Subversion Repositories HelenOS-doc

Rev

Rev 45 | Rev 47 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. <?xml version="1.0" encoding="UTF-8"?>
  2. <chapter id="mm">
  3.   <?dbhtml filename="mm.html"?>
  4.  
  5.   <title>Memory management</title>
  6.  
  7.   <section>
  8.     <title>Virtual memory management</title>
  9.  
  10.     <section>
  11.       <title>Introduction</title>
  12.  
  13.       <para>Virtual memory is a special memory management technique, used by
  14.       kernel to achieve a bunch of mission critical goals. <itemizedlist>
  15.           <listitem>
  16.              Isolate each task from other tasks that are running on the system at the same time.
  17.           </listitem>
  18.  
  19.           <listitem>
  20.              Allow to allocate more memory, than is actual physical memory size of the machine.
  21.           </listitem>
  22.  
  23.           <listitem>
  24.              Allowing, in general, to load and execute two programs that are linked on the same address without complicated relocations.
  25.           </listitem>
  26.         </itemizedlist></para>
  27.  
  28.       <para><!--
  29.  
  30.                 TLB shootdown ASID/ASID:PAGE/ALL.
  31.                 TLB shootdown requests can come in asynchroniously
  32.                 so there is a cache of TLB shootdown requests. Upon cache overflow TLB shootdown ALL is executed
  33.  
  34.  
  35.                 <para>
  36.                         Address spaces. Address space area (B+ tree). Only for uspace. Set of syscalls (shrink/extend etc).
  37.                         Special address space area type - device - prohibits shrink/extend syscalls to call on it.
  38.                         Address space has link to mapping tables (hierarchical - per Address space, hash - global tables).
  39.                 </para>
  40.  
  41. --></para>
  42.     </section>
  43.  
  44.     <section>
  45.       <title>Paging</title>
  46.  
  47.       <para>Virtual memory is usually using paged memory model, where virtual
  48.       memory address space is divided into the <emphasis>pages</emphasis>
  49.       (usually having size 4096 bytes) and physical memory is divided into the
  50.       frames (same sized as a page, of course). Each page may be mapped to
  51.       some frame and then, upon memory access to the virtual address, CPU
  52.       performs <emphasis>address translation</emphasis> during the instruction
  53.       execution. Non-existing mapping generates page fault exception, calling
  54.       kernel exception handler, thus allowing kernel to manipulate rules of
  55.       memory access. Information for pages mapping is stored by kernel in the
  56.       <link linkend="page_tables">page tables</link></para>
  57.  
  58.       <para>The majority of the architectures use multi-level page tables,
  59.       which means need to access physical memory several times before getting
  60.       physical address. This fact would make serios performance overhead in
  61.       virtual memory management. To avoid this <link linkend="tlb">Traslation
  62.       Lookaside Buffer (TLB)</link> is used.</para>
  63.     </section>
  64.  
  65.     <section>
  66.       <title>Address spaces</title>
  67.  
  68.       <section>
  69.         <title>Address space areas</title>
  70.  
  71.         <para>Each address space consists of mutually disjunctive continuous
  72.         address space areas. Address space area is precisely defined by its
  73.         base address and the number of frames is contains.</para>
  74.  
  75.         <para>Address space area also has special flags, that define behaviour
  76.         and permissions on the particular area. <itemizedlist>
  77.             <listitem>
  78.                
  79.  
  80.               <emphasis>AS_AREA_READ</emphasis>
  81.  
  82.                flag indicates reading permission.
  83.             </listitem>
  84.  
  85.             <listitem>
  86.                
  87.  
  88.               <emphasis>AS_AREA_WRITE</emphasis>
  89.  
  90.                flag indicates writing permission.
  91.             </listitem>
  92.  
  93.             <listitem>
  94.                
  95.  
  96.               <emphasis>AS_AREA_EXEC</emphasis>
  97.  
  98.                flag indicates code execution permission. Some architectures do not support execution persmission restriction. In this case this flag has no effect.
  99.             </listitem>
  100.  
  101.             <listitem>
  102.                
  103.  
  104.               <emphasis>AS_AREA_DEVICE</emphasis>
  105.  
  106.                marks area as mapped to the device memory.
  107.             </listitem>
  108.           </itemizedlist></para>
  109.  
  110.         <para>Kernel provides possibility tasks create/expand/shrink/share its
  111.         address space via the set of syscalls.</para>
  112.       </section>
  113.  
