Subversion Repositories HelenOS-historic

Rev

Rev 1086 | Rev 1115 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 1086 Rev 1104
1
/*
1
/*
2
 * Copyright (C) 2001-2004 Jakub Jermar
2
 * Copyright (C) 2001-2004 Jakub Jermar
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
#include <proc/scheduler.h>
29
#include <proc/scheduler.h>
30
#include <proc/thread.h>
30
#include <proc/thread.h>
31
#include <proc/task.h>
31
#include <proc/task.h>
32
#include <mm/frame.h>
32
#include <mm/frame.h>
33
#include <mm/page.h>
33
#include <mm/page.h>
34
#include <mm/as.h>
34
#include <mm/as.h>
35
#include <arch/asm.h>
35
#include <arch/asm.h>
36
#include <arch/faddr.h>
36
#include <arch/faddr.h>
37
#include <arch/atomic.h>
37
#include <atomic.h>
38
#include <synch/spinlock.h>
38
#include <synch/spinlock.h>
39
#include <config.h>
39
#include <config.h>
40
#include <context.h>
40
#include <context.h>
41
#include <func.h>
41
#include <func.h>
42
#include <arch.h>
42
#include <arch.h>
43
#include <adt/list.h>
43
#include <adt/list.h>
44
#include <panic.h>
44
#include <panic.h>
45
#include <typedefs.h>
45
#include <typedefs.h>
46
#include <cpu.h>
46
#include <cpu.h>
47
#include <print.h>
47
#include <print.h>
48
#include <debug.h>
48
#include <debug.h>
49
 
49
 
50
static void scheduler_separated_stack(void);
50
static void scheduler_separated_stack(void);
51
 
51
 
52
atomic_t nrdy;  /**< Number of ready threads in the system. */
52
atomic_t nrdy;  /**< Number of ready threads in the system. */
53
 
53
 
54
/** Take actions before new thread runs.
54
/** Take actions before new thread runs.
55
 *
55
 *
56
 * Perform actions that need to be
56
 * Perform actions that need to be
57
 * taken before the newly selected
57
 * taken before the newly selected
58
 * tread is passed control.
58
 * tread is passed control.
59
 *
59
 *
60
 * THREAD->lock is locked on entry
60
 * THREAD->lock is locked on entry
61
 *
61
 *
62
 */
62
 */
63
void before_thread_runs(void)
63
void before_thread_runs(void)
64
{
64
{
65
    before_thread_runs_arch();
65
    before_thread_runs_arch();
66
#ifdef CONFIG_FPU_LAZY
66
#ifdef CONFIG_FPU_LAZY
67
    if(THREAD==CPU->fpu_owner)
67
    if(THREAD==CPU->fpu_owner)
68
        fpu_enable();
68
        fpu_enable();
69
    else
69
    else
70
        fpu_disable();
70
        fpu_disable();
71
#else
71
#else
72
    fpu_enable();
72
    fpu_enable();
73
    if (THREAD->fpu_context_exists)
73
    if (THREAD->fpu_context_exists)
74
        fpu_context_restore(THREAD->saved_fpu_context);
74
        fpu_context_restore(THREAD->saved_fpu_context);
75
    else {
75
    else {
76
        fpu_init();
76
        fpu_init();
77
        THREAD->fpu_context_exists=1;
77
        THREAD->fpu_context_exists=1;
78
    }
78
    }
79
#endif
79
#endif
80
}
80
}
81
 
81
 
82
/** Take actions after THREAD had run.
82
/** Take actions after THREAD had run.
83
 *
83
 *
84
 * Perform actions that need to be
84
 * Perform actions that need to be
85
 * taken after the running thread
85
 * taken after the running thread
86
 * had been preempted by the scheduler.
86
 * had been preempted by the scheduler.
87
 *
87
 *
88
 * THREAD->lock is locked on entry
88
 * THREAD->lock is locked on entry
89
 *
89
 *
90
 */
90
 */
91
void after_thread_ran(void)
91
void after_thread_ran(void)
92
{
92
{
93
    after_thread_ran_arch();
93
    after_thread_ran_arch();
94
}
94
}
95
 
95
 
96
#ifdef CONFIG_FPU_LAZY
96
#ifdef CONFIG_FPU_LAZY
97
void scheduler_fpu_lazy_request(void)
97
void scheduler_fpu_lazy_request(void)
98
{
98
{
99
restart:
99
restart:
100
    fpu_enable();
100
    fpu_enable();
101
    spinlock_lock(&CPU->lock);
101
    spinlock_lock(&CPU->lock);
102
 
