Subversion Repositories HelenOS-historic

Rev

Rev 763 | Rev 765 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

/*
 * Copyright (C) 2006 Ondrej Palkovsky
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * - Redistributions of source code must retain the above copyright
 *   notice, this list of conditions and the following disclaimer.
 * - Redistributions in binary form must reproduce the above copyright
 *   notice, this list of conditions and the following disclaimer in the
 *   documentation and/or other materials provided with the distribution.
 * - The name of the author may not be used to endorse or promote products
 *   derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <synch/spinlock.h>
#include <mm/slab.h>
#include <list.h>
#include <memstr.h>
#include <align.h>
#include <mm/heap.h>
#include <mm/frame.h>
#include <config.h>
#include <print.h>
#include <arch.h>
#include <panic.h>
#include <debug.h>

SPINLOCK_INITIALIZE(slab_cache_lock);
LIST_INITIALIZE(slab_cache_list);

slab_cache_t mag_cache;


typedef struct {
    slab_cache_t *cache; /**< Pointer to parent cache */
    link_t link;       /* List of full/partial slabs */
    void *start;       /**< Start address of first available item */
    count_t available; /**< Count of available items in this slab */
    index_t nextavail; /**< The index of next available item */
}slab_t;

/**************************************/
/* SLAB allocation functions          */

/**
 * Allocate frames for slab space and initialize
 *
 * TODO: Change slab_t allocation to slab_alloc(????), malloc with flags!!
 */
static slab_t * slab_space_alloc(slab_cache_t *cache, int flags)
{
    void *data;
    slab_t *slab;
    size_t fsize;
    int i;
    zone_t *zone = NULL;
    int status;
    frame_t *frame;

    data = (void *)frame_alloc(FRAME_KA | flags, cache->order, &status, &zone);
    if (status != FRAME_OK) {
        return NULL;
    }
    if (! cache->flags & SLAB_CACHE_SLINSIDE) {
        slab = malloc(sizeof(*slab)); // , flags);
        if (!slab) {
            frame_free((__address)data);
            return NULL;
        }
    } else {
        fsize = (PAGE_SIZE << cache->order);
        slab = data + fsize - sizeof(*slab);
    }
        
    /* Fill in slab structures */
    /* TODO: some better way of accessing the frame */
    for (i=0; i< (1<<cache->order); i++) {
        frame = ADDR2FRAME(zone, KA2PA((__address)(data+i*PAGE_SIZE)));
        frame->parent = slab;
    }

    slab->start = data;
    slab->available = cache->objects;
    slab->nextavail = 0;

    for (i=0; i<cache->objects;i++)
        *((int *) (slab->start + i*cache->size)) = i+1;

    atomic_inc(&cache->allocated_slabs);

    return slab;
}

/**
 * Free space associated with SLAB
 *
 * @return number of freed frames
 */
static count_t slab_space_free(slab_cache_t *cache, slab_t *slab)
{
    frame_free((__address)slab->start);
    if (! cache->flags & SLAB_CACHE_SLINSIDE)
        free(slab);

    atomic_dec(&cache->allocated_slabs);
    
    return 1 << cache->order;
}

/** Map object to slab structure */
static slab_t * obj2slab(void *obj)
{
    frame_t *frame; 

    frame = frame_addr2frame((__address)obj);
    return (slab_t *)frame->parent;
}

/**************************************/
/* SLAB functions */


/**
 * Return object to slab and call a destructor
 *
 * Assume the cache->lock is held;
 *
 * @param slab If the caller knows directly slab of the object, otherwise NULL
 *
 * @return Number of freed pages
 */
static count_t slab_obj_destroy(slab_cache_t *cache, void *obj,
                slab_t *slab)
{
    count_t frames = 0;

    if (!slab)
        slab = obj2slab(obj);

    spinlock_lock(&cache->lock);

    *((int *)obj) = slab->nextavail;
    slab->nextavail = (obj - slab->start)/cache->size;
    slab->available++;