  114.       <section>
  115.         <title>Address Space ID (ASID)</title>
  116.  
  117.         <para>When switching to the different task, kernel also require to
  118.         switch mappings to the different address space. In case TLB cannot
  119.         distinguish address space mappings, all mappings from the old address
  120.         space should be flushed, which can create certain uncessary
  121.         overhead.</para>
  122.  
  123.         <para>To avoid this, some architectures have capability to segregate
  124.         different address spaces on HW level introducing the ASID (address
  125.         space ID). On those architectures each TLB record contains an address
  126.         space identifier, that tells to which address space this record is
  127.         applicable.</para>
  128.  
  129.         <para>HelenOS kernel can take advantage of this hardware supported
  130.         identifier by having an ASID abstraction which is connected to the
  131.         corresponding architecture identifier. I.e. on ia64 kernel ASID is
  132.         built from RID (region identifier) and on the mips32 kernel ASID is
  133.         actually the hardware identifier.</para>
  134.  
  135.         <para>Due to the hardware limitations ASID has limited length from 8
  136.         bits on ia64 to 24 bits on mips32, which makes it impossible to use as
  137.         unique address space identifier for all tasks running in the system.
  138.         In such situations special ASID stealing algoritm is used, which takes
  139.         ASID from inactive task and assigns it to the active task.</para>
  140.       </section>
  141.     </section>
  142.  
  143.     <section>
  144.       <title>Virtual address translation</title>
  145.  
  146.       <section id="page_tables">
  147.         <title>Page tables</title>
  148.  
  149.         <para>HelenOS kernel has two different approaches to the paging
  150.         implementation: <emphasis>4 level page tables</emphasis> and
  151.         <emphasis>global hash tables</emphasis>, which are accessible via
  152.         generic paging abstraction layer. This division was caused by the
  153.         major architectural differences between different platforms.</para>
  154.  
  155.         <formalpara>
  156.           <title>4-level page tables</title>
  157.  
  158.           <para>4-level page tables are the generalization of the hardware
  159.           capabilities of the certain platforms. <itemizedlist>
  160.               <listitem>
  161.                  ia32 uses 2-level page tables, with full hardware support.
  162.               </listitem>
  163.  
  164.               <listitem>
  165.                  amd64 uses 4-level page tables, also coming with full hardware support.
  166.               </listitem>
  167.  
  168.               <listitem>
  169.                  mips and ppc32 have 2-level tables, software simulated support.
  170.               </listitem>
  171.             </itemizedlist></para>
  172.         </formalpara>
  173.  
  174.         <formalpara>
  175.           <title>Global hash tables</title>
  176.  
  177.           <para>- global page hash table: existuje jen jedna v celem systemu
  178.           (vyuziva ji ia64), pozn. ia64 ma zatim vypnuty VHPT. Pouziva se
  179.           genericke hash table s oddelenymi collision chains. ASID support is
  180.           required to use global hash tables.</para>
  181.         </formalpara>
  182.  
  183.         <para>Thanks to the abstract paging interface, there is possibility
  184.         left have more paging implementations, for example B-Tree page
  185.         tables.</para>
  186.       </section>
  187.  
  188.       <section id="tlb">
  189.         <title>Translation Lookaside Buffer</title>
  190.  
  191.         <para>- TLB cachuji informace ve strankovacich tabulkach; alternativne
  192.         se lze na strankovaci tabulky (ci ruzne hw rozsireni [e.g. VHPT, ppc32
  193.         hw hash table]) divat jako na velke TLB</para>
  194.  
  195.         <para>- pri modifikaci mapovani nebo odstraneni mapovani ze
  196.         strankovacich tabulek je potreba zajistit konsistenci TLB a techto
  197.         tabulek; nutne delat na vsech CPU; na to mame zjednodusenou verzi TLB
  198.         shootdown mechanismu; je to variace na algoritmus popsany zde: D.
  199.         Black et al., "Translation Lookaside Buffer Consistency: A Software
  200.        Approach," Proc. Third Int'l Conf. Architectural Support for
  201.        Programming Languages and Operating Systems, 1989, pp. 113-122.</para>
  202.  
  203.        <para>- nutno poznamenat, ze existuji odlehcenejsi verze TLB shootdown
  204.        algoritm</para>
  205.      </section>
  206.    </section>
  207.  
  208.    <section>
  209.      <title>---</title>
  210.  
  211.      <para>At the moment HelenOS does not support swapping.</para>
  212.  
