HelenOS project

project documentation

Contents

Contents 2
1 Introduction 3
1.1 How to read this document 3
2 Project 4
3 Developers 5
3.1 Jakub Jermar 5
3.2 Ondiej Palkovsky 5
3.3 Martin Déckyo 6
3.4 Jakub Vana 6
3.5 Josef Cejka 6
3.6 Sergey Bondari oo 7
4 Software 8
4.1 Communication tools 8
4.2 Concurrent versions systems 9
4.3 Web tools 10
4.4 Third party components of HelenOS 10
4.5 Buildtools. 11
4.6 Virtual environmentso 11
4.6.1 Bochs 12

46.2 GXemul 13

4.6.3 mSIM e 13

4.6.4 PearPC 13

4.6.5 QEMU 13

4.6.6 SIMICS 14

4.6.7 SKi 14

4.6.8 VMware 14

4.7 Authoring toolso 14
References 15

Chapter 1

Introduction

The HelenOS project[1] is an effort to develop portable and general purpose
operating system. Operating systems in general are very non-trivial pieces of
software. It takes many people, many months and many tools to design and
develop even medium size and feature-limited kernel and userspace layer.

This report aims to document the development process of the HelenOS oper-
ating system as it is specified in [2] and as it has been carried out by the original
six developers (i.e. Jakub Jerméf, Ondtej Palkovsky, Martin Décky, Jakub Véna,
Josef Cejka and Sergey Bondari) in their work on Software project! at Faculty of
Mathematics and Physics at Charles University in Prague. Other aspects of the
wider HelenOS project (e.g. master theses related to the topic) are not discussed
here.

1.1 How to read this document

Chapter 2 provides an insight into project’s timeline, planning, development. It
also presents some statistic data related to the HelenOS project.

Chapter 3 evaluates contributions and project dedication of each individual
developer.

Chapter 4 gives thorough coverage of the third-party software involved with
HelenOS and also experience comming from using that software.

1Software project is the name of a subject at MFF UK. It is supposed to last two semesters
at least.

Chapter 2

Project

Chapter 3

Developers

3.1 Jakub Jermar

Jakub Jermar is the original author of the SPARTAN kernel and the initiator
of the idea to start the HelenOS project. During the works on the system, he
has been the most active developer. He also took on the project agenda and
administration and became the project leader.

Before the project officially started, Jakub Jermar created the SPARTAN ker-
nel for ia32 and mips32 along with SMP support, scheduler and synchronization®.

In the project time proper, he implemented considerable parts of ia64 code
and worked also on mips32 memory management. On the generic front, Jakub
Jermar designed generic the virtual address translation interface for the 4-level
hierarchical page table translation mechanism as well as for the global page hash
table translation mechanism. He has been involved in address space manage-
ment functions and userspace synchronization through futexes. Other areas of
his contribution include the kernel console and the kernel ELF loader. Jakub
Jermdr is also the author of the generic buddy system framework and B+tree
implementation.

3.2 Ondrej Palkovsky

Ondrej Palkovsky has been very agile HelenOS developer. He is responsible for
large areas of the kernel and userspace and has completely created the amd64 port
and completed the mips32 port to the extent that it runs on a real MIPS machine?.
Besides the architecture specific involvement, Ondiej Palkovsky programmed the
slab allocator and modified the frame allocator to be self-contained which in turn
let the old and very limited heap manager be removed from the kernel entirely.
He also created architecture independent FPU lazy switching framework. Other

!The initial SPARTAN kernel did not reach userspace.
2SGI Indy

example of his activity is the IPC subsystem and partial TLS? support. Lastly,
Ondrej Palkovsky equipped the kernel console with features found in userspace
command shells (e.g. tab completion of commands and command history through
keyboard arrows) and wrote the kernel configuration software.

Apart from the self development, other members of the team appreciated
Ondrej Palkovsky’s excellent debugging and troubleshooting skills. He has been
the person behind discovery of majority of the compiler and simulator bugs.

3.3 Martin Décky

Martin Décky is a very dedicated HelenOS developer. Right from the beginning,
Martin has cared about project’s code purity and readibility. He was the first
developer to start writing Doxygen-style comments. He has promoted the proper
use of C language const keywords and extensive typedefing. On the tools front,
he has rewritten the initial build system and created all our toolchain build
scripts.

