Subversion Repositories HelenOS-doc

Rev

Rev 27 | Rev 35 | Go to most recent revision | Blame | Compare with Previous | Last modification | View Log | Download | RSS feed

  1. <?xml version="1.0" encoding="UTF-8"?>
  2. <chapter id="mm">
  3.   <?dbhtml filename="mm.html"?>
  4.  
  5.   <title>Memory management</title>
  6.  
  7.   <section>
  8.     <title>Virtual memory management</title>
  9.  
  10.     <section>
  11.       <title>Address spaces</title>
  12.  
  13.       <para />
  14.     </section>
  15.  
  16.     <section>
  17.       <title>Virtual address translation</title>
  18.  
  19.       <para />
  20.     </section>
  21.  
  22.     <para>Page tables. 4 level hierarchical and hash directly supported. B+
  23.     Tree can be implemented.</para>
  24.  
  25.     <para>For paging there is an abstract layer</para>
  26.  
  27.     <para>TLB shootdown implementation (update TLB upon mapping
  28.     update/remove). TLB shootdown ASID/ASID:PAGE/ALL. TLB shootdown requests
  29.     can come in asynchroniously so there is a cache of TLB shootdown requests.
  30.     Upon cache overflow TLB shootdown ALL is executed</para>
  31.  
  32.     <para>Address spaces. Address space area (B+ tree). Only for uspace. Set
  33.     of syscalls (shrink/extend etc). Special address space area type - device
  34.     - prohibits shrink/extend syscalls to call on it. Address space has link
  35.     to mapping tables (hierarchical - per Address space, hash - global
  36.     tables).</para>
  37.   </section>
  38.  
  39.   <!-- End of VM -->
  40.  
  41.   <section>
  42.     <!-- Phys mem -->
  43.  
  44.     <title>Physical memory management</title>
  45.  
  46.     <section id="zones_and_frames">
  47.       <title>Zones and frames</title>
  48.  
  49.       <para><!--graphic fileref="images/mm2.png" /--><!--graphic fileref="images/buddy_alloc.svg" format="SVG" /--></para>
  50.  
  51.       <para>On some architectures not whole physical memory is available for
  52.       conventional usage. This limitations require from kernel to maintain a
  53.       table of available and unavailable ranges of physical memory addresses.
  54.       Main idea of zones is in creating memory zone entity, that is a
  55.       continuous chunk of memory available for allocation. If some chunk is
  56.       not available, we simply do not put it in any zone.</para>
  57.  
  58.       <para>Zone is also serves for informational purposes, containing
  59.       information about number of free and busy frames. Physical memory
  60.       allocation is also done inside the certain zone. Allocation of zone
  61.       frame must be organized by the <link linkend="frame_allocator">frame
  62.       allocator</link> associated with the zone.</para>
  63.  
  64.       <para>Some of the architectures (mips32, ppc32) have only one zone, that
  65.       covers whole physical memory, and the others (like ia32) may have
  66.       multiple zones. Information about zones on current machine is stored in
  67.       BIOS hardware tables or can be hardcoded into kernel during compile
  68.       time.</para>
  69.     </section>
  70.  
  71.     <section id="frame_allocator">
  72.       <title>Frame allocator</title>
  73.  
  74.       <formalpara>
  75.         <title>Overview</title>
  76.  
  77.         <para>Frame allocator provides physical memory allocation for the
  78.         kernel. Because of zonal organization of physical memory, frame
  79.         allocator is always working in context of some zone, thus making
  80.         impossible to allocate a piece of memory, which lays in different
  81.         zone, which cannot happen, because two adjacent zones can be merged
  82.         into one. Frame allocator is also being responsible to update
  83.         information on the number of free/busy frames in zone. Physical memory
  84.         allocation inside one <link linkend="zones_and_frames">memory
  85.         zone</link> is being handled by an instance of <link
  86.         linkend="buddy_allocator">buddy allocator</link> tailored to allocate
  87.         blocks of physical memory frames.</para>
  88.       </formalpara>
  89.  
  90.       <formalpara>
  91.         <title>Allocation / deallocation</title>
  92.  
  93.         <para>Upon allocation request, frame allocator tries to find first
  94.         zone, that can satisfy the incoming request (has required amount of
  95.         free frames to allocate). During deallocation, frame allocator needs
  96.         to find zone, that contain deallocated frame. This approach could
  97.         bring up two potential problems: <itemizedlist>
  98.             <listitem>
  99.                Linear search of zones does not any good to performance, but number of zones is not expected to be high. And if yes, list of zones can be replaced with more time-efficient B-tree.