  213.      <para>- pouzivame vypadky stranky k alokaci ramcu on-demand v ramci
  214.      as_area - na architekturach, ktere to podporuji, podporujeme non-exec
  215.      stranky</para>
  216.    </section>
  217.  </section>
  218.  
  219.  <!-- End of VM -->
  220.  
  221.  <section>
  222.    <!-- Phys mem -->
  223.  
  224.    <title>Physical memory management</title>
  225.  
  226.    <section id="zones_and_frames">
  227.      <title>Zones and frames</title>
  228.  
  229.      <para><!--graphic fileref="images/mm2.png" /--><!--graphic fileref="images/buddy_alloc.svg" format="SVG" /--></para>
  230.  
  231.      <para>On some architectures not whole physical memory is available for
  232.      conventional usage. This limitations require from kernel to maintain a
  233.      table of available and unavailable ranges of physical memory addresses.
  234.      Main idea of zones is in creating memory zone entity, that is a
  235.      continuous chunk of memory available for allocation. If some chunk is
  236.      not available, we simply do not put it in any zone.</para>
  237.  
  238.      <para>Zone is also serves for informational purposes, containing
  239.      information about number of free and busy frames. Physical memory
  240.      allocation is also done inside the certain zone. Allocation of zone
  241.      frame must be organized by the <link linkend="frame_allocator">frame
  242.      allocator</link> associated with the zone.</para>
  243.  
  244.      <para>Some of the architectures (mips32, ppc32) have only one zone, that
  245.      covers whole physical memory, and the others (like ia32) may have
  246.      multiple zones. Information about zones on current machine is stored in
  247.      BIOS hardware tables or can be hardcoded into kernel during compile
  248.      time.</para>
  249.    </section>
  250.  
  251.    <section id="frame_allocator">
  252.      <title>Frame allocator</title>
  253.  
  254.      <para><mediaobject id="frame_alloc">
  255.          <imageobject role="html">
  256.            <imagedata fileref="images/frame_alloc.png" format="PNG" />
  257.          </imageobject>
  258.  
  259.          <imageobject role="fop">
  260.            <imagedata fileref="images.vector/frame_alloc.svg" format="SVG" />
  261.          </imageobject>
  262.        </mediaobject></para>
  263.  
  264.      <formalpara>
  265.        <title>Overview</title>
  266.  
  267.        <para>Frame allocator provides physical memory allocation for the
  268.        kernel. Because of zonal organization of physical memory, frame
  269.        allocator is always working in context of some zone, thus making
  270.        impossible to allocate a piece of memory, which lays in different
  271.        zone, which cannot happen, because two adjacent zones can be merged
  272.        into one. Frame allocator is also being responsible to update
  273.        information on the number of free/busy frames in zone. Physical memory
  274.        allocation inside one <link linkend="zones_and_frames">memory
  275.        zone</link> is being handled by an instance of <link
  276.        linkend="buddy_allocator">buddy allocator</link> tailored to allocate
  277.        blocks of physical memory frames.</para>
  278.      </formalpara>
  279.  
  280.      <formalpara>
  281.        <title>Allocation / deallocation</title>
  282.  
  283.        <para>Upon allocation request, frame allocator tries to find first
  284.        zone, that can satisfy the incoming request (has required amount of
  285.        free frames to allocate). During deallocation, frame allocator needs
  286.        to find zone, that contain deallocated frame. This approach could
  287.        bring up two potential problems: <itemizedlist>
  288.            <listitem>
  289.               Linear search of zones does not any good to performance, but number of zones is not expected to be high. And if yes, list of zones can be replaced with more time-efficient B-tree.
  290.            </listitem>
  291.  
  292.            <listitem>
  293.               Quickly find out if zone contains required number of frames to allocate and if this chunk of memory is properly aligned. This issue is perfectly solved bu the buddy allocator.
  294.            </listitem>
  295.          </itemizedlist></para>
  296.      </formalpara>
  297.    </section>
  298.  
  299.    <section id="buddy_allocator">
  300.      <title>Buddy allocator</title>
  301.  
  302.      <section>
  303.        <title>Overview</title>
  304.  
  305.        <para><mediaobject id="buddy_alloc">
  306.            <imageobject role="html">
  307.              <imagedata fileref="images/buddy_alloc.png" format="PNG" />
  308.            </imageobject>
  309.  
  310.            <imageobject role="fop">
  311.              <imagedata fileref="images.vector/buddy_alloc.svg" format="SVG" />
  312.            </imageobject>
  313.          </mediaobject></para>
  314.  
