Subversion Repositories HelenOS-doc

Rev

Rev 47 | Rev 64 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. <?xml version="1.0" encoding="UTF-8"?>
  2. <chapter id="mm">
  3.   <?dbhtml filename="mm.html"?>
  4.  
  5.   <title>Memory management</title>
  6.  
  7.   <section>
  8.     <title>Virtual memory management</title>
  9.  
  10.     <section>
  11.       <title>Introduction</title>
  12.  
  13.       <para>Virtual memory is a special memory management technique, used by
  14.       kernel to achieve a bunch of mission critical goals. <itemizedlist>
  15.           <listitem>
  16.              Isolate each task from other tasks that are running on the system at the same time.
  17.           </listitem>
  18.  
  19.           <listitem>
  20.              Allow to allocate more memory, than is actual physical memory size of the machine.
  21.           </listitem>
  22.  
  23.           <listitem>
  24.              Allowing, in general, to load and execute two programs that are linked on the same address without complicated relocations.
  25.           </listitem>
  26.         </itemizedlist></para>
  27.  
  28.       <para><!--
  29.  
  30.                 TLB shootdown ASID/ASID:PAGE/ALL.
  31.                 TLB shootdown requests can come in asynchroniously
  32.                 so there is a cache of TLB shootdown requests. Upon cache overflow TLB shootdown ALL is executed
  33.  
  34.  
  35.                 <para>
  36.                         Address spaces. Address space area (B+ tree). Only for uspace. Set of syscalls (shrink/extend etc).
  37.                         Special address space area type - device - prohibits shrink/extend syscalls to call on it.
  38.                         Address space has link to mapping tables (hierarchical - per Address space, hash - global tables).
  39.                 </para>
  40.  
  41. --></para>
  42.     </section>
  43.  
  44.     <section>
  45.       <title>Paging</title>
  46.  
  47.       <para>Virtual memory is usually using paged memory model, where virtual
  48.       memory address space is divided into the <emphasis>pages</emphasis>
  49.       (usually having size 4096 bytes) and physical memory is divided into the
  50.       frames (same sized as a page, of course). Each page may be mapped to
  51.       some frame and then, upon memory access to the virtual address, CPU
  52.       performs <emphasis>address translation</emphasis> during the instruction
  53.       execution. Non-existing mapping generates page fault exception, calling
  54.       kernel exception handler, thus allowing kernel to manipulate rules of
  55.       memory access. Information for pages mapping is stored by kernel in the
  56.       <link linkend="page_tables">page tables</link></para>
  57.  
  58.       <para>The majority of the architectures use multi-level page tables,
  59.       which means need to access physical memory several times before getting
  60.       physical address. This fact would make serios performance overhead in
  61.       virtual memory management. To avoid this <link linkend="tlb">Traslation
  62.       Lookaside Buffer (TLB)</link> is used.</para>
  63.     </section>
  64.  
  65.     <section>
  66.       <title>Address spaces</title>
  67.  
  68.       <section>
  69.         <title>Address space areas</title>
  70.  
  71.         <para>Each address space consists of mutually disjunctive continuous
  72.         address space areas. Address space area is precisely defined by its
  73.         base address and the number of frames/pages is contains.</para>
  74.  
  75.         <para>Address space area , that define behaviour and permissions on
  76.         the particular area. <itemizedlist>
  77.             <listitem>
  78.                
  79.  
  80.               <emphasis>AS_AREA_READ</emphasis>
  81.  
  82.                flag indicates reading permission.
  83.             </listitem>
  84.  
  85.             <listitem>
  86.                
  87.  
  88.               <emphasis>AS_AREA_WRITE</emphasis>
  89.  
  90.                flag indicates writing permission.
  91.             </listitem>
  92.  
  93.             <listitem>
  94.                
  95.  
  96.               <emphasis>AS_AREA_EXEC</emphasis>
  97.  
  98.                flag indicates code execution permission. Some architectures do not support execution persmission restriction. In this case this flag has no effect.
  99.             </listitem>
  100.  
  101.             <listitem>
  102.                
  103.  