    /* Move it to correct list */
    if (slab->available == 1) {
        /* It was in full, move to partial */
        list_remove(&slab->link);
        list_prepend(&slab->link, &cache->partial_slabs);
    }
    if (slab->available == cache->objects) {
        /* Free associated memory */
        list_remove(&slab->link);
        /* Avoid deadlock */
        spinlock_unlock(&cache->lock);
        frames = slab_space_free(cache, slab);
        spinlock_lock(&cache->lock);
    }

    spinlock_unlock(&cache->lock);

    return frames;
}

/**
 * Take new object from slab or create new if needed
 *
 * Assume cache->lock is held. 
 *
 * @return Object address or null
 */
static void * slab_obj_create(slab_cache_t *cache, int flags)
{
    slab_t *slab;
    void *obj;

    if (list_empty(&cache->partial_slabs)) {
        /* Allow recursion and reclaiming
         * - this should work, as the SLAB control structures
         *   are small and do not need to allocte with anything
         *   other ten frame_alloc when they are allocating,
         *   that's why we should get recursion at most 1-level deep
         */
        spinlock_unlock(&cache->lock);
        slab = slab_space_alloc(cache, flags);
        spinlock_lock(&cache->lock);
        if (!slab) {
            return NULL;
        }
    } else {
        slab = list_get_instance(cache->partial_slabs.next,
                     slab_t,
                     link);
        list_remove(&slab->link);
    }
    obj = slab->start + slab->nextavail * cache->size;
    slab->nextavail = *((int *)obj);
    slab->available--;
    if (! slab->available)
        list_prepend(&slab->link, &cache->full_slabs);
    else
        list_prepend(&slab->link, &cache->partial_slabs);
    return obj;
}

/**************************************/
/* CPU-Cache slab functions */

/**
 * Free all objects in magazine and free memory associated with magazine
 *
 * Assume mag_cache[cpu].lock is locked 
 *
 * @return Number of freed pages
 */
static count_t magazine_destroy(slab_cache_t *cache, 
                slab_magazine_t *mag)
{
    int i;
    count_t frames = 0;

    for (i=0;i < mag->busy; i++)
        frames += slab_obj_destroy(cache, mag->objs[i], NULL);
    
    slab_free(&mag_cache, mag);

    return frames;
}

/**
 * Try to find object in CPU-cache magazines
 *
 * @return Pointer to object or NULL if not available
 */
static void * magazine_obj_get(slab_cache_t *cache)
{
    slab_magazine_t *mag;

    spinlock_lock(&cache->mag_cache[CPU->id].lock);

    mag = cache->mag_cache[CPU->id].current;
    if (!mag)
        goto out;

    if (!mag->busy) {
        /* If current is empty && last exists && not empty, exchange */
        if (cache->mag_cache[CPU->id].last \
            && cache->mag_cache[CPU->id].last->busy) {
            cache->mag_cache[CPU->id].current = cache->mag_cache[CPU->id].last;
            cache->mag_cache[CPU->id].last = mag;
            mag = cache->mag_cache[CPU->id].current;
            goto gotit;
        }
        /* If still not busy, exchange current with some from
         * other full magazines */
        spinlock_lock(&cache->lock);
        if (list_empty(&cache->magazines)) {
            spinlock_unlock(&cache->lock);
            goto out;
        }
        /* Free current magazine and take one from list */
        slab_free(&mag_cache, mag);
        mag = list_get_instance(cache->magazines.next,
                    slab_magazine_t,
                    link);
        list_remove(&mag->link);
        
        spinlock_unlock(&cache->lock);
    }
gotit:
    spinlock_unlock(&cache->mag_cache[CPU->id].lock);
    return mag->objs[--mag->busy];
out:    
    spinlock_unlock(&cache->mag_cache[CPU->id].lock);
    return NULL;
}

/**
 * Put object into CPU-cache magazine
 *
 * We have 2 magazines bound to processor. 
 * First try the current. 
 *  If full, try the last.
 *   If full, put to magazines list.
 *   allocate new, exchange last & current
 *
 * @return 0 - success, -1 - could not get memory
 */
static int magazine_obj_put(slab_cache_t *cache, void *obj)
{
    slab_magazine_t *mag;

    spinlock_lock(&cache->mag_cache[CPU->id].lock);
    
    mag = cache->mag_cache[CPU->id].current;
    if (!mag) {
        /* We do not want to sleep just because of caching */
        /* Especially we do not want reclaiming to start, as 
         * this would deadlock */
        mag = slab_alloc(&mag_cache, FRAME_ATOMIC | FRAME_NO_RECLAIM);
        if (!mag) /* Allocation failed, give up on caching */
            goto errout;

        cache->mag_cache[CPU->id].current = mag;
        mag->size = SLAB_MAG_SIZE;
        mag->busy = 0;
    } else if (mag->busy == mag->size) {
        /* If the last is full | empty, allocate new */
        mag = cache->mag_cache[CPU->id].last;
        if (!mag || mag->size == mag->busy) {
            if (mag) 
                list_prepend(&mag->link, &cache->magazines);