102
 
103
    /* Save old context */
103
    /* Save old context */
104
    if (CPU->fpu_owner != NULL) {  
104
    if (CPU->fpu_owner != NULL) {  
105
        spinlock_lock(&CPU->fpu_owner->lock);
105
        spinlock_lock(&CPU->fpu_owner->lock);
106
        fpu_context_save(CPU->fpu_owner->saved_fpu_context);
106
        fpu_context_save(CPU->fpu_owner->saved_fpu_context);
107
        /* don't prevent migration */
107
        /* don't prevent migration */
108
        CPU->fpu_owner->fpu_context_engaged=0;
108
        CPU->fpu_owner->fpu_context_engaged=0;
109
        spinlock_unlock(&CPU->fpu_owner->lock);
109
        spinlock_unlock(&CPU->fpu_owner->lock);
110
        CPU->fpu_owner = NULL;
110
        CPU->fpu_owner = NULL;
111
    }
111
    }
112
 
112
 
113
    spinlock_lock(&THREAD->lock);
113
    spinlock_lock(&THREAD->lock);
114
    if (THREAD->fpu_context_exists) {
114
    if (THREAD->fpu_context_exists) {
115
        fpu_context_restore(THREAD->saved_fpu_context);
115
        fpu_context_restore(THREAD->saved_fpu_context);
116
    } else {
116
    } else {
117
        /* Allocate FPU context */
117
        /* Allocate FPU context */
118
        if (!THREAD->saved_fpu_context) {
118
        if (!THREAD->saved_fpu_context) {
119
            /* Might sleep */
119
            /* Might sleep */
120
            spinlock_unlock(&THREAD->lock);
120
            spinlock_unlock(&THREAD->lock);
121
            spinlock_unlock(&CPU->lock);
121
            spinlock_unlock(&CPU->lock);
122
            THREAD->saved_fpu_context = slab_alloc(fpu_context_slab,
122
            THREAD->saved_fpu_context = slab_alloc(fpu_context_slab,
123
                                   0);
123
                                   0);
124
            /* We may have switched CPUs during slab_alloc */
124
            /* We may have switched CPUs during slab_alloc */
125
            goto restart;
125
            goto restart;
126
        }
126
        }
127
        fpu_init();
127
        fpu_init();
128
        THREAD->fpu_context_exists=1;
128
        THREAD->fpu_context_exists=1;
129
    }
129
    }
130
    CPU->fpu_owner=THREAD;
130
    CPU->fpu_owner=THREAD;
131
    THREAD->fpu_context_engaged = 1;
131
    THREAD->fpu_context_engaged = 1;
132
    spinlock_unlock(&THREAD->lock);
132
    spinlock_unlock(&THREAD->lock);
133
 
133
 
134
    spinlock_unlock(&CPU->lock);
134
    spinlock_unlock(&CPU->lock);
135
}
135
}
136
#endif
136
#endif
137
 
137
 
138
/** Initialize scheduler
138
/** Initialize scheduler
139
 *
139
 *
140
 * Initialize kernel scheduler.
140
 * Initialize kernel scheduler.
141
 *
141
 *
142
 */
142
 */
143
void scheduler_init(void)
143
void scheduler_init(void)
144
{
144
{
145
}
145
}
146
 
146
 
147
/** Get thread to be scheduled
147
/** Get thread to be scheduled
148
 *
148
 *
149
 * Get the optimal thread to be scheduled
149
 * Get the optimal thread to be scheduled
150
 * according to thread accounting and scheduler
150
 * according to thread accounting and scheduler
151
 * policy.
151
 * policy.
152
 *
152
 *
153
 * @return Thread to be scheduled.
153
 * @return Thread to be scheduled.
154
 *
154
 *
155
 */
155
 */
156
static thread_t *find_best_thread(void)
156
static thread_t *find_best_thread(void)
157
{
157
{
158
    thread_t *t;
158
    thread_t *t;
159
    runq_t *r;
159
    runq_t *r;
160
    int i;
160
    int i;
161
 
161
 
162
    ASSERT(CPU != NULL);
162
    ASSERT(CPU != NULL);
163
 
163
 
164
loop:
164
loop:
165
    interrupts_enable();
165
    interrupts_enable();
166
   