  104.               <emphasis>AS_AREA_DEVICE</emphasis>
  105.  
  106.                marks area as mapped to the device memory.
  107.             </listitem>
  108.           </itemizedlist></para>
  109.  
  110.         <para>Kernel provides possibility tasks create/expand/shrink/share its
  111.         address space via the set of syscalls.</para>
  112.       </section>
  113.  
  114.       <section>
  115.         <title>Address Space ID (ASID)</title>
  116.  
  117.         <para>When switching to the different task, kernel also require to
  118.         switch mappings to the different address space. In case TLB cannot
  119.         distinguish address space mappings, all mapping information in TLB
  120.         from the old address space must be flushed, which can create certain
  121.         uncessary overhead during the task switching. To avoid this, some
  122.         architectures have capability to segregate different address spaces on
  123.         hardware level introducing the address space identifier as a part of
  124.         TLB record, telling the virtual address space translation unit to
  125.         which address space this record is applicable.</para>
  126.  
  127.         <para>HelenOS kernel can take advantage of this hardware supported
  128.         identifier by having an ASID abstraction which is somehow related to
  129.         the corresponding architecture identifier. I.e. on ia64 kernel ASID is
  130.         derived from RID (region identifier) and on the mips32 kernel ASID is
  131.         actually the hardware identifier. As expected, this ASID information
  132.         record is the part of <emphasis>as_t</emphasis> structure.</para>
  133.  
  134.         <para>Due to the hardware limitations, hardware ASID has limited
  135.         length from 8 bits on ia64 to 24 bits on mips32, which makes it
  136.         impossible to use it as unique address space identifier for all tasks
  137.         running in the system. In such situations special ASID stealing
  138.         algoritm is used, which takes ASID from inactive task and assigns it
  139.         to the active task.</para>
  140.  
  141.         <para><classname>ASID stealing algoritm here.</classname></para>
  142.       </section>
  143.     </section>
  144.  
  145.     <section>
  146.       <title>Virtual address translation</title>
  147.  
  148.       <section id="page_tables">
  149.         <title>Page tables</title>
  150.  
  151.         <para>HelenOS kernel has two different approaches to the paging
  152.         implementation: <emphasis>4 level page tables</emphasis> and
  153.         <emphasis>global hash tables</emphasis>, which are accessible via
  154.         generic paging abstraction layer. Such different functionality was
  155.         caused by the major architectural differences between supported
  156.         platforms. This abstraction is implemented with help of the global
  157.         structure of pointers to basic mapping functions
  158.         <emphasis>page_mapping_operations</emphasis>. To achieve different
  159.         functionality of page tables, corresponding layer must implement
  160.         functions, declared in
  161.         <emphasis>page_mapping_operations</emphasis></para>
  162.  
  163.         <formalpara>
  164.           <title>4-level page tables</title>
  165.  
  166.           <para>4-level page tables are the generalization of the hardware
  167.           capabilities of several architectures.<itemizedlist>
  168.               <listitem>
  169.                  ia32 uses 2-level page tables, with full hardware support.
  170.               </listitem>
  171.  
  172.               <listitem>
  173.                  amd64 uses 4-level page tables, also coming with full hardware support.
  174.               </listitem>
  175.  
  176.               <listitem>
  177.                  mips and ppc32 have 2-level tables, software simulated support.
  178.               </listitem>
  179.             </itemizedlist></para>
  180.         </formalpara>
  181.  
  182.         <formalpara>
  183.           <title>Global hash tables</title>
  184.  
  185.           <para>- global page hash table: existuje jen jedna v celem systemu
  186.           (vyuziva ji ia64), pozn. ia64 ma zatim vypnuty VHPT. Pouziva se
  187.           genericke hash table s oddelenymi collision chains. ASID support is
  188.           required to use global hash tables.</para>
  189.         </formalpara>
  190.  
  191.         <para>Thanks to the abstract paging interface, there is possibility
  192.         left have more paging implementations, for example B-Tree page
  193.         tables.</para>
  194.       </section>
  195.  
  196.       <section id="tlb">
  197.         <title>Translation Lookaside buffer</title>
  198.  
