fit
  1440.      * only between two other intervals of the leaf. The two border cases
  1441.      * were already resolved.
  1442.      */
  1443.     for (i = 1; i < leaf->keys; i++) {
  1444.         if (page < leaf->key[i]) {
  1445.             uintptr_t left_pg = leaf->key[i - 1];
  1446.             uintptr_t right_pg = leaf->key[i];
  1447.             count_t left_cnt = (count_t) leaf->value[i - 1];
  1448.             count_t right_cnt = (count_t) leaf->value[i];
  1449.  
  1450.             /*
  1451.              * The interval fits between left_pg and right_pg.
  1452.              */
  1453.  
  1454.             if (overlaps(page, count * PAGE_SIZE, left_pg,
  1455.                 left_cnt * PAGE_SIZE)) {
  1456.                 /*
  1457.                  * The interval intersects with the left
  1458.                  * interval.
  1459.                  */
  1460.                 return 0;
  1461.             } else if (overlaps(page, count * PAGE_SIZE, right_pg,
  1462.                 right_cnt * PAGE_SIZE)) {
  1463.                 /*
  1464.                  * The interval intersects with the right
  1465.                  * interval.
  1466.                  */
  1467.                 return 0;          
  1468.             } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
  1469.                 (page + count * PAGE_SIZE == right_pg)) {
  1470.                 /*
  1471.                  * The interval can be added by merging the two
  1472.                  * already present intervals.
  1473.                  */
  1474.                 leaf->value[i - 1] += count + right_cnt;
  1475.                 btree_remove(&a->used_space, right_pg, leaf);
  1476.                 return 1;
  1477.             } else if (page == left_pg + left_cnt * PAGE_SIZE) {
  1478.                 /*
  1479.                  * The interval can be added by simply growing
  1480.                  * the left interval.
  1481.                  */
  1482.                 leaf->value[i - 1] += count;
  1483.                 return 1;
  1484.             } else if (page + count * PAGE_SIZE == right_pg) {
  1485.                 /*
  1486.                      * The interval can be addded by simply moving
  1487.                  * base of the right interval down and
  1488.                  * increasing its size accordingly.
  1489.                  */
  1490.                 leaf->value[i] += count;
  1491.                 leaf->key[i] = page;
  1492.                 return 1;
  1493.             } else {
  1494.                 /*
  1495.                  * The interval is between both neigbouring
  1496.                  * intervals, but cannot be merged with any of
  1497.                  * them.
  1498.                  */
  1499.                 btree_insert(&a->used_space, page,
  1500.                     (void *) count, leaf);
  1501.                 return 1;
  1502.             }
  1503.         }
  1504.     }
  1505.  
  1506.     panic("Inconsistency detected while adding %d pages of used space at "
  1507.         "%p.\n", count, page);
  1508. }
  1509.  
  1510. /** Mark portion of address space area as unused.
  1511.  *
  1512.  * The address space area must be already locked.
  1513.  *
  1514.  * @param a Address space area.
  1515.  * @param page First page to be marked.
  1516.  * @param count Number of page to be marked.
  1517.  *
  1518.  * @return 0 on failure and 1 on success.
  1519.  */
  1520. int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
  1521. {
  1522.     btree_node_t *leaf, *node;
  1523.     count_t pages;
  1524.     int i;
  1525.  
  1526.     ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
  1527.     ASSERT(count);
  1528.  
  1529.     pages = (count_t) btree_search(&a->used_space, page, &leaf);
  1530.     if (pages) {
  1531.         /*
  1532.          * We are lucky, page is the beginning of some interval.
  1533.          */
  1534.         if (count > pages) {
  1535.             return 0;
  1536.         } else if (count == pages) {
  1537.             btree_remove(&a->used_space, page, leaf);
  1538.             return 1;
  1539.         } else {
  1540.             /*
  1541.              * Find the respective interval.
  1542.              * Decrease its size and relocate its start address.
  1543.              */
  1544.             for (i = 0; i < leaf->keys; i++) {
  1545.                 if (leaf->key[i] == page) {
  1546.                     leaf->key[i] += count * PAGE_SIZE;
  1547.                     leaf->value[i] -= count;
  1548.                     return 1;
  1549.                 }
  1550.             }
  1551.             goto error;
  1552.         }
  1553.     }
  1554.  
  1555.     node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
  1556.     if (node && page < leaf->key[0]) {
  1557.         uintptr_t left_pg = node->key[node->keys - 1];
  1558.         count_t left_cnt = (count_t) node->value[node->keys - 1];
  1559.  