  100.             </listitem>
  101.  
  102.             <listitem>
  103.                Quickly find out if zone contains required number of frames to allocate and if this chunk of memory is properly aligned. This issue is perfectly solved bu the buddy allocator.
  104.             </listitem>
  105.           </itemizedlist></para>
  106.       </formalpara>
  107.     </section>
  108.  
  109.     <section id="buddy_allocator">
  110.       <title>Buddy allocator</title>
  111.  
  112.       <section>
  113.         <title>Overview</title>
  114.  
  115.         <para>In buddy allocator, memory is broken down into power-of-two
  116.         sized naturally aligned blocks. These blocks are organized in an array
  117.         of lists in which list with index i contains all unallocated blocks of
  118.         the size <mathphrase>2<superscript>i</superscript></mathphrase>. The
  119.         index i is called the order of block. Should there be two adjacent
  120.         equally sized blocks in list <mathphrase>i</mathphrase> (i.e.
  121.         buddies), the buddy allocator would coalesce them and put the
  122.         resulting block in list <mathphrase>i + 1</mathphrase>, provided that
  123.         the resulting block would be naturally aligned. Similarily, when the
  124.         allocator is asked to allocate a block of size
  125.         <mathphrase>2<superscript>i</superscript></mathphrase>, it first tries
  126.         to satisfy the request from list with index i. If the request cannot
  127.         be satisfied (i.e. the list i is empty), the buddy allocator will try
  128.         to allocate and split larger block from list with index i + 1. Both of
  129.         these algorithms are recursive. The recursion ends either when there
  130.         are no blocks to coalesce in the former case or when there are no
  131.         blocks that can be split in the latter case.</para>
  132.  
  133.         <!--graphic fileref="images/mm1.png" format="EPS" /-->
  134.  
  135.         <para>This approach greatly reduces external fragmentation of memory
  136.         and helps in allocating bigger continuous blocks of memory aligned to
  137.         their size. On the other hand, the buddy allocator suffers increased
  138.         internal fragmentation of memory and is not suitable for general
  139.         kernel allocations. This purpose is better addressed by the <link
  140.         linkend="slab">slab allocator</link>.</para>
  141.       </section>
  142.  
  143.       <section>
  144.         <title>Implementation</title>
  145.  
  146.         <para>The buddy allocator is, in fact, an abstract framework wich can
  147.         be easily specialized to serve one particular task. It knows nothing
  148.         about the nature of memory it helps to allocate. In order to beat the
  149.         lack of this knowledge, the buddy allocator exports an interface that
  150.         each of its clients is required to implement. When supplied an
  151.         implementation of this interface, the buddy allocator can use
  152.         specialized external functions to find buddy for a block, split and
  153.         coalesce blocks, manipulate block order and mark blocks busy or
  154.         available. For precize documentation of this interface, refer to <link
  155.         linkend="???">HelenOS Generic Kernel Reference Manual</link>.</para>
  156.  
  157.         <formalpara>
  158.           <title>Data organization</title>
  159.  
  160.           <para>Each entity allocable by the buddy allocator is required to
  161.           contain space for storing block order number and a link variable
  162.           used to interconnect blocks within the same order.</para>
  163.  
  164.           <para>Whatever entities are allocated by the buddy allocator, the
  165.           first entity within a block is used to represent the entire block.
  166.           The first entity keeps the order of the whole block. Other entities
  167.           within the block are assigned the magic value
  168.           <constant>BUDDY_INNER_BLOCK</constant>. This is especially important
  169.           for effective identification of buddies in one-dimensional array
  170.           because the entity that represents a potential buddy cannot be
  171.           associated with <constant>BUDDY_INNER_BLOCK</constant> (i.e. if it
  172.           is associated with <constant>BUDDY_INNER_BLOCK</constant> then it is
  173.           not a buddy).</para>
  174.  
  175.           <para>Buddy allocator always uses first frame to represent frame
  176.           block. This frame contains <varname>buddy_order</varname> variable
  177.           to provide information about the block size it actually represents (
  178.           <mathphrase>2<superscript>buddy_order</superscript></mathphrase>
  179.           frames block). Other frames in block have this value set to magic
  180.           <constant>BUDDY_INNER_BLOCK</constant> that is much greater than
  181.           buddy <varname>max_order</varname> value.</para>
  182.  
