/*
* Copyright (C) 2001-2004 Jakub Jermar
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* - The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/** @addtogroup main
* @{
*/
/**
* @file
* @brief Main initialization kernel function for all processors.
*
* During kernel boot, all processors, after architecture dependent
* initialization, start executing code found in this file. After
* bringing up all subsystems, control is passed to scheduler().
*
* The bootstrap processor starts executing main_bsp() while
* the application processors start executing main_ap().
*
* @see scheduler()
* @see main_bsp()
* @see main_ap()
*/
#include <arch/asm.h>
#include <context.h>
#include <print.h>
#include <panic.h>
#include <debug.h>
#include <config.h>
#include <time/clock.h>
#include <proc/scheduler.h>
#include <proc/thread.h>
#include <proc/task.h>
#include <main/kinit.h>
#include <main/version.h>
#include <console/kconsole.h>
#include <cpu.h>
#include <align.h>
#include <interrupt.h>
#include <arch/mm/memory_init.h>
#include <mm/frame.h>
#include <mm/page.h>
#include <genarch/mm/page_pt.h>
#include <mm/tlb.h>
#include <mm/as.h>
#include <mm/slab.h>
#include <synch/waitq.h>
#include <synch/futex.h>
#include <arch/arch.h>
#include <arch.h>
#include <arch/faddr.h>
#include <typedefs.h>
#include <ipc/ipc.h>
#include <macros.h>
#include <adt/btree.h>
#include <console/klog.h>
#ifdef CONFIG_SMP
#include <arch/smp/apic.h>
#include <arch/smp/mps.h>
#endif /* CONFIG_SMP */
#include <smp/smp.h>
/** Global configuration structure. */
config_t config;
/** Initial user-space tasks */
init_t init = {
0
};
context_t ctx;
/*
* These 'hardcoded' variables will be intialized by
* the linker or the low level assembler code with
* appropriate sizes and addresses.
*/
uintptr_t hardcoded_load_address = 0; /**< Virtual address of where the kernel is loaded. */
size_t hardcoded_ktext_size = 0; /**< Size of the kernel code in bytes. */
size_t hardcoded_kdata_size = 0; /**< Size of the kernel data in bytes. */
void main_bsp(void);
void main_ap(void);
/*
* These two functions prevent stack from underflowing during the
* kernel boot phase when SP is set to the very top of the reserved
* space. The stack could get corrupted by a fooled compiler-generated
* pop sequence otherwise.
*/
static void main_bsp_separated_stack(void);
#ifdef CONFIG_SMP
static void main_ap_separated_stack(void);
#endif
#define CONFIG_STACK_SIZE ((1<<STACK_FRAMES)*STACK_SIZE)
/** Main kernel routine for bootstrap CPU.
*
* Initializes the kernel by bootstrap CPU.
* This function passes control directly to
* main_bsp_separated_stack().
*
* Assuming interrupts_disable().
*
*/
void main_bsp(void)
{
uintptr_t stackaddr;
config.cpu_count = 1;
config.cpu_active = 1;
config.base = hardcoded_load_address;
config.memory_size = get_memory_size();
config.kernel_size = ALIGN_UP(hardcoded_ktext_size + hardcoded_kdata_size, PAGE_SIZE);
stackaddr = config.base + config.kernel_size;
/* Avoid placing kernel on top of init */
count_t i;
bool overlap = false;
for (i = 0; i < init.cnt; i++)
if (PA_overlaps(stackaddr, CONFIG_STACK_SIZE, init.tasks[i].addr, init.tasks[i].size)) {
stackaddr = ALIGN_UP(init.tasks[i].addr + init.tasks[i].size, CONFIG_STACK_SIZE);
init.tasks[i].size = ALIGN_UP(init.tasks[i].size, CONFIG_STACK_SIZE) + CONFIG_STACK_SIZE;
overlap = true;
}
if (!overlap)
config.kernel_size += CONFIG_STACK_SIZE;
context_save(&ctx);
context_set(&ctx, FADDR(main_bsp_separated_stack), stackaddr, THREAD_STACK_SIZE);
context_restore(&ctx);
/* not reached */
}
/** Main kernel routine for bootstrap CPU using new stack.