166
   
167
    if (atomic_get(&CPU->nrdy) == 0) {
167
    if (atomic_get(&CPU->nrdy) == 0) {
168
        /*
168
        /*
169
         * For there was nothing to run, the CPU goes to sleep
169
         * For there was nothing to run, the CPU goes to sleep
170
         * until a hardware interrupt or an IPI comes.
170
         * until a hardware interrupt or an IPI comes.
171
         * This improves energy saving and hyperthreading.
171
         * This improves energy saving and hyperthreading.
172
         */
172
         */
173
 
173
 
174
        /*
174
        /*
175
         * An interrupt might occur right now and wake up a thread.
175
         * An interrupt might occur right now and wake up a thread.
176
         * In such case, the CPU will continue to go to sleep
176
         * In such case, the CPU will continue to go to sleep
177
         * even though there is a runnable thread.
177
         * even though there is a runnable thread.
178
         */
178
         */
179
 
179
 
180
         cpu_sleep();
180
         cpu_sleep();
181
         goto loop;
181
         goto loop;
182
    }
182
    }
183
 
183
 
184
    interrupts_disable();
184
    interrupts_disable();
185
   
185
   
186
    for (i = 0; i<RQ_COUNT; i++) {
186
    for (i = 0; i<RQ_COUNT; i++) {
187
        r = &CPU->rq[i];
187
        r = &CPU->rq[i];
188
        spinlock_lock(&r->lock);
188
        spinlock_lock(&r->lock);
189
        if (r->n == 0) {
189
        if (r->n == 0) {
190
            /*
190
            /*
191
             * If this queue is empty, try a lower-priority queue.
191
             * If this queue is empty, try a lower-priority queue.
192
             */
192
             */
193
            spinlock_unlock(&r->lock);
193
            spinlock_unlock(&r->lock);
194
            continue;
194
            continue;
195
        }
195
        }
196
 
196
 
197
        atomic_dec(&CPU->nrdy);
197
        atomic_dec(&CPU->nrdy);
198
        atomic_dec(&nrdy);
198
        atomic_dec(&nrdy);
199
        r->n--;
199
        r->n--;
200
 
200
 
201
        /*
201
        /*
202
         * Take the first thread from the queue.
202
         * Take the first thread from the queue.
203
         */
203
         */
204
        t = list_get_instance(r->rq_head.next, thread_t, rq_link);
204
        t = list_get_instance(r->rq_head.next, thread_t, rq_link);
205
        list_remove(&t->rq_link);
205
        list_remove(&t->rq_link);
206
 
206
 
207
        spinlock_unlock(&r->lock);
207
        spinlock_unlock(&r->lock);
208
 
208
 
209
        spinlock_lock(&t->lock);
209
        spinlock_lock(&t->lock);
210
        t->cpu = CPU;
210
        t->cpu = CPU;
211
 
211
 
212
        t->ticks = us2ticks((i+1)*10000);
212
        t->ticks = us2ticks((i+1)*10000);
213
        t->priority = i;    /* correct rq index */
213
        t->priority = i;    /* correct rq index */
214
 
214
 
215
        /*
215
        /*
216
         * Clear the X_STOLEN flag so that t can be migrated when load balancing needs emerge.
216
         * Clear the X_STOLEN flag so that t can be migrated when load balancing needs emerge.
217
         */
217
         */
218
        t->flags &= ~X_STOLEN;
218
        t->flags &= ~X_STOLEN;
219
        spinlock_unlock(&t->lock);
219
        spinlock_unlock(&t->lock);
220
 
220
 
221
        return t;
221
        return t;
222
    }
222
    }
223
    goto loop;
223
    goto loop;
224
 
224
 
225
}
225
}
226
 
226
 
227
/** Prevent rq starvation
227
/** Prevent rq starvation
228
 *
228
 *
229
 * Prevent low priority threads from starving in rq's.
229
 * Prevent low priority threads from starving in rq's.
230
 *
230
 *
231
 * When the function decides to relink rq's, it reconnects
231
 * When the function decides to relink rq's, it reconnects
232
 * respective pointers so that in result threads with 'pri'
232
 * respective pointers so that in result threads with 'pri'
233
 * greater or equal 'start' are moved to a higher-priority queue.
233
 * greater or equal 'start' are moved to a higher-priority queue.
234
 *
234
 *
235
 * @param start Threshold priority.
235
 * @param start Threshold priority.
236
 *
236
 *
237
 */
237
 */
238
static void relink_rq(int start)
238
static void relink_rq(int start)
239
{
239
{
240
    link_t head;
240
    link_t head;
241
    runq_t *r;
241
    runq_t *r;
242
    int i, n;
242
    int i, n;
243
 