  199.         <para>Due to the extensive overhead during the page mapping lookup in
  200.         the page tables, all architectures has fast assotiative cache memory
  201.         built-in CPU. This memory called TLB stores recently used page table
  202.         entries.</para>
  203.  
  204.         <section id="tlb_shootdown">
  205.           <title>TLB consistency. TLB shootdown algorithm.</title>
  206.  
  207.           <para>Operating system is responsible for keeping TLB consistent by
  208.           invalidating the contents of TLB, whenever there is some change in
  209.           page tables. Those changes may occur when page or group of pages
  210.           were unmapped, mapping is changed or system switching active address
  211.           space to schedule a new system task (which is a batch unmap of all
  212.           address space mappings). Moreover, this invalidation operation must
  213.           be done an all system CPUs because each CPU has its own independent
  214.           TLB cache. Thus maintaining TLB consistency on SMP configuration as
  215.           not as trivial task as it looks at the first glance. Naive solution
  216.           would assume remote TLB invalidatation, which is not possible on the
  217.           most of the architectures, because of the simple fact - flushing TLB
  218.           is allowed only on the local CPU and there is no possibility to
  219.           access other CPUs' TLB caches.</para>
  220.  
  221.          <para>Technique of remote invalidation of TLB entries is called "TLB
  222.          shootdown". HelenOS uses a variation of the algorithm described by
  223.          D. Black et al., "Translation Lookaside Buffer Consistency: A
  224.          Software Approach," Proc. Third Int'l Conf. Architectural Support
  225.           for Programming Languages and Operating Systems, 1989, pp.
  226.           113-122.</para>
  227.  
  228.           <para>As the situation demands, you will want partitial invalidation
  229.           of TLB caches. In case of simple memory mapping change it is
  230.           necessary to invalidate only one or more adjacent pages. In case if
  231.           the architecture is aware of ASIDs, during the address space
  232.           switching, kernel invalidates only entries from this particular
  233.           address space. Final option of the TLB invalidation is the complete
  234.           TLB cache invalidation, which is the operation that flushes all
  235.           entries in TLB.</para>
  236.  
  237.           <para>TLB shootdown is performed in two phases. First, the initiator
  238.           process sends an IPI message indicating the TLB shootdown request to
  239.           the rest of the CPUs. Then, it waits until all CPUs confirm TLB
  240.           invalidating action execution.</para>
  241.         </section>
  242.       </section>
  243.     </section>
  244.  
  245.     <section>
  246.       <title>---</title>
  247.  
  248.       <para>At the moment HelenOS does not support swapping.</para>
  249.  
  250.       <para>- pouzivame vypadky stranky k alokaci ramcu on-demand v ramci
  251.       as_area - na architekturach, ktere to podporuji, podporujeme non-exec
  252.       stranky</para>
  253.     </section>
  254.   </section>
  255.  
  256.   <!-- End of VM -->
  257.  
  258.   <section>
  259.     <!-- Phys mem -->
  260.  
  261.     <title>Physical memory management</title>
  262.  
  263.     <section id="zones_and_frames">
  264.       <title>Zones and frames</title>
  265.  
  266.       <para><!--graphic fileref="images/mm2.png" /--><!--graphic fileref="images/buddy_alloc.svg" format="SVG" /--></para>
  267.  
  268.       <para>On some architectures not whole physical memory is available for
  269.       conventional usage. This limitations require from kernel to maintain a
  270.       table of available and unavailable ranges of physical memory addresses.
  271.       Main idea of zones is in creating memory zone entity, that is a
  272.       continuous chunk of memory available for allocation. If some chunk is
  273.       not available, we simply do not put it in any zone.</para>
  274.  
  275.       <para>Zone is also serves for informational purposes, containing
  276.       information about number of free and busy frames. Physical memory
  277.       allocation is also done inside the certain zone. Allocation of zone
  278.       frame must be organized by the <link linkend="frame_allocator">frame
  279.       allocator</link> associated with the zone.</para>
  280.  