  183.           <para>Each <varname>frame_t</varname> also contains pointer member
  184.           to hold frame structure in the linked list inside one order.</para>
  185.         </formalpara>
  186.  
  187.         <formalpara>
  188.           <title>Allocation algorithm</title>
  189.  
  190.           <para>Upon <mathphrase>2<superscript>i</superscript></mathphrase>
  191.           frames block allocation request, allocator checks if there are any
  192.           blocks available at the order list <varname>i</varname>. If yes,
  193.           removes block from order list and returns its address. If no,
  194.           recursively allocates
  195.           <mathphrase>2<superscript>i+1</superscript></mathphrase> frame
  196.           block, splits it into two
  197.           <mathphrase>2<superscript>i</superscript></mathphrase> frame blocks.
  198.           Then adds one of the blocks to the <varname>i</varname> order list
  199.           and returns address of another.</para>
  200.         </formalpara>
  201.  
  202.         <formalpara>
  203.           <title>Deallocation algorithm</title>
  204.  
  205.           <para>Check if block has so called buddy (another free
  206.           <mathphrase>2<superscript>i</superscript></mathphrase> frame block
  207.           that can be linked with freed block into the
  208.           <mathphrase>2<superscript>i+1</superscript></mathphrase> block).
  209.           Technically, buddy is a odd/even block for even/odd block
  210.           respectively. Plus we can put an extra requirement, that resulting
  211.           block must be aligned to its size. This requirement guarantees
  212.           natural block alignment for the blocks coming out the allocation
  213.           system.</para>
  214.  
  215.           <para>Using direct pointer arithmetics,
  216.           <varname>frame_t::ref_count</varname> and
  217.           <varname>frame_t::buddy_order</varname> variables, finding buddy is
  218.           done at constant time.</para>
  219.         </formalpara>
  220.       </section>
  221.     </section>
  222.  
  223.     <section id="slab">
  224.       <title>Slab allocator</title>
  225.  
  226.       <section>
  227.         <title>Overview</title>
  228.  
  229.         <para><termdef><glossterm>Slab</glossterm> represents a contiguous
  230.         piece of memory, usually made of several physically contiguous
  231.         pages.</termdef> <termdef><glossterm>Slab cache</glossterm> consists
  232.         of one or more slabs.</termdef></para>
  233.  
  234.         <para>The majority of memory allocation requests in the kernel are for
  235.         small, frequently used data structures. For this purpose the slab
  236.         allocator is a perfect solution. The basic idea behind the slab
  237.         allocator is to have lists of commonly used objects available packed
  238.         into pages. This avoids the overhead of allocating and destroying
  239.         commonly used types of objects such threads, virtual memory structures
  240.         etc. Also due to the exact allocated size matching, slab allocation
  241.         completely eliminates internal fragmentation issue.</para>
  242.       </section>
  243.  
  244.       <section>
  245.         <title>Implementation</title>
  246.  
  247.         <para>The SLAB allocator is closely modelled after <ulink
  248.         url="http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/">
  249.         OpenSolaris SLAB allocator by Jeff Bonwick and Jonathan Adams </ulink>
  250.         with the following exceptions: <itemizedlist>
  251.             <listitem>
  252.                empty SLABS are deallocated immediately (in Linux they are kept in linked list, in Solaris ???)
  253.             </listitem>
  254.  
  255.             <listitem>
  256.                empty magazines are deallocated when not needed (in Solaris they are held in linked list in slab cache)
  257.             </listitem>
  258.           </itemizedlist> Following features are not currently supported but
  259.         would be easy to do: <itemizedlist>
  260.             <listitem>
  261.                - cache coloring
  262.             </listitem>
  263.  
  264.             <listitem>
  265.                - dynamic magazine grow (different magazine sizes are already supported, but we would need to adjust allocation strategy)
  266.             </listitem>
  267.           </itemizedlist></para>
  268.  
  269.         <section>
  270.           <title>Magazine layer</title>
  271.  
  272.           <para>Due to the extensive bottleneck on SMP architures, caused by
  273.           global SLAB locking mechanism, making processing of all slab
  274.           allocation requests serialized, a new layer was introduced to the
  275.           classic slab allocator design. Slab allocator was extended to
  276.           support per-CPU caches 'magazines' to achieve good SMP scaling.
  277.           <termdef>Slab SMP perfromance bottleneck was resolved by introducing
  278.           a per-CPU caching scheme called as <glossterm>magazine
  279.           layer</glossterm></termdef>.</para>
  280.  