243
 
244
    list_initialize(&head);
244
    list_initialize(&head);
245
    spinlock_lock(&CPU->lock);
245
    spinlock_lock(&CPU->lock);
246
    if (CPU->needs_relink > NEEDS_RELINK_MAX) {
246
    if (CPU->needs_relink > NEEDS_RELINK_MAX) {
247
        for (i = start; i<RQ_COUNT-1; i++) {
247
        for (i = start; i<RQ_COUNT-1; i++) {
248
            /* remember and empty rq[i + 1] */
248
            /* remember and empty rq[i + 1] */
249
            r = &CPU->rq[i + 1];
249
            r = &CPU->rq[i + 1];
250
            spinlock_lock(&r->lock);
250
            spinlock_lock(&r->lock);
251
            list_concat(&head, &r->rq_head);
251
            list_concat(&head, &r->rq_head);
252
            n = r->n;
252
            n = r->n;
253
            r->n = 0;
253
            r->n = 0;
254
            spinlock_unlock(&r->lock);
254
            spinlock_unlock(&r->lock);
255
       
255
       
256
            /* append rq[i + 1] to rq[i] */
256
            /* append rq[i + 1] to rq[i] */
257
            r = &CPU->rq[i];
257
            r = &CPU->rq[i];
258
            spinlock_lock(&r->lock);
258
            spinlock_lock(&r->lock);
259
            list_concat(&r->rq_head, &head);
259
            list_concat(&r->rq_head, &head);
260
            r->n += n;
260
            r->n += n;
261
            spinlock_unlock(&r->lock);
261
            spinlock_unlock(&r->lock);
262
        }
262
        }
263
        CPU->needs_relink = 0;
263
        CPU->needs_relink = 0;
264
    }
264
    }
265
    spinlock_unlock(&CPU->lock);
265
    spinlock_unlock(&CPU->lock);
266
 
266
 
267
}
267
}
268
 
268
 
269
/** The scheduler
269
/** The scheduler
270
 *
270
 *
271
 * The thread scheduling procedure.
271
 * The thread scheduling procedure.
272
 * Passes control directly to
272
 * Passes control directly to
273
 * scheduler_separated_stack().
273
 * scheduler_separated_stack().
274
 *
274
 *
275
 */
275
 */
276
void scheduler(void)
276
void scheduler(void)
277
{
277
{
278
    volatile ipl_t ipl;
278
    volatile ipl_t ipl;
279
 
279
 
280
    ASSERT(CPU != NULL);
280
    ASSERT(CPU != NULL);
281
 
281
 
282
    ipl = interrupts_disable();
282
    ipl = interrupts_disable();
283
 
283
 
284
    if (atomic_get(&haltstate))
284
    if (atomic_get(&haltstate))
285
        halt();
285
        halt();
286
   
286
   
287
    if (THREAD) {
287
    if (THREAD) {
288
        spinlock_lock(&THREAD->lock);
288
        spinlock_lock(&THREAD->lock);
289
#ifndef CONFIG_FPU_LAZY
289
#ifndef CONFIG_FPU_LAZY
290
        fpu_context_save(THREAD->saved_fpu_context);
290
        fpu_context_save(THREAD->saved_fpu_context);
291
#endif
291
#endif
292
        if (!context_save(&THREAD->saved_context)) {
292
        if (!context_save(&THREAD->saved_context)) {
293
            /*
293
            /*
294
             * This is the place where threads leave scheduler();
294
             * This is the place where threads leave scheduler();
295
             */
295
             */
296
            spinlock_unlock(&THREAD->lock);
296
            spinlock_unlock(&THREAD->lock);
297
            interrupts_restore(THREAD->saved_context.ipl);
297
            interrupts_restore(THREAD->saved_context.ipl);
298
           
298
           
299
            return;
299
            return;
300
        }
300
        }
301
 
301
 
302
        /*
302
        /*
303
         * Interrupt priority level of preempted thread is recorded here
303
         * Interrupt priority level of preempted thread is recorded here
304
         * to facilitate scheduler() invocations from interrupts_disable()'d
304
         * to facilitate scheduler() invocations from interrupts_disable()'d
305
         * code (e.g. waitq_sleep_timeout()).
305
         * code (e.g. waitq_sleep_timeout()).
306
         */
306
         */
307
        THREAD->saved_context.ipl = ipl;
307
        THREAD->saved_context.ipl = ipl;
308
    }
308
    }
309
 