Martin worked and much improved the ia32 and amd64 kernel booting using
the Grub bootloader and Multiboot specification. He also created specialized
boot loaders for mips32 and ppc32 — architectures that don’t provide many
other ways to load userspace init tasks. Finally, Martin Décky bacame the sole
author of the entire ppc32 port and has encountered partial success in booting
ppc64 port to real hardware?.

3.4 Jakub Vana

Jakub Vana has worked on ia32 and ia64 FPU context switching and passive ia32
and active and passive ia64 console. He has relocated the ia64 kernel to region
7 (i.e. to the highest addresses) and has first coped with ia64 interrupts. Jakub
Vana has been always prepared to discuss different kernel issues. His expertise
in ia32 is well recognized.

3.5 Josef Cejka

Josef Cejka has worked on ia32 memory map detection, softfloat and softint
libraries and printf() standards comformance. He also ported several kernel li-
braries to userspace.

3Thread local storage.
4Apple G5.

3.6 Sergey Bondari

Sergey Bondari implemented sorting library functions and implemented the buddy
allocator interface for the frame allocator. He edited project documentation.

Chapter 4

Software

During the development of the HelenOS operating system, we came across several
types of software tools, programs, utilities and libraries. Some of the tools were
used to develop the system itself while other tools were used to faciliate the
development process. In some cases, we had a chance to try out several versions
of the same product. Sometimes the new versions contained fixes for bugs we
had discovered in previous versions thereof.

Another group of software we have used has been integrated into HelenOS to
fill gaps after functionality that the genuine HelenOS code did not provide itself.

There is simply too much third party software that is somehow related to
HelenOS to be covered all. This chapter attempts to present our experience with
the key softare tools, programs and libraries.

4.1 Communication tools

Although the developers know each other in person, the development, with the
exception of kernel camps, has been pretty much independent as far as locality
and time goes. In order to work effectively, we have established several commu-
nication channels:

E-mail — We used this basic means of electronic communication for peer-to-
peer discussion in cases when the other person could not have been reached
on-line at the time his advice was needed or his attention was demanded.
E-mail was also used for contacting developers of third party software that
we needed to talk to.

Mailing list — As almost every open source project before us, also we opened
mailing list for technical discussion. The advantage of having a mailing
list is the fact that it enables multilateral discussions on several topics
contemporarily, without the need for all the participants be on-line or even
at one place. We have kept our first development mailing list closed to

ICQ

4.2

public so that it seemed natural to us to use Czech as our communication
language on the list since Czech, with one exception, is our native language
and all of us speak it very well. Besides all the advantages, there are also
disadvantages. First, communication over mailing list tends to be rather
slow, compared for instance to ICQ. Second, because of its implicit collective
nature, it sometimes tends to be so slow that an answer for a given question
never comes.

Apart from the internal development mailing list, we have also used an-
other mailing list for commit log messages which proved handy in keeping
developers informed about all changes in the repository.

Finally, we have also established a public mailing list for communication
about general HelenOS topics in English.

— Because we divided the whole project into smaller subprojects on which
only the maximum of two people out of six would work together, the need
for communication among all six people was significantly smaller than the
need to communicate between the two developers who tightly cooperated
on a specific task. For this reason, we made the biggest use of ICQ.

Concurrent versions systems

At the very beginning, when the SPARTAN kernel was being developed solely by
Jakub Jermar, there was not much sence in using any software for management
of concurrent versions. However, when the number of developers increased to six,
we immediately started to think of available solutions.

We have begun with CVS because it is probably the best known file concurrent
versions system. We have even had repository of HelenOS using CVS for a short

time,

but when we learned about its weaknesses we sought another solution.

There are two weaknesses that have prevented us from using CVS:

it is merely a file concurrent versions system (i.e. CVS is good at managing
versions of each separate file in the repository but has no clue about the
project’s directory tree as a whole; specifically renaming of a file while
preserving its revision history is next to impossible),

it lacks atomic commits (i.e. should your commit conflict with another
recent commit of another developer, CVS would not abort the whole oper-
ation but render the repository inconsistent instead).