  281.       <para>Some of the architectures (mips32, ppc32) have only one zone, that
  282.       covers whole physical memory, and the others (like ia32) may have
  283.       multiple zones. Information about zones on current machine is stored in
  284.       BIOS hardware tables or can be hardcoded into kernel during compile
  285.       time.</para>
  286.     </section>
  287.  
  288.     <section id="frame_allocator">
  289.       <title>Frame allocator</title>
  290.  
  291.       <para><mediaobject id="frame_alloc">
  292.           <imageobject role="html">
  293.             <imagedata fileref="images/frame_alloc.png" format="PNG" />
  294.           </imageobject>
  295.  
  296.           <imageobject role="fop">
  297.             <imagedata fileref="images.vector/frame_alloc.svg" format="SVG" />
  298.           </imageobject>
  299.         </mediaobject></para>
  300.  
  301.       <formalpara>
  302.         <title>Overview</title>
  303.  
  304.         <para>Frame allocator provides physical memory allocation for the
  305.         kernel. Because of zonal organization of physical memory, frame
  306.         allocator is always working in context of some zone, thus making
  307.         impossible to allocate a piece of memory, which lays in different
  308.         zone, which cannot happen, because two adjacent zones can be merged
  309.         into one. Frame allocator is also being responsible to update
  310.         information on the number of free/busy frames in zone. Physical memory
  311.         allocation inside one <link linkend="zones_and_frames">memory
  312.         zone</link> is being handled by an instance of <link
  313.         linkend="buddy_allocator">buddy allocator</link> tailored to allocate
  314.         blocks of physical memory frames.</para>
  315.       </formalpara>
  316.  
  317.       <formalpara>
  318.         <title>Allocation / deallocation</title>
  319.  
  320.         <para>Upon allocation request, frame allocator tries to find first
  321.         zone, that can satisfy the incoming request (has required amount of
  322.         free frames to allocate). During deallocation, frame allocator needs
  323.         to find zone, that contain deallocated frame. This approach could
  324.         bring up two potential problems: <itemizedlist>
  325.             <listitem>
  326.                Linear search of zones does not any good to performance, but number of zones is not expected to be high. And if yes, list of zones can be replaced with more time-efficient B-tree.
  327.             </listitem>
  328.  
  329.             <listitem>
  330.                Quickly find out if zone contains required number of frames to allocate and if this chunk of memory is properly aligned. This issue is perfectly solved bu the buddy allocator.
  331.             </listitem>
  332.           </itemizedlist></para>
  333.       </formalpara>
  334.     </section>
  335.  
  336.     <section id="buddy_allocator">
  337.       <title>Buddy allocator</title>
  338.  
  339.       <section>
  340.         <title>Overview</title>
  341.  
  342.         <para><mediaobject id="buddy_alloc">
  343.             <imageobject role="html">
  344.               <imagedata fileref="images/buddy_alloc.png" format="PNG" />
  345.             </imageobject>
  346.  
  347.             <imageobject role="fop">
  348.               <imagedata fileref="images.vector/buddy_alloc.svg" format="SVG" />
  349.             </imageobject>
  350.           </mediaobject></para>
  351.  
  352.         <para>In the buddy allocator, the memory is broken down into
  353.         power-of-two sized naturally aligned blocks. These blocks are
  354.         organized in an array of lists, in which the list with index i
  355.         contains all unallocated blocks of size
  356.         <mathphrase>2<superscript>i</superscript></mathphrase>. The index i is
  357.         called the order of block. Should there be two adjacent equally sized
  358.         blocks in the list i<mathphrase />(i.e. buddies), the buddy allocator
  359.         would coalesce them and put the resulting block in list <mathphrase>i
  360.         + 1</mathphrase>, provided that the resulting block would be naturally
  361.         aligned. Similarily, when the allocator is asked to allocate a block
  362.         of size <mathphrase>2<superscript>i</superscript></mathphrase>, it
  363.         first tries to satisfy the request from the list with index i. If the
  364.         request cannot be satisfied (i.e. the list i is empty), the buddy
  365.         allocator will try to allocate and split a larger block from the list
  366.         with index i + 1. Both of these algorithms are recursive. The
  367.         recursion ends either when there are no blocks to coalesce in the
  368.         former case or when there are no blocks that can be split in the
  369.         latter case.</para>
  370.  