309
 
310
    /*
310
    /*
311
     * Through the 'THE' structure, we keep track of THREAD, TASK, CPU, VM
311
     * Through the 'THE' structure, we keep track of THREAD, TASK, CPU, VM
312
     * and preemption counter. At this point THE could be coming either
312
     * and preemption counter. At this point THE could be coming either
313
     * from THREAD's or CPU's stack.
313
     * from THREAD's or CPU's stack.
314
     */
314
     */
315
    the_copy(THE, (the_t *) CPU->stack);
315
    the_copy(THE, (the_t *) CPU->stack);
316
 
316
 
317
    /*
317
    /*
318
     * We may not keep the old stack.
318
     * We may not keep the old stack.
319
     * Reason: If we kept the old stack and got blocked, for instance, in
319
     * Reason: If we kept the old stack and got blocked, for instance, in
320
     * find_best_thread(), the old thread could get rescheduled by another
320
     * find_best_thread(), the old thread could get rescheduled by another
321
     * CPU and overwrite the part of its own stack that was also used by
321
     * CPU and overwrite the part of its own stack that was also used by
322
     * the scheduler on this CPU.
322
     * the scheduler on this CPU.
323
     *
323
     *
324
     * Moreover, we have to bypass the compiler-generated POP sequence
324
     * Moreover, we have to bypass the compiler-generated POP sequence
325
     * which is fooled by SP being set to the very top of the stack.
325
     * which is fooled by SP being set to the very top of the stack.
326
     * Therefore the scheduler() function continues in
326
     * Therefore the scheduler() function continues in
327
     * scheduler_separated_stack().
327
     * scheduler_separated_stack().
328
     */
328
     */
329
    context_save(&CPU->saved_context);
329
    context_save(&CPU->saved_context);
330
    context_set(&CPU->saved_context, FADDR(scheduler_separated_stack), (__address) CPU->stack, CPU_STACK_SIZE);
330
    context_set(&CPU->saved_context, FADDR(scheduler_separated_stack), (__address) CPU->stack, CPU_STACK_SIZE);
331
    context_restore(&CPU->saved_context);
331
    context_restore(&CPU->saved_context);
332
    /* not reached */
332
    /* not reached */
333
}
333
}
334
 
334
 
335
/** Scheduler stack switch wrapper
335
/** Scheduler stack switch wrapper
336
 *
336
 *
337
 * Second part of the scheduler() function
337
 * Second part of the scheduler() function
338
 * using new stack. Handling the actual context
338
 * using new stack. Handling the actual context
339
 * switch to a new thread.
339
 * switch to a new thread.
340
 *
340
 *
341
 * Assume THREAD->lock is held.
341
 * Assume THREAD->lock is held.
342
 */
342
 */
343
void scheduler_separated_stack(void)
343
void scheduler_separated_stack(void)
344
{
344
{
345
    int priority;
345
    int priority;
346
   
346
   
347
    ASSERT(CPU != NULL);
347
    ASSERT(CPU != NULL);
348
   
348
   
349
    if (THREAD) {
349
    if (THREAD) {
350
        /* must be run after the switch to scheduler stack */
350
        /* must be run after the switch to scheduler stack */
351
        after_thread_ran();
351
        after_thread_ran();
352
 
352
 
353
        switch (THREAD->state) {
353
        switch (THREAD->state) {
354
            case Running:
354
            case Running:
355
            spinlock_unlock(&THREAD->lock);
355
            spinlock_unlock(&THREAD->lock);
356
            thread_ready(THREAD);
356
            thread_ready(THREAD);
357
            break;
357
            break;
358
 
358
 
359
            case Exiting:
359
            case Exiting:
360
            thread_destroy(THREAD);
360
            thread_destroy(THREAD);
361
            break;
361
            break;
362
           
362
           
363
            case Sleeping:
363
            case Sleeping:
364
            /*
364
            /*
365
             * Prefer the thread after it's woken up.
365
             * Prefer the thread after it's woken up.
366
             */
366
             */
367
            THREAD->priority = -1;
367
            THREAD->priority = -1;
368
 