  1560.         if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
  1561.             count * PAGE_SIZE)) {
  1562.             if (page + count * PAGE_SIZE ==
  1563.                 left_pg + left_cnt * PAGE_SIZE) {
  1564.                 /*
  1565.                  * The interval is contained in the rightmost
  1566.                  * interval of the left neighbour and can be
  1567.                  * removed by updating the size of the bigger
  1568.                  * interval.
  1569.                  */
  1570.                 node->value[node->keys - 1] -= count;
  1571.                 return 1;
  1572.             } else if (page + count * PAGE_SIZE <
  1573.                 left_pg + left_cnt*PAGE_SIZE) {
  1574.                 count_t new_cnt;
  1575.                
  1576.                 /*
  1577.                  * The interval is contained in the rightmost
  1578.                  * interval of the left neighbour but its
  1579.                  * removal requires both updating the size of
  1580.                  * the original interval and also inserting a
  1581.                  * new interval.
  1582.                  */
  1583.                 new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
  1584.                     (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
  1585.                 node->value[node->keys - 1] -= count + new_cnt;
  1586.                 btree_insert(&a->used_space, page +
  1587.                     count * PAGE_SIZE, (void *) new_cnt, leaf);
  1588.                 return 1;
  1589.             }
  1590.         }
  1591.         return 0;
  1592.     } else if (page < leaf->key[0]) {
  1593.         return 0;
  1594.     }
  1595.    
  1596.     if (page > leaf->key[leaf->keys - 1]) {
  1597.         uintptr_t left_pg = leaf->key[leaf->keys - 1];
  1598.         count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
  1599.  
  1600.         if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
  1601.             count * PAGE_SIZE)) {
  1602.             if (page + count * PAGE_SIZE ==
  1603.                 left_pg + left_cnt * PAGE_SIZE) {
  1604.                 /*
  1605.                  * The interval is contained in the rightmost
  1606.                  * interval of the leaf and can be removed by
  1607.                  * updating the size of the bigger interval.
  1608.                  */
  1609.                 leaf->value[leaf->keys - 1] -= count;
  1610.                 return 1;
  1611.             } else if (page + count * PAGE_SIZE < left_pg +
  1612.                 left_cnt * PAGE_SIZE) {
  1613.                 count_t new_cnt;
  1614.                
  1615.                 /*
  1616.                  * The interval is contained in the rightmost
  1617.                  * interval of the leaf but its removal
  1618.                  * requires both updating the size of the
  1619.                  * original interval and also inserting a new
  1620.                  * interval.
  1621.                  */
  1622.                 new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
  1623.                     (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
  1624.                 leaf->value[leaf->keys - 1] -= count + new_cnt;
  1625.                 btree_insert(&a->used_space, page +
  1626.                     count * PAGE_SIZE, (void *) new_cnt, leaf);
  1627.                 return 1;
  1628.             }
  1629.         }
  1630.         return 0;
  1631.     }  
  1632.    
  1633.     /*
  1634.      * The border cases have been already resolved.
  1635.      * Now the interval can be only between intervals of the leaf.
  1636.      */
  1637.     for (i = 1; i < leaf->keys - 1; i++) {
  1638.         if (page < leaf->key[i]) {
  1639.             uintptr_t left_pg = leaf->key[i - 1];
  1640.             count_t left_cnt = (count_t) leaf->value[i - 1];
  1641.  
  1642.             /*
  1643.              * Now the interval is between intervals corresponding
  1644.              * to (i - 1) and i.
  1645.              */
  1646.             if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
  1647.                 count * PAGE_SIZE)) {
  1648.                 if (page + count * PAGE_SIZE ==
  1649.                     left_pg + left_cnt*PAGE_SIZE) {
  1650.                     /*
  1651.                      * The interval is contained in the
  1652.                      * interval (i - 1) of the leaf and can
  1653.                      * be removed by updating the size of
  1654.                      * the bigger interval.
  1655.                      */
  1656.                     leaf->value[i - 1] -= count;
  1657.                     return 1;
  1658.                 } else if (page + count * PAGE_SIZE <
  1659.                     left_pg + left_cnt * PAGE_SIZE) {
  1660.                     count_t new_cnt;
  1661.                
  1662.                     /*
  1663.                      * The interval is contained in the
  1664.                      * interval (i - 1) of the leaf but its
  1665.                      * removal requires both updating the
  1666.                      * size of the original interval and
  1667.                      * also inserting a new interval.