  371.         <!--graphic fileref="images/mm1.png" format="EPS" /-->
  372.  
  373.         <para>This approach greatly reduces external fragmentation of memory
  374.         and helps in allocating bigger continuous blocks of memory aligned to
  375.         their size. On the other hand, the buddy allocator suffers increased
  376.         internal fragmentation of memory and is not suitable for general
  377.         kernel allocations. This purpose is better addressed by the <link
  378.         linkend="slab">slab allocator</link>.</para>
  379.       </section>
  380.  
  381.       <section>
  382.         <title>Implementation</title>
  383.  
  384.         <para>The buddy allocator is, in fact, an abstract framework wich can
  385.         be easily specialized to serve one particular task. It knows nothing
  386.         about the nature of memory it helps to allocate. In order to beat the
  387.         lack of this knowledge, the buddy allocator exports an interface that
  388.         each of its clients is required to implement. When supplied with an
  389.         implementation of this interface, the buddy allocator can use
  390.         specialized external functions to find a buddy for a block, split and
  391.         coalesce blocks, manipulate block order and mark blocks busy or
  392.         available. For precise documentation of this interface, refer to
  393.         <emphasis>"HelenOS Generic Kernel Reference Manual"</emphasis>.</para>
  394.  
  395.         <formalpara>
  396.           <title>Data organization</title>
  397.  
  398.           <para>Each entity allocable by the buddy allocator is required to
  399.           contain space for storing block order number and a link variable
  400.           used to interconnect blocks within the same order.</para>
  401.  
  402.           <para>Whatever entities are allocated by the buddy allocator, the
  403.           first entity within a block is used to represent the entire block.
  404.           The first entity keeps the order of the whole block. Other entities
  405.           within the block are assigned the magic value
  406.           <constant>BUDDY_INNER_BLOCK</constant>. This is especially important
  407.           for effective identification of buddies in a one-dimensional array
  408.           because the entity that represents a potential buddy cannot be
  409.           associated with <constant>BUDDY_INNER_BLOCK</constant> (i.e. if it
  410.           is associated with <constant>BUDDY_INNER_BLOCK</constant> then it is
  411.           not a buddy).</para>
  412.  
  413.           <para>The buddy allocator always uses the first frame to represent
  414.           the frame block. This frame contains <varname>buddy_order</varname>
  415.           variable to provide information about the block size it actually
  416.           represents (
  417.           <mathphrase>2<superscript>buddy_order</superscript></mathphrase>
  418.           frames block). Other frames in block have this value set to magic
  419.           <constant>BUDDY_INNER_BLOCK</constant> that is much greater than
  420.           buddy <varname>max_order</varname> value.</para>
  421.  
  422.           <para>Each <varname>frame_t</varname> also contains pointer member
  423.           to hold frame structure in the linked list inside one order.</para>
  424.         </formalpara>
  425.  
  426.         <formalpara>
  427.           <title>Allocation algorithm</title>
  428.  
  429.           <para>Upon <mathphrase>2<superscript>i</superscript></mathphrase>
  430.           frames block allocation request, allocator checks if there are any
  431.           blocks available at the order list <varname>i</varname>. If yes,
  432.           removes block from order list and returns its address. If no,
  433.           recursively allocates
  434.           <mathphrase>2<superscript>i+1</superscript></mathphrase> frame
  435.           block, splits it into two
  436.           <mathphrase>2<superscript>i</superscript></mathphrase> frame blocks.
  437.           Then adds one of the blocks to the <varname>i</varname> order list
  438.           and returns address of another.</para>
  439.         </formalpara>
  440.  
  441.         <formalpara>
  442.           <title>Deallocation algorithm</title>
  443.  
  444.           <para>Check if block has so called buddy (another free
  445.           <mathphrase>2<superscript>i</superscript></mathphrase> frame block
  446.           that can be linked with freed block into the
  447.           <mathphrase>2<superscript>i+1</superscript></mathphrase> block).