Being aware of these limitations, we decided to go with Subversion. Subversion
is, simply put, a redesigned CVS with all the limitations fixed. We were already
familiar with CVS so the switch to Subversion was pretty seamless.

As for Subversion itself, it has worked for us well and has met all our expec-
tations. Despite all its pros, there was a serious problem that occurred sometime
in the middle of the development process. Because of some locking issues related
to the default database backend (i.e. Berkeley DB), our Subversion repository
put itself in a peculiar state in which it became effectivelly inaccessible by any
means of standard usage or administration. To mitigate this problem, we had
to manually delete orphaned file locks and switch to backend called fsfs which
doesn’t suffer this problem.

Other than that, we are happy users of Subversion. The ability to switch the
entire working copy to particular revision is a great feature for debugging. Once
we tracked a bug three months into the past by moving through revisions until
we found the change that caused the bug.

4.3 Web tools

On our project website[l], we provided links to different web utilities that either
functioned to access our Subversion repository or mailing list or provided another
services:

Chora is a part of the Horde framework and can be used to comfortably browse
Subversion repository from the web. We altered it a little bit to also show
number of commits per developer on our homepage.

WHUPS is another component of the Horde framework. It provides feature
request and bug tracking features. However, in the light of being rather
closed group of people, we used this tool only seldomly. On the other hand,
any possible beta tester of our operating system has had a chance to submit
bug reports.

Mailman is a web interface to the mailing list we utilized. It allows to control
subsriptions and search mailing list archives on-line.

4.4 Third party components of HelenOS

HelenOS itself contains third party software. In the first place, amd64 and ia32
architectures make use of GNU Grub boot loader. This software replaced the
original limited boot loader after the Kernel Camp 2005 when Martin Décky had
made HelenOS Multiboot specification compliant. Because of Grub, HelenOS
can be booted from several types of devices. More importantly, we use Grub to
load HelenOS userspace modules as well.

Another third-party piece of the HelenOS operating system is the userspace
malloc(). Rather than porting our kernel slab allocator to userspace, we have

10

chosen Doug Lea’s public domain dlmalloc instead. This allocator could be
easily integrated into our uspace tree and has proven itself in other projects as
well. Its derivative, ptmalloc, has been part of the GNU C library for some time.
However, the version we are using is not optimized for SMP and multithreading.
We plan to eventually replace it with another allocator.

4.5 Build tools

Assembler, linker and compiler are by all means the very focal point of attention of
all operating system projects. Quality of these tools influences operating system
performance and, what is more important, stability. HelenOS has been tailored
to build with GNU binutils (i.e. the assembler and linker) and GNU gcc (i.e.
the compiler). There is only little chance that it could be compiled and linked
using some other tools unless those tools are compatible with the GNU build
tools.

As our project declares support for five different processor architectures, we
needed to have five different flavors of the build utilities installed. Interestingly,
flavors of binutils and gcc for particular architecture are not equal from the
point of view of cross-binutils and cross-compiler installation. All platforms ex-
cept ia64 require only the binutils package and the gcc package for the cross-
tool to be built. On the other hand, ia64 requires also some excerpts from the
ia64-specific part of glibc.

Formerly, the project could be compiled with almost any version of binutils
starting with 2.15 and gcc starting with 2.95, but especially after we added partial
thread local storage support into our userspace layer, some architectures (e.g.
mips32) will not compile even with gcc 4.0.1 and demand gcc 4.1.0. Curiously,
ia64 will not link when compiled with gcc 4.1.0.

As for the mips32 cross-compiler, Ondtej Palkovsky discovered a bug in gcc
(ticket #23824) which caused gcc to incorrectly generate unaligned data access
instructions (i.e. 1wl, lwr, swl and swr).

As for the mips32 cross-binutils!, we observed that undefined symbols are not
reported when we don’t link using the standard target. We are still not sure
whether this was a bug — binutils developers just told us to use the standard
target and then use objcopy to convert the ELF binary into requested output
format.

4.6 Virtual environments

After the build tools, simulators, emulators and virtualizers were the second focal
point in our project. These invaluable programs really sped the code-compile-

Tt remains uninvestigated whether this problem also shows with other cross-tools.