368
 
369
            /*
369
            /*
370
             * We need to release wq->lock which we locked in waitq_sleep().
370
             * We need to release wq->lock which we locked in waitq_sleep().
371
             * Address of wq->lock is kept in THREAD->sleep_queue.
371
             * Address of wq->lock is kept in THREAD->sleep_queue.
372
             */
372
             */
373
            spinlock_unlock(&THREAD->sleep_queue->lock);
373
            spinlock_unlock(&THREAD->sleep_queue->lock);
374
 
374
 
375
            /*
375
            /*
376
             * Check for possible requests for out-of-context invocation.
376
             * Check for possible requests for out-of-context invocation.
377
             */
377
             */
378
            if (THREAD->call_me) {
378
            if (THREAD->call_me) {
379
                THREAD->call_me(THREAD->call_me_with);
379
                THREAD->call_me(THREAD->call_me_with);
380
                THREAD->call_me = NULL;
380
                THREAD->call_me = NULL;
381
                THREAD->call_me_with = NULL;
381
                THREAD->call_me_with = NULL;
382
            }
382
            }
383
 
383
 
384
            spinlock_unlock(&THREAD->lock);
384
            spinlock_unlock(&THREAD->lock);
385
 
385
 
386
            break;
386
            break;
387
 
387
 
388
            default:
388
            default:
389
            /*
389
            /*
390
             * Entering state is unexpected.
390
             * Entering state is unexpected.
391
             */
391
             */
392
            panic("tid%d: unexpected state %s\n", THREAD->tid, thread_states[THREAD->state]);
392
            panic("tid%d: unexpected state %s\n", THREAD->tid, thread_states[THREAD->state]);
393
            break;
393
            break;
394
        }
394
        }
395
 
395
 
396
        THREAD = NULL;
396
        THREAD = NULL;
397
    }
397
    }
398
 
398
 
399
    THREAD = find_best_thread();
399
    THREAD = find_best_thread();
400
   
400
   
401
    spinlock_lock(&THREAD->lock);
401
    spinlock_lock(&THREAD->lock);
402
    priority = THREAD->priority;
402
    priority = THREAD->priority;
403
    spinlock_unlock(&THREAD->lock);
403
    spinlock_unlock(&THREAD->lock);
404
 
404
 
405
    relink_rq(priority);       
405
    relink_rq(priority);       
406
 
406
 
407
    spinlock_lock(&THREAD->lock);  
407
    spinlock_lock(&THREAD->lock);  
408
 
408
 
409
    /*
409
    /*
410
     * If both the old and the new task are the same, lots of work is avoided.
410
     * If both the old and the new task are the same, lots of work is avoided.
411
     */
411
     */
412
    if (TASK != THREAD->task) {
412
    if (TASK != THREAD->task) {
413
        as_t *as1 = NULL;
413
        as_t *as1 = NULL;
414
        as_t *as2;
414
        as_t *as2;
415
 
415
 
416
        if (TASK) {
416
        if (TASK) {
417
            spinlock_lock(&TASK->lock);
417
            spinlock_lock(&TASK->lock);
418
            as1 = TASK->as;
418
            as1 = TASK->as;
419
            spinlock_unlock(&TASK->lock);
419
            spinlock_unlock(&TASK->lock);
420
        }
420
        }
421
 
421
 
422
        spinlock_lock(&THREAD->task->lock);
422
        spinlock_lock(&THREAD->task->lock);
423
        as2 = THREAD->task->as;
423
        as2 = THREAD->task->as;
424
        spinlock_unlock(&THREAD->task->lock);
424
        spinlock_unlock(&THREAD->task->lock);
425
       
425
       
426
        /*
426
        /*
427
         * Note that it is possible for two tasks to share one address space.
427
         * Note that it is possible for two tasks to share one address space.
428
         */
428
         */
429
        if (as1 != as2) {
429
        if (as1 != as2) {
430
            /*
430
            /*
431
             * Both tasks and address spaces are different.
431
             * Both tasks and address spaces are different.
432
             * Replace the old one with the new one.
432
             * Replace the old one with the new one.
433
             */
433
             */
434
            as_switch(as1, as2);
434
            as_switch(as1, as2);
435
        }
435
        }
436
        TASK = THREAD->task;
436
        TASK = THREAD->task;
437
    }
437
    }
438
 