  315.        <para>In the buddy allocator, the memory is broken down into
  316.        power-of-two sized naturally aligned blocks. These blocks are
  317.        organized in an array of lists, in which the list with index i
  318.        contains all unallocated blocks of size
  319.        <mathphrase>2<superscript>i</superscript></mathphrase>. The index i is
  320.        called the order of block. Should there be two adjacent equally sized
  321.        blocks in the list i<mathphrase />(i.e. buddies), the buddy allocator
  322.        would coalesce them and put the resulting block in list <mathphrase>i
  323.        + 1</mathphrase>, provided that the resulting block would be naturally
  324.        aligned. Similarily, when the allocator is asked to allocate a block
  325.        of size <mathphrase>2<superscript>i</superscript></mathphrase>, it
  326.        first tries to satisfy the request from the list with index i. If the
  327.        request cannot be satisfied (i.e. the list i is empty), the buddy
  328.        allocator will try to allocate and split a larger block from the list
  329.        with index i + 1. Both of these algorithms are recursive. The
  330.        recursion ends either when there are no blocks to coalesce in the
  331.        former case or when there are no blocks that can be split in the
  332.        latter case.</para>
  333.  
  334.        <!--graphic fileref="images/mm1.png" format="EPS" /-->
  335.  
  336.        <para>This approach greatly reduces external fragmentation of memory
  337.        and helps in allocating bigger continuous blocks of memory aligned to
  338.        their size. On the other hand, the buddy allocator suffers increased
  339.        internal fragmentation of memory and is not suitable for general
  340.        kernel allocations. This purpose is better addressed by the <link
  341.        linkend="slab">slab allocator</link>.</para>
  342.      </section>
  343.  
  344.      <section>
  345.        <title>Implementation</title>
  346.  
  347.        <para>The buddy allocator is, in fact, an abstract framework wich can
  348.        be easily specialized to serve one particular task. It knows nothing
  349.        about the nature of memory it helps to allocate. In order to beat the
  350.        lack of this knowledge, the buddy allocator exports an interface that
  351.        each of its clients is required to implement. When supplied with an
  352.        implementation of this interface, the buddy allocator can use
  353.        specialized external functions to find a buddy for a block, split and
  354.        coalesce blocks, manipulate block order and mark blocks busy or
  355.        available. For precise documentation of this interface, refer to
  356.        <emphasis>"HelenOS Generic Kernel Reference Manual"</emphasis>.</para>
  357.  
  358.        <formalpara>
  359.          <title>Data organization</title>
  360.  
  361.          <para>Each entity allocable by the buddy allocator is required to
  362.          contain space for storing block order number and a link variable
  363.          used to interconnect blocks within the same order.</para>
  364.  
  365.          <para>Whatever entities are allocated by the buddy allocator, the
  366.          first entity within a block is used to represent the entire block.
  367.          The first entity keeps the order of the whole block. Other entities
  368.          within the block are assigned the magic value
  369.          <constant>BUDDY_INNER_BLOCK</constant>. This is especially important
  370.          for effective identification of buddies in a one-dimensional array
  371.          because the entity that represents a potential buddy cannot be
  372.          associated with <constant>BUDDY_INNER_BLOCK</constant> (i.e. if it
  373.          is associated with <constant>BUDDY_INNER_BLOCK</constant> then it is
  374.          not a buddy).</para>
  375.  
  376.          <para>The buddy allocator always uses the first frame to represent
  377.          the frame block. This frame contains <varname>buddy_order</varname>
  378.          variable to provide information about the block size it actually
  379.          represents (
  380.          <mathphrase>2<superscript>buddy_order</superscript></mathphrase>
  381.          frames block). Other frames in block have this value set to magic
  382.          <constant>BUDDY_INNER_BLOCK</constant> that is much greater than
  383.          buddy <varname>max_order</varname> value.</para>
  384.  
  385.          <para>Each <varname>frame_t</varname> also contains pointer member
  386.          to hold frame structure in the linked list inside one order.</para>
  387.        </formalpara>
  388.  
  389.        <formalpara>
  390.          <title>Allocation algorithm</title>
  391.  
  392.          <para>Upon <mathphrase>2<superscript>i</superscript></mathphrase>
  393.          frames block allocation request, allocator checks if there are any
  394.          blocks available at the order list <varname>i</varname>. If yes,
  395.          removes block from order list and returns its address. If no,
  396.          recursively allocates
  397.          <mathphrase>2<superscript>i+1</superscript></mathphrase> frame
  398.          block, splits it into two
  399.          <mathphrase>2<superscript>i</superscript></mathphrase> frame blocks.