            mag = slab_alloc(&mag_cache, FRAME_ATOMIC | FRAME_NO_RECLAIM);
            if (!mag)
                goto errout;
            
            mag->size = SLAB_MAG_SIZE;
            mag->busy = 0;
            cache->mag_cache[CPU->id].last = mag;
        } 
        /* Exchange the 2 */
        cache->mag_cache[CPU->id].last = cache->mag_cache[CPU->id].current;
        cache->mag_cache[CPU->id].current = mag;
    }
    mag->objs[mag->busy++] = obj;

    spinlock_unlock(&cache->mag_cache[CPU->id].lock);
    return 0;
errout:
    spinlock_unlock(&cache->mag_cache[CPU->id].lock);
    return -1;
}


/**************************************/
/* SLAB CACHE functions */

/** Return number of objects that fit in certain cache size */
static int comp_objects(slab_cache_t *cache)
{
    if (cache->flags & SLAB_CACHE_SLINSIDE)
        return ((PAGE_SIZE << cache->order) - sizeof(slab_t)) / cache->size;
    else 
        return (PAGE_SIZE << cache->order) / cache->size;
}

/** Return wasted space in slab */
static int badness(slab_cache_t *cache)
{
    int objects;
    int ssize;

    objects = comp_objects(cache);
    ssize = PAGE_SIZE << cache->order;
    if (cache->flags & SLAB_CACHE_SLINSIDE)
        ssize -= sizeof(slab_t);
    return ssize - objects*cache->size;
}

/** Initialize allocated memory as a slab cache */
static void
_slab_cache_create(slab_cache_t *cache,
           char *name,
           size_t size,
           size_t align,
           int (*constructor)(void *obj, int kmflag),
           void (*destructor)(void *obj),
           int flags)
{
    int i;

    memsetb((__address)cache, sizeof(*cache), 0);
    cache->name = name;

    if (align)
        size = ALIGN_UP(size, align);
    cache->size = size;

    cache->constructor = constructor;
    cache->destructor = destructor;
    cache->flags = flags;

    list_initialize(&cache->full_slabs);
    list_initialize(&cache->partial_slabs);
    list_initialize(&cache->magazines);
    spinlock_initialize(&cache->lock, "cachelock");
    if (! cache->flags & SLAB_CACHE_NOMAGAZINE) {
        for (i=0; i< config.cpu_count; i++)
            spinlock_initialize(&cache->mag_cache[i].lock, 
                        "cpucachelock");
    }

    /* Compute slab sizes, object counts in slabs etc. */
    if (cache->size < SLAB_INSIDE_SIZE)
        cache->flags |= SLAB_CACHE_SLINSIDE;

    /* Minimum slab order */
    cache->order = (cache->size / PAGE_SIZE) + 1;
        
    while (badness(cache) > SLAB_MAX_BADNESS(cache)) {
        cache->order += 1;
    }

    cache->objects = comp_objects(cache);

    spinlock_lock(&slab_cache_lock);

    list_append(&cache->link, &slab_cache_list);

    spinlock_unlock(&slab_cache_lock);
}

/** Create slab cache  */
slab_cache_t * slab_cache_create(char *name,
                 size_t size,
                 size_t align,
                 int (*constructor)(void *obj, int kmflag),
                 void (*destructor)(void *obj),
                 int flags)
{
    slab_cache_t *cache;

    cache = malloc(sizeof(*cache) + config.cpu_count*sizeof(cache->mag_cache[0]));
    _slab_cache_create(cache, name, size, align, constructor, destructor,
               flags);
    return cache;
}

/** 
 * Reclaim space occupied by objects that are already free
 *
 * @param flags If contains SLAB_RECLAIM_ALL, do aggressive freeing
 * @return Number of freed pages
 *
 * TODO: Add light reclaim
 */
static count_t _slab_reclaim(slab_cache_t *cache, int flags)
{
    int i;
    slab_magazine_t *mag;
    link_t *cur;
    count_t frames = 0;
    
    if (cache->flags & SLAB_CACHE_NOMAGAZINE)
        return 0; /* Nothing to do */
    
    /* First lock all cpu caches, then the complete cache lock */
    for (i=0; i < config.cpu_count; i++)
        spinlock_lock(&cache->mag_cache[i].lock);
    spinlock_lock(&cache->lock);
    