*
* Second part of main_bsp().
*
*/
void main_bsp_separated_stack(void)
{
task_t *k;
thread_t *t;
count_t i;
the_initialize(THE);
/*
* kconsole data structures must be initialized very early
* because other subsystems will register their respective
* commands.
*/
kconsole_init();
/*
* Exception handler initialization, before architecture
* starts adding its own handlers
*/
exc_init();
/*
* Memory management subsystems initialization.
*/
arch_pre_mm_init();
frame_init(); /* Initialize at least 1 memory segment big enough for slab to work */
slab_cache_init();
btree_init();
as_init();
page_init();
tlb_init();
arch_post_mm_init();
version_print();
printf("%.*p: hardcoded_ktext_size=%zdK, hardcoded_kdata_size=%zdK\n", sizeof(uintptr_t) * 2, config.
base, hardcoded_ktext_size
>> 10, hardcoded_kdata_size
>> 10);
arch_pre_smp_init();
smp_init();
slab_enable_cpucache(); /* Slab must be initialized AFTER we know the number of processors */
printf("config.memory_size=%zdM\n", config.
memory_size >> 20);
printf("config.cpu_count=%zd\n", config.
cpu_count);
cpu_init();
calibrate_delay_loop();
clock_counter_init();
timeout_init();
scheduler_init();
task_init();
thread_init();
futex_init();
klog_init();
for (i = 0; i < init.cnt; i++)
printf("init[%zd].addr=%.*p, init[%zd].size=%zd\n", i
, sizeof(uintptr_t) * 2, init.
tasks[i
].
addr, i
, init.
tasks[i
].
size);
ipc_init();
/*
* Create kernel task.
*/
k = task_create(AS_KERNEL, "KERNEL");
if (!k)
panic("can't create kernel task\n");
/*
* Create the first thread.
*/
t = thread_create(kinit, NULL, k, 0, "kinit");
if (!t)
panic("can't create kinit thread\n");
thread_ready(t);
/*
* This call to scheduler() will return to kinit,
* starting the thread of kernel threads.
*/
scheduler();
/* not reached */
}
#ifdef CONFIG_SMP
/** Main kernel routine for application CPUs.
*
* Executed by application processors, temporary stack
* is at ctx.sp which was set during BP boot.
* This function passes control directly to
* main_ap_separated_stack().
*
* Assuming interrupts_disable()'d.
*
*/
void main_ap(void)
{
/*
* Incrementing the active CPU counter will guarantee that the
* pm_init() will not attempt to build GDT and IDT tables again.
* Neither frame_init() will do the complete thing. Neither cpu_init()
* will do.
*/
config.cpu_active++;
/*
* The THE structure is well defined because ctx.sp is used as stack.
*/
the_initialize(THE);
arch_pre_mm_init();
frame_init();
page_init();
tlb_init();
arch_post_mm_init();
cpu_init();
calibrate_delay_loop();
l_apic_init();
l_apic_debug();
the_copy(THE, (the_t *) CPU->stack);
/*
* If we woke kmp up before we left the kernel stack, we could
* collide with another CPU coming up. To prevent this, we
* switch to this cpu's private stack prior to waking kmp up.
*/
context_set(&CPU->saved_context, FADDR(main_ap_separated_stack), (uintptr_t) CPU->stack, CPU_STACK_SIZE);
context_restore(&CPU->saved_context);
/* not reached */
}
/** Main kernel routine for application CPUs using new stack.
*
* Second part of main_ap().
*
*/
void main_ap_separated_stack(void)
{
/*
* Configure timeouts for this cpu.
*/
timeout_init();
waitq_wakeup(&ap_completion_wq, WAKEUP_FIRST);
scheduler();
/* not reached */
}
#endif /* CONFIG_SMP */
/** @}
*/