  400.          Then adds one of the blocks to the <varname>i</varname> order list
  401.          and returns address of another.</para>
  402.        </formalpara>
  403.  
  404.        <formalpara>
  405.          <title>Deallocation algorithm</title>
  406.  
  407.          <para>Check if block has so called buddy (another free
  408.          <mathphrase>2<superscript>i</superscript></mathphrase> frame block
  409.          that can be linked with freed block into the
  410.          <mathphrase>2<superscript>i+1</superscript></mathphrase> block).
  411.          Technically, buddy is a odd/even block for even/odd block
  412.          respectively. Plus we can put an extra requirement, that resulting
  413.          block must be aligned to its size. This requirement guarantees
  414.          natural block alignment for the blocks coming out the allocation
  415.          system.</para>
  416.  
  417.          <para>Using direct pointer arithmetics,
  418.          <varname>frame_t::ref_count</varname> and
  419.          <varname>frame_t::buddy_order</varname> variables, finding buddy is
  420.          done at constant time.</para>
  421.        </formalpara>
  422.      </section>
  423.    </section>
  424.  
  425.    <section id="slab">
  426.      <title>Slab allocator</title>
  427.  
  428.      <section>
  429.        <title>Overview</title>
  430.  
  431.        <para><termdef><glossterm>Slab</glossterm> represents a contiguous
  432.        piece of memory, usually made of several physically contiguous
  433.        pages.</termdef> <termdef><glossterm>Slab cache</glossterm> consists
  434.        of one or more slabs.</termdef></para>
  435.  
  436.        <para>The majority of memory allocation requests in the kernel are for
  437.        small, frequently used data structures. For this purpose the slab
  438.        allocator is a perfect solution. The basic idea behind the slab
  439.        allocator is to have lists of commonly used objects available packed
  440.        into pages. This avoids the overhead of allocating and destroying
  441.        commonly used types of objects such threads, virtual memory structures
  442.        etc. Also due to the exact allocated size matching, slab allocation
  443.        completely eliminates internal fragmentation issue.</para>
  444.      </section>
  445.  
  446.      <section>
  447.        <title>Implementation</title>
  448.  
  449.        <para><mediaobject id="slab_alloc">
  450.            <imageobject role="html">
  451.              <imagedata fileref="images/slab_alloc.png" format="PNG" />
  452.            </imageobject>
  453.  
  454.            <imageobject role="fop">
  455.              <imagedata fileref="images.vector/slab_alloc.svg" format="SVG" />
  456.            </imageobject>
  457.          </mediaobject></para>
  458.  
  459.        <para>The SLAB allocator is closely modelled after <ulink
  460.        url="http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/">
  461.        OpenSolaris SLAB allocator by Jeff Bonwick and Jonathan Adams </ulink>
  462.        with the following exceptions: <itemizedlist>
  463.            <listitem>
  464.               empty SLABS are deallocated immediately (in Linux they are kept in linked list, in Solaris ???)
  465.            </listitem>
  466.  
  467.            <listitem>
  468.               empty magazines are deallocated when not needed (in Solaris they are held in linked list in slab cache)
  469.            </listitem>
  470.          </itemizedlist> Following features are not currently supported but
  471.        would be easy to do: <itemizedlist>
  472.            <listitem>
  473.               - cache coloring
  474.            </listitem>
  475.  
  476.            <listitem>
  477.               - dynamic magazine grow (different magazine sizes are already supported, but we would need to adjust allocation strategy)
  478.            </listitem>
  479.          </itemizedlist></para>
  480.  
  481.        <section>
  482.          <title>Magazine layer</title>
  483.  
  484.          <para>Due to the extensive bottleneck on SMP architures, caused by
  485.          global SLAB locking mechanism, making processing of all slab
  486.          allocation requests serialized, a new layer was introduced to the
  487.          classic slab allocator design. Slab allocator was extended to
  488.          support per-CPU caches 'magazines' to achieve good SMP scaling.
  489.          <termdef>Slab SMP perfromance bottleneck was resolved by introducing
  490.          a per-CPU caching scheme called as <glossterm>magazine
  491.          layer</glossterm></termdef>.</para>
  492.  