    if (flags & SLAB_RECLAIM_ALL) {
        /* Aggressive memfree */

        /* Destroy CPU magazines */
        for (i=0; i<config.cpu_count; i++) {
            mag = cache->mag_cache[i].current;
            if (mag)
                frames += magazine_destroy(cache, mag);
            cache->mag_cache[i].current = NULL;
            
            mag = cache->mag_cache[i].last;
            if (mag)
                frames += magazine_destroy(cache, mag);
            cache->mag_cache[i].last = NULL;
        }
    }
    /* Destroy full magazines */
    cur=cache->magazines.prev;
    while (cur!=&cache->magazines) {
        mag = list_get_instance(cur, slab_magazine_t, link);
        
        cur = cur->prev;
        list_remove(cur->next);
        frames += magazine_destroy(cache,mag);
        /* If we do not do full reclaim, break
         * as soon as something is freed */
        if (!(flags & SLAB_RECLAIM_ALL) && frames)
            break;
    }
    
    spinlock_unlock(&cache->lock);
    for (i=0; i < config.cpu_count; i++)
        spinlock_unlock(&cache->mag_cache[i].lock);
    
    return frames;
}

/** Check that there are no slabs and remove cache from system  */
void slab_cache_destroy(slab_cache_t *cache)
{
    /* Do not lock anything, we assume the software is correct and
     * does not touch the cache when it decides to destroy it */
    
    /* Destroy all magazines */
    _slab_reclaim(cache, SLAB_RECLAIM_ALL);

    /* All slabs must be empty */
    if (!list_empty(&cache->full_slabs) \
        || !list_empty(&cache->partial_slabs))
        panic("Destroying cache that is not empty.");

    spinlock_lock(&slab_cache_lock);
    list_remove(&cache->link);
    spinlock_unlock(&slab_cache_lock);

    free(cache);
}

/** Allocate new object from cache - if no flags given, always returns 
    memory */
void * slab_alloc(slab_cache_t *cache, int flags)
{
    ipl_t ipl;
    void *result = NULL;

    /* Disable interrupts to avoid deadlocks with interrupt handlers */
    ipl = interrupts_disable();
    
    if (!cache->flags & SLAB_CACHE_NOMAGAZINE)
        result = magazine_obj_get(cache);

    if (!result) {
        spinlock_lock(&cache->lock);
        result = slab_obj_create(cache, flags);
        spinlock_unlock(&cache->lock);
    }

    if (result)
        atomic_inc(&cache->allocated_objs);

    interrupts_restore(ipl);


    return result;
}

/** Return object to cache  */
void slab_free(slab_cache_t *cache, void *obj)
{
    ipl_t ipl;

    ipl = interrupts_disable();

    if ((cache->flags & SLAB_CACHE_NOMAGAZINE) \
        || magazine_obj_put(cache, obj)) {
        
        spinlock_lock(&cache->lock);
        slab_obj_destroy(cache, obj, NULL);
        spinlock_unlock(&cache->lock);
    }
    atomic_dec(&cache->allocated_objs);
    interrupts_restore(ipl);
}

/* Go through all caches and reclaim what is possible */
count_t slab_reclaim(int flags)
{
    slab_cache_t *cache;
    link_t *cur;
    count_t frames = 0;

    spinlock_lock(&slab_cache_lock);

    for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
        cache = list_get_instance(cur, slab_cache_t, link);
        frames += _slab_reclaim(cache, flags);
    }

    spinlock_unlock(&slab_cache_lock);

    return frames;
}


/* Print list of slabs */
void slab_print_list(void)
{
    slab_cache_t *cache;
    link_t *cur;

    spinlock_lock(&slab_cache_lock);
    printf("SLAB name\tOsize\tOrder\tOcnt\tSlabs\tAllocobjs\n");
    for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
        cache = list_get_instance(cur, slab_cache_t, link);
        printf("%s\t%d\t%d\t%d\t%d\t%d\n", cache->name, cache->size, 
               cache->order, cache->objects,
               atomic_get(&cache->allocated_slabs), 
               atomic_get(&cache->allocated_objs));
    }
    spinlock_unlock(&slab_cache_lock);
}

void slab_cache_init(void)
{
    /* Initialize magazine cache */
    _slab_cache_create(&mag_cache,
               "slab_magazine",
               sizeof(slab_magazine_t)+SLAB_MAG_SIZE*sizeof(void*),
               sizeof(__address),
               NULL, NULL,
               SLAB_CACHE_NOMAGAZINE);

    /* Initialize structures for malloc */
}