  281.           <para>Magazine is a N-element cache of objects, so each magazine can
  282.           satisfy N allocations. Magazine behaves like a automatic weapon
  283.           magazine (LIFO, stack), so the allocation/deallocation become simple
  284.           push/pop pointer operation. Trick is that CPU does not access global
  285.           slab allocator data during the allocation from its magazine, thus
  286.           making possible parallel allocations between CPUs.</para>
  287.  
  288.           <para>Implementation also requires adding another feature as the
  289.           CPU-bound magazine is actually a pair of magazines to avoid
  290.           thrashing when during allocation/deallocatiion of 1 item at the
  291.           magazine size boundary. LIFO order is enforced, which should avoid
  292.           fragmentation as much as possible.</para>
  293.  
  294.           <para>Another important entity of magazine layer is a full magazine
  295.           depot, that stores full magazines which are used by any of the CPU
  296.           magazine caches to reload active CPU magazine. Magazine depot can be
  297.           pre-filled with full magazines during initialization, but in current
  298.           implementation it is filled during object deallocation, when CPU
  299.           magazine becomes full.</para>
  300.  
  301.           <para>Slab allocator control structures are allocated from special
  302.           slabs, that are marked by special flag, indicating that it should
  303.           not be used for slab magazine layer. This is done to avoid possible
  304.           infinite recursions and deadlock during conventional slab allocaiton
  305.           requests.</para>
  306.         </section>
  307.  
  308.         <section>
  309.           <title>Allocation/deallocation</title>
  310.  
  311.           <para>Every cache contains list of full slabs and list of partialy
  312.           full slabs. Empty slabs are immediately freed (thrashing will be
  313.           avoided because of magazines).</para>
  314.  
  315.           <para>The SLAB allocator allocates lots of space and does not free
  316.           it. When frame allocator fails to allocate the frame, it calls
  317.           slab_reclaim(). It tries 'light reclaim' first, then brutal reclaim.
  318.           The light reclaim releases slabs from cpu-shared magazine-list,
  319.           until at least 1 slab is deallocated in each cache (this algorithm
  320.           should probably change). The brutal reclaim removes all cached
  321.           objects, even from CPU-bound magazines.</para>
  322.  
  323.           <formalpara>
  324.             <title>Allocation</title>
  325.  
  326.             <para><emphasis>Step 1.</emphasis> When it comes to the allocation
  327.             request, slab allocator first of all checks availability of memory
  328.             in local CPU-bound magazine. If it is there, we would just "pop"
  329.             the CPU magazine and return the pointer to object.</para>
  330.  
  331.             <para><emphasis>Step 2.</emphasis> If the CPU-bound magazine is
  332.             empty, allocator will attempt to reload magazin, swapping it with
  333.             second CPU magazine and returns to the first step.</para>
  334.  
  335.             <para><emphasis>Step 3.</emphasis> Now we are in the situation
  336.             when both CPU-bound magazines are empty, which makes allocator to
  337.             access shared full-magazines depot to reload CPU-bound magazines.
  338.             If reload is succesful (meaning there are full magazines in depot)
  339.             algoritm continues at Step 1.</para>
  340.  
  341.             <para><emphasis>Step 4.</emphasis> Final step of the allocation.
  342.             In this step object is allocated from the conventional slab layer
  343.             and pointer is returned.</para>
  344.           </formalpara>
  345.  
  346.           <formalpara>
  347.             <title>Deallocation</title>
  348.  
  349.             <para><emphasis>Step 1.</emphasis> During deallocation request,
  350.             slab allocator will check if the local CPU-bound magazine is not
  351.             full. In this case we will just push the pointer to this
  352.             magazine.</para>
  353.  
  354.             <para><emphasis>Step 2.</emphasis> If the CPU-bound magazine is
  355.             full, allocator will attempt to reload magazin, swapping it with
  356.             second CPU magazine and returns to the first step.</para>
  357.  
  358.             <para><emphasis>Step 3.</emphasis> Now we are in the situation
  359.             when both CPU-bound magazines are full, which makes allocator to
  360.             access shared full-magazines depot to put one of the magazines to
  361.             the depot and creating new empty magazine. Algoritm continues at
  362.             Step 1.</para>
  363.           </formalpara>
  364.         </section>
  365.       </section>
  366.     </section>
  367.  
  368.     <!-- End of Physmem -->
  369.   </section>
  370.  
  371.   <section>
  372.     <title>Memory sharing</title>
  373.  
  374.     <para>Not implemented yet(?)</para>
  375.   </section>
  376. </chapter>