  493.          <para>Magazine is a N-element cache of objects, so each magazine can
  494.          satisfy N allocations. Magazine behaves like a automatic weapon
  495.          magazine (LIFO, stack), so the allocation/deallocation become simple
  496.          push/pop pointer operation. Trick is that CPU does not access global
  497.          slab allocator data during the allocation from its magazine, thus
  498.          making possible parallel allocations between CPUs.</para>
  499.  
  500.          <para>Implementation also requires adding another feature as the
  501.          CPU-bound magazine is actually a pair of magazines to avoid
  502.          thrashing when during allocation/deallocatiion of 1 item at the
  503.          magazine size boundary. LIFO order is enforced, which should avoid
  504.          fragmentation as much as possible.</para>
  505.  
  506.          <para>Another important entity of magazine layer is the common full
  507.          magazine list (also called a depot), that stores full magazines that
  508.          may be used by any of the CPU magazine caches to reload active CPU
  509.          magazine. This list of magazines can be pre-filled with full
  510.          magazines during initialization, but in current implementation it is
  511.          filled during object deallocation, when CPU magazine becomes
  512.          full.</para>
  513.  
  514.          <para>Slab allocator control structures are allocated from special
  515.          slabs, that are marked by special flag, indicating that it should
  516.          not be used for slab magazine layer. This is done to avoid possible
  517.          infinite recursions and deadlock during conventional slab allocaiton
  518.          requests.</para>
  519.        </section>
  520.  
  521.        <section>
  522.          <title>Allocation/deallocation</title>
  523.  
  524.          <para>Every cache contains list of full slabs and list of partialy
  525.          full slabs. Empty slabs are immediately freed (thrashing will be
  526.          avoided because of magazines).</para>
  527.  
  528.          <para>The SLAB allocator allocates lots of space and does not free
  529.          it. When frame allocator fails to allocate the frame, it calls
  530.          slab_reclaim(). It tries 'light reclaim' first, then brutal reclaim.
  531.          The light reclaim releases slabs from cpu-shared magazine-list,
  532.          until at least 1 slab is deallocated in each cache (this algorithm
  533.          should probably change). The brutal reclaim removes all cached
  534.          objects, even from CPU-bound magazines.</para>
  535.  
  536.          <formalpara>
  537.            <title>Allocation</title>
  538.  
  539.            <para><emphasis>Step 1.</emphasis> When it comes to the allocation
  540.            request, slab allocator first of all checks availability of memory
  541.            in local CPU-bound magazine. If it is there, we would just "pop"
  542.            the CPU magazine and return the pointer to object.</para>
  543.  
  544.            <para><emphasis>Step 2.</emphasis> If the CPU-bound magazine is
  545.            empty, allocator will attempt to reload magazin, swapping it with
  546.            second CPU magazine and returns to the first step.</para>
  547.  
  548.            <para><emphasis>Step 3.</emphasis> Now we are in the situation
  549.            when both CPU-bound magazines are empty, which makes allocator to
  550.            access shared full-magazines depot to reload CPU-bound magazines.
  551.            If reload is succesful (meaning there are full magazines in depot)
  552.            algoritm continues at Step 1.</para>
  553.  
  554.            <para><emphasis>Step 4.</emphasis> Final step of the allocation.
  555.            In this step object is allocated from the conventional slab layer
  556.            and pointer is returned.</para>
  557.          </formalpara>
  558.  
  559.          <formalpara>
  560.            <title>Deallocation</title>
  561.  
  562.            <para><emphasis>Step 1.</emphasis> During deallocation request,
  563.            slab allocator will check if the local CPU-bound magazine is not
  564.            full. In this case we will just push the pointer to this
  565.            magazine.</para>
  566.  
  567.            <para><emphasis>Step 2.</emphasis> If the CPU-bound magazine is
  568.            full, allocator will attempt to reload magazin, swapping it with
  569.            second CPU magazine and returns to the first step.</para>
  570.  
  571.            <para><emphasis>Step 3.</emphasis> Now we are in the situation
  572.            when both CPU-bound magazines are full, which makes allocator to
  573.            access shared full-magazines depot to put one of the magazines to
  574.            the depot and creating new empty magazine. Algoritm continues at
  575.            Step 1.</para>
  576.          </formalpara>
  577.        </section>
  578.      </section>
  579.    </section>
  580.  
  581.    <!-- End of Physmem -->
  582.  </section>
  583.  
  584.  <section>
  585.    <title>Memory sharing</title>
  586.  
  587.    <para>Not implemented yet(?)</para>
  588.  </section>
  589. </chapter>