438
 
439
    THREAD->state = Running;
439
    THREAD->state = Running;
440
 
440
 
441
#ifdef SCHEDULER_VERBOSE
441
#ifdef SCHEDULER_VERBOSE
442
    printf("cpu%d: tid %d (priority=%d,ticks=%d,nrdy=%d)\n", CPU->id, THREAD->tid, THREAD->priority, THREAD->ticks, atomic_get(&CPU->nrdy));
442
    printf("cpu%d: tid %d (priority=%d,ticks=%d,nrdy=%d)\n", CPU->id, THREAD->tid, THREAD->priority, THREAD->ticks, atomic_get(&CPU->nrdy));
443
#endif  
443
#endif  
444
 
444
 
445
    /*
445
    /*
446
     * Some architectures provide late kernel PA2KA(identity)
446
     * Some architectures provide late kernel PA2KA(identity)
447
     * mapping in a page fault handler. However, the page fault
447
     * mapping in a page fault handler. However, the page fault
448
     * handler uses the kernel stack of the running thread and
448
     * handler uses the kernel stack of the running thread and
449
     * therefore cannot be used to map it. The kernel stack, if
449
     * therefore cannot be used to map it. The kernel stack, if
450
     * necessary, is to be mapped in before_thread_runs(). This
450
     * necessary, is to be mapped in before_thread_runs(). This
451
     * function must be executed before the switch to the new stack.
451
     * function must be executed before the switch to the new stack.
452
     */
452
     */
453
    before_thread_runs();
453
    before_thread_runs();
454
 
454
 
455
    /*
455
    /*
456
     * Copy the knowledge of CPU, TASK, THREAD and preemption counter to thread's stack.
456
     * Copy the knowledge of CPU, TASK, THREAD and preemption counter to thread's stack.
457
     */
457
     */
458
    the_copy(THE, (the_t *) THREAD->kstack);
458
    the_copy(THE, (the_t *) THREAD->kstack);
459
   
459
   
460
    context_restore(&THREAD->saved_context);
460
    context_restore(&THREAD->saved_context);
461
    /* not reached */
461
    /* not reached */
462
}
462
}
463
 
463
 
464
#ifdef CONFIG_SMP
464
#ifdef CONFIG_SMP
465
/** Load balancing thread
465
/** Load balancing thread
466
 *
466
 *
467
 * SMP load balancing thread, supervising thread supplies
467
 * SMP load balancing thread, supervising thread supplies
468
 * for the CPU it's wired to.
468
 * for the CPU it's wired to.
469
 *
469
 *
470
 * @param arg Generic thread argument (unused).
470
 * @param arg Generic thread argument (unused).
471
 *
471
 *
472
 */
472
 */
473
void kcpulb(void *arg)
473
void kcpulb(void *arg)
474
{
474
{
475
    thread_t *t;
475
    thread_t *t;
476
    int count, average, i, j, k = 0;
476
    int count, average, i, j, k = 0;
477
    ipl_t ipl;
477
    ipl_t ipl;
478
 
478
 
479
loop:
479
loop:
480
    /*
480
    /*
481
     * Work in 1s intervals.
481
     * Work in 1s intervals.
482
     */
482
     */
483
    thread_sleep(1);
483
    thread_sleep(1);
484
 
484
 
485
not_satisfied:
485
not_satisfied:
486
    /*
486
    /*
487
     * Calculate the number of threads that will be migrated/stolen from
487
     * Calculate the number of threads that will be migrated/stolen from
488
     * other CPU's. Note that situation can have changed between two
488
     * other CPU's. Note that situation can have changed between two
489
     * passes. Each time get the most up to date counts.
489
     * passes. Each time get the most up to date counts.
490
     */
490
     */
491
    average = atomic_get(&nrdy) / config.cpu_active + 1;
491
    average = atomic_get(&nrdy) / config.cpu_active + 1;
492
    count = average - atomic_get(&CPU->nrdy);
492
    count = average - atomic_get(&CPU->nrdy);
493
 
493
 
494
    if (count <= 0)
494
    if (count <= 0)
495
        goto satisfied;
495
        goto satisfied;
496
 
496
 
497
    /*
497
    /*
498
     * Searching least priority queues on all CPU's first and most priority queues on all CPU's last.
498
     * Searching least priority queues on all CPU's first and most priority queues on all CPU's last.
499
     */
499
     */
500
    for (j=RQ_COUNT-1; j >= 0; j--) {
500
    for (j=RQ_COUNT-1; j >= 0; j--) {
501
        for (i=0; i < config.cpu_active; i++) {
501
        for (i=0; i < config.cpu_active; i++) {
502
            link_t *l;
502
            link_t *l;
503
            runq_t *r;
503
            runq_t *r;
504
            cpu_t *cpu;
504
            cpu_t *cpu;
505
 