  1668.                      */
  1669.                     new_cnt = ((left_pg +
  1670.                         left_cnt * PAGE_SIZE) -
  1671.                         (page + count * PAGE_SIZE)) >>
  1672.                         PAGE_WIDTH;
  1673.                     leaf->value[i - 1] -= count + new_cnt;
  1674.                     btree_insert(&a->used_space, page +
  1675.                         count * PAGE_SIZE, (void *) new_cnt,
  1676.                         leaf);
  1677.                     return 1;
  1678.                 }
  1679.             }
  1680.             return 0;
  1681.         }
  1682.     }
  1683.  
  1684. error:
  1685.     panic("Inconsistency detected while removing %d pages of used space "
  1686.         "from %p.\n", count, page);
  1687. }
  1688.  
  1689. /** Remove reference to address space area share info.
  1690.  *
  1691.  * If the reference count drops to 0, the sh_info is deallocated.
  1692.  *
  1693.  * @param sh_info Pointer to address space area share info.
  1694.  */
  1695. void sh_info_remove_reference(share_info_t *sh_info)
  1696. {
  1697.     bool dealloc = false;
  1698.  
  1699.     mutex_lock(&sh_info->lock);
  1700.     ASSERT(sh_info->refcount);
  1701.     if (--sh_info->refcount == 0) {
  1702.         dealloc = true;
  1703.         link_t *cur;
  1704.        
  1705.         /*
  1706.          * Now walk carefully the pagemap B+tree and free/remove
  1707.          * reference from all frames found there.
  1708.          */
  1709.         for (cur = sh_info->pagemap.leaf_head.next;
  1710.             cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
  1711.             btree_node_t *node;
  1712.             int i;
  1713.            
  1714.             node = list_get_instance(cur, btree_node_t, leaf_link);
  1715.             for (i = 0; i < node->keys; i++)
  1716.                 frame_free((uintptr_t) node->value[i]);
  1717.         }
  1718.        
  1719.     }
  1720.     mutex_unlock(&sh_info->lock);
  1721.    
  1722.     if (dealloc) {
  1723.         btree_destroy(&sh_info->pagemap);
  1724.         free(sh_info);
  1725.     }
  1726. }
  1727.  
  1728. /*
  1729.  * Address space related syscalls.
  1730.  */
  1731.  
  1732. /** Wrapper for as_area_create(). */
  1733. unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
  1734. {
  1735.     if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
  1736.         AS_AREA_ATTR_NONE, &anon_backend, NULL))
  1737.         return (unative_t) address;
  1738.     else
  1739.         return (unative_t) -1;
  1740. }
  1741.  
  1742. /** Wrapper for as_area_resize(). */
  1743. unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
  1744. {
  1745.     return (unative_t) as_area_resize(AS, address, size, 0);
  1746. }
  1747.  
  1748. /** Wrapper for as_area_destroy(). */
  1749. unative_t sys_as_area_destroy(uintptr_t address)
  1750. {
  1751.     return (unative_t) as_area_destroy(AS, address);
  1752. }
  1753.  
  1754. /** Print out information about address space.
  1755.  *
  1756.  * @param as Address space.
  1757.  */
  1758. void as_print(as_t *as)
  1759. {
  1760.     ipl_t ipl;
  1761.    
  1762.     ipl = interrupts_disable();
  1763.     mutex_lock(&as->lock);
  1764.    
  1765.     /* print out info about address space areas */
  1766.     link_t *cur;
  1767.     for (cur = as->as_area_btree.leaf_head.next;
  1768.         cur != &as->as_area_btree.leaf_head; cur = cur->next) {
  1769.         btree_node_t *node;
  1770.        
  1771.         node = list_get_instance(cur, btree_node_t, leaf_link);
  1772.        
  1773.         int i;
  1774.         for (i = 0; i < node->keys; i++) {
  1775.             as_area_t *area = node->value[i];
  1776.        
  1777.             mutex_lock(&area->lock);
  1778.             printf("as_area: %p, base=%p, pages=%d (%p - %p)\n",
  1779.                 area, area->base, area->pages, area->base,
  1780.                 area->base + area->pages*PAGE_SIZE);
  1781.             mutex_unlock(&area->lock);
  1782.         }
  1783.     }
  1784.    
  1785.     mutex_unlock(&as->lock);
  1786.     interrupts_restore(ipl);
  1787. }
  1788.  
  1789. /** @}
  1790.  */
  1791.