  448.           Technically, buddy is a odd/even block for even/odd block
  449.           respectively. Plus we can put an extra requirement, that resulting
  450.           block must be aligned to its size. This requirement guarantees
  451.           natural block alignment for the blocks coming out the allocation
  452.           system.</para>
  453.  
  454.           <para>Using direct pointer arithmetics,
  455.           <varname>frame_t::ref_count</varname> and
  456.           <varname>frame_t::buddy_order</varname> variables, finding buddy is
  457.           done at constant time.</para>
  458.         </formalpara>
  459.       </section>
  460.     </section>
  461.  
  462.     <section id="slab">
  463.       <title>Slab allocator</title>
  464.  
  465.       <section>
  466.         <title>Overview</title>
  467.  
  468.         <para><termdef><glossterm>Slab</glossterm> represents a contiguous
  469.         piece of memory, usually made of several physically contiguous
  470.         pages.</termdef> <termdef><glossterm>Slab cache</glossterm> consists
  471.         of one or more slabs.</termdef></para>
  472.  
  473.         <para>The majority of memory allocation requests in the kernel are for
  474.         small, frequently used data structures. For this purpose the slab
  475.         allocator is a perfect solution. The basic idea behind the slab
  476.         allocator is to have lists of commonly used objects available packed
  477.         into pages. This avoids the overhead of allocating and destroying
  478.         commonly used types of objects such threads, virtual memory structures
  479.         etc. Also due to the exact allocated size matching, slab allocation
  480.         completely eliminates internal fragmentation issue.</para>
  481.       </section>
  482.  
  483.       <section>
  484.         <title>Implementation</title>
  485.  
  486.         <para><mediaobject id="slab_alloc">
  487.             <imageobject role="html">
  488.               <imagedata fileref="images/slab_alloc.png" format="PNG" />
  489.             </imageobject>
  490.  
  491.             <imageobject role="fop">
  492.               <imagedata fileref="images.vector/slab_alloc.svg" format="SVG" />
  493.             </imageobject>
  494.           </mediaobject></para>
  495.  
  496.         <para>The SLAB allocator is closely modelled after <ulink
  497.         url="http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/">
  498.         OpenSolaris SLAB allocator by Jeff Bonwick and Jonathan Adams </ulink>
  499.         with the following exceptions: <itemizedlist>
  500.             <listitem>
  501.                empty SLABS are deallocated immediately (in Linux they are kept in linked list, in Solaris ???)
  502.             </listitem>
  503.  
  504.             <listitem>
  505.                empty magazines are deallocated when not needed (in Solaris they are held in linked list in slab cache)
  506.             </listitem>
  507.           </itemizedlist> Following features are not currently supported but
  508.         would be easy to do: <itemizedlist>
  509.             <listitem>
  510.                - cache coloring
  511.             </listitem>
  512.  
  513.             <listitem>
  514.                - dynamic magazine grow (different magazine sizes are already supported, but we would need to adjust allocation strategy)
  515.             </listitem>
  516.           </itemizedlist></para>
  517.  
  518.         <section>
  519.           <title>Magazine layer</title>
  520.  
  521.           <para>Due to the extensive bottleneck on SMP architures, caused by
  522.           global SLAB locking mechanism, making processing of all slab
  523.           allocation requests serialized, a new layer was introduced to the
  524.           classic slab allocator design. Slab allocator was extended to
  525.           support per-CPU caches 'magazines' to achieve good SMP scaling.
  526.           <termdef>Slab SMP perfromance bottleneck was resolved by introducing
  527.           a per-CPU caching scheme called as <glossterm>magazine
  528.           layer</glossterm></termdef>.</para>
  529.  
  530.           <para>Magazine is a N-element cache of objects, so each magazine can
  531.           satisfy N allocations. Magazine behaves like a automatic weapon
  532.           magazine (LIFO, stack), so the allocation/deallocation become simple
  533.           push/pop pointer operation. Trick is that CPU does not access global
  534.           slab allocator data during the allocation from its magazine, thus
  535.           making possible parallel allocations between CPUs.</para>
  536.  