11

test cycle. In some cases, they were, and still are, the only option to actually
run HelenOS on certain processor architectures, because real hardware was not
available to us. Using virtual environment for developing our system provided us
with deterministic environment on wich it is much easier to do troubleshooting.
Moreover, part of the simulators featured integrated debugging facilities. Without
them, a lot of bugs would remain unresolved or even go unnoticed.

From one point of view, we have tested our system on eight different virtual
environments:

e Bochs,

GXemul,

e msim,

PearPC,

QEMU,
e Simics,
e Ski,

VMware.

From the second point of view, we have tested these programs by our operating
system. Because of the scope and uniqueness of this testing and because we did
find some issues, we want to dedicate some more space to what we have found.

4.6.1 Bochs

Bochs has been used to develop the SPARTAN kernel since its beginning in 2001.
It is capable of emulating ia32 machine and for some time also amd64. Bochs is
an emulator and thus the slowest from virtual environments capable of simulating
the same cathegory of hardware. On the other hand, it is extremely portable,
compared to much faster virtualizers and emulators using dynamic translation
of instructions. Lately, there have been some plans to develop or port dynamic
translation to Bochs brewing in its developer community.

The biggest virtue of Bochs is that it has traditionally supported SMP. For
some time, Bochs has been our only environment on wich we could develop and
test SMP code. Unfortunatelly, the quality of SMP support in Bochs was different
from version to version. Because of SMP breakage in Bochs, we had to avoid
some versions thereof. So far, Bochs versions 2.2.1 and 2.2.6 have been best in
this regard.

12

Our project has not only used Bochs. We also helped to identify some SMP
related problems and Ondfej Palkovsky from our team has discovered and also
fixed a bug in FXSAVE and FXRSTOR emulation (patch #1282033).

Bochs has some debugging facilities but those have been very impractical and
broken in SMP mode.

4.6.2 GXemul

GXemul is an emulator of several processor architectures. Nevertheless, we have
used it only for mips32 emulation in both little-endian and big-endian modes. It
seems to be pretty featurefull and evolving but we don’t use all its functionality.
GXemul is very user friendly and has debugging features. It is more realistic
than msim. However, our newly introduced TLS support triggered a bug in the
rdhwr instruction emulation while msim functioned as expected. Fortunatelly,
the author of GXemul is very cooperative and has fixed the problem for future
versions as well as provided a quick hack for the old version.

4.6.3 msim

msim has been our first mips32 simulator. It simulates 32-bit side of R4000
processor. Its simulated environment is not very realistic, but the processor
simulation is good enough for operating system development. In this regard, the
simulator is comparable to HP’s ia64 simulator Ski. Another similar aspect of
these two is relatively strong debugger.

Msim has been developed on the same alma mater as our own project. All
members of our team know this program from operating system courses. Cu-
riously, this simulator contained the biggest number of defects and inaccuracies
that we have ever discovered in a simulator. Fortunately, all of them have been
eventually fixed.

4.6.4 PearPC

PearPC is the only emulator on wich we have run ppc32 port of HelenOS. It has
no debugging features, but fortunatelly its sources are available under an open
source license. This enabled Ondiej Palkovsky and Martin Décky to alter its
sources in a way that this modified version allowed some basic debugging.

4.6.5 QEMU

QEMU emulates several processor architectures. We have used it to emulate
ia32 and amd64. It can simulate SMP, but contrary to Bochs, it uses dynamic
translation of emulated instructions and performs much better because of that.

13

4.6.6 Simics
4.6.7 Ski
4.6.8 VMware

4.7 Authoring tools

14

Bibliography

[1] HelenOS project, http://www.helenos.eu.

[2] HelenOS specifications

15

http://www.helenos.eu
http://www.helenos.eu/?reason=specs

	Contents
	Introduction
	How to read this document

	Project
	Developers
	Jakub Jermár
	Ondrej Palkovský
	Martin Decký
	Jakub Vána
	Josef Cejka
	Sergey Bondari

	Software
	Communication tools
	Concurrent versions systems
	Web tools
	Third party components of HelenOS
	Build tools
	Virtual environments
	Bochs
	GXemul
	msim
	PearPC
	QEMU
	Simics
	Ski
	VMware

	Authoring tools

	References