  537.           <para>Implementation also requires adding another feature as the
  538.           CPU-bound magazine is actually a pair of magazines to avoid
  539.           thrashing when during allocation/deallocatiion of 1 item at the
  540.           magazine size boundary. LIFO order is enforced, which should avoid
  541.           fragmentation as much as possible.</para>
  542.  
  543.           <para>Another important entity of magazine layer is the common full
  544.           magazine list (also called a depot), that stores full magazines that
  545.           may be used by any of the CPU magazine caches to reload active CPU
  546.           magazine. This list of magazines can be pre-filled with full
  547.           magazines during initialization, but in current implementation it is
  548.           filled during object deallocation, when CPU magazine becomes
  549.           full.</para>
  550.  
  551.           <para>Slab allocator control structures are allocated from special
  552.           slabs, that are marked by special flag, indicating that it should
  553.           not be used for slab magazine layer. This is done to avoid possible
  554.           infinite recursions and deadlock during conventional slab allocaiton
  555.           requests.</para>
  556.         </section>
  557.  
  558.         <section>
  559.           <title>Allocation/deallocation</title>
  560.  
  561.           <para>Every cache contains list of full slabs and list of partialy
  562.           full slabs. Empty slabs are immediately freed (thrashing will be
  563.           avoided because of magazines).</para>
  564.  
  565.           <para>The SLAB allocator allocates lots of space and does not free
  566.           it. When frame allocator fails to allocate the frame, it calls
  567.           slab_reclaim(). It tries 'light reclaim' first, then brutal reclaim.
  568.           The light reclaim releases slabs from cpu-shared magazine-list,
  569.           until at least 1 slab is deallocated in each cache (this algorithm
  570.           should probably change). The brutal reclaim removes all cached
  571.           objects, even from CPU-bound magazines.</para>
  572.  
  573.           <formalpara>
  574.             <title>Allocation</title>
  575.  
  576.             <para><emphasis>Step 1.</emphasis> When it comes to the allocation
  577.             request, slab allocator first of all checks availability of memory
  578.             in local CPU-bound magazine. If it is there, we would just "pop"
  579.             the CPU magazine and return the pointer to object.</para>
  580.  
  581.             <para><emphasis>Step 2.</emphasis> If the CPU-bound magazine is
  582.             empty, allocator will attempt to reload magazin, swapping it with
  583.             second CPU magazine and returns to the first step.</para>
  584.  
  585.             <para><emphasis>Step 3.</emphasis> Now we are in the situation
  586.             when both CPU-bound magazines are empty, which makes allocator to
  587.             access shared full-magazines depot to reload CPU-bound magazines.
  588.             If reload is succesful (meaning there are full magazines in depot)
  589.             algoritm continues at Step 1.</para>
  590.  
  591.             <para><emphasis>Step 4.</emphasis> Final step of the allocation.
  592.             In this step object is allocated from the conventional slab layer
  593.             and pointer is returned.</para>
  594.           </formalpara>
  595.  
  596.           <formalpara>
  597.             <title>Deallocation</title>
  598.  
  599.             <para><emphasis>Step 1.</emphasis> During deallocation request,
  600.             slab allocator will check if the local CPU-bound magazine is not
  601.             full. In this case we will just push the pointer to this
  602.             magazine.</para>
  603.  
  604.             <para><emphasis>Step 2.</emphasis> If the CPU-bound magazine is
  605.             full, allocator will attempt to reload magazin, swapping it with
  606.             second CPU magazine and returns to the first step.</para>
  607.  
  608.             <para><emphasis>Step 3.</emphasis> Now we are in the situation
  609.             when both CPU-bound magazines are full, which makes allocator to
  610.             access shared full-magazines depot to put one of the magazines to
  611.             the depot and creating new empty magazine. Algoritm continues at
  612.             Step 1.</para>
  613.           </formalpara>
  614.         </section>
  615.       </section>
  616.     </section>
  617.  
  618.     <!-- End of Physmem -->
  619.   </section>
  620.  
  621.   <section>
  622.     <title>Memory sharing</title>
  623.  
  624.     <para>Not implemented yet(?)</para>
  625.   </section>
  626. </chapter>