505
 
506
            cpu = &cpus[(i + k) % config.cpu_active];
506
            cpu = &cpus[(i + k) % config.cpu_active];
507
 
507
 
508
            /*
508
            /*
509
             * Not interested in ourselves.
509
             * Not interested in ourselves.
510
             * Doesn't require interrupt disabling for kcpulb is X_WIRED.
510
             * Doesn't require interrupt disabling for kcpulb is X_WIRED.
511
             */
511
             */
512
            if (CPU == cpu)
512
            if (CPU == cpu)
513
                continue;
513
                continue;
514
            if (atomic_get(&cpu->nrdy) <= average)
514
            if (atomic_get(&cpu->nrdy) <= average)
515
                continue;
515
                continue;
516
 
516
 
517
            ipl = interrupts_disable();
517
            ipl = interrupts_disable();
518
            r = &cpu->rq[j];
518
            r = &cpu->rq[j];
519
            spinlock_lock(&r->lock);
519
            spinlock_lock(&r->lock);
520
            if (r->n == 0) {
520
            if (r->n == 0) {
521
                spinlock_unlock(&r->lock);
521
                spinlock_unlock(&r->lock);
522
                interrupts_restore(ipl);
522
                interrupts_restore(ipl);
523
                continue;
523
                continue;
524
            }
524
            }
525
       
525
       
526
            t = NULL;
526
            t = NULL;
527
            l = r->rq_head.prev;    /* search rq from the back */
527
            l = r->rq_head.prev;    /* search rq from the back */
528
            while (l != &r->rq_head) {
528
            while (l != &r->rq_head) {
529
                t = list_get_instance(l, thread_t, rq_link);
529
                t = list_get_instance(l, thread_t, rq_link);
530
                /*
530
                /*
531
                 * We don't want to steal CPU-wired threads neither threads already stolen.
531
                 * We don't want to steal CPU-wired threads neither threads already stolen.
532
                 * The latter prevents threads from migrating between CPU's without ever being run.
532
                 * The latter prevents threads from migrating between CPU's without ever being run.
533
                 * We don't want to steal threads whose FPU context is still in CPU.
533
                 * We don't want to steal threads whose FPU context is still in CPU.
534
                 */
534
                 */
535
                spinlock_lock(&t->lock);
535
                spinlock_lock(&t->lock);
536
                if ( (!(t->flags & (X_WIRED | X_STOLEN))) && (!(t->fpu_context_engaged)) ) {
536
                if ( (!(t->flags & (X_WIRED | X_STOLEN))) && (!(t->fpu_context_engaged)) ) {
537
                    /*
537
                    /*
538
                     * Remove t from r.
538
                     * Remove t from r.
539
                     */
539
                     */
540
                    spinlock_unlock(&t->lock);
540
                    spinlock_unlock(&t->lock);
541
                   
541
                   
542
                    atomic_dec(&cpu->nrdy);
542
                    atomic_dec(&cpu->nrdy);
543
                    atomic_dec(&nrdy);
543
                    atomic_dec(&nrdy);
544
 
544
 
545
                    r->n--;
545
                    r->n--;
546
                    list_remove(&t->rq_link);
546
                    list_remove(&t->rq_link);
547
 
547
 
548
                    break;
548
                    break;
549
                }
549
                }
550
                spinlock_unlock(&t->lock);
550
                spinlock_unlock(&t->lock);
551
                l = l->prev;
551
                l = l->prev;
552
                t = NULL;
552
                t = NULL;
553
            }
553
            }
554
            spinlock_unlock(&r->lock);
554
            spinlock_unlock(&r->lock);
555
 
555
 
556
            if (t) {
556
            if (t) {
557
                /*
557
                /*
558
                 * Ready t on local CPU
558
                 * Ready t on local CPU
559
                 */
559
                 */
560
                spinlock_lock(&t->lock);
560
                spinlock_lock(&t->lock);
561
#ifdef KCPULB_VERBOSE
561
#ifdef KCPULB_VERBOSE
562
                printf("kcpulb%d: TID %d -> cpu%d, nrdy=%d, avg=%d\n", CPU->id, t->tid, CPU->id, atomic_get(&CPU->nrdy), atomic_get(&nrdy) / config.cpu_active);
562
                printf("kcpulb%d: TID %d -> cpu%d, nrdy=%d, avg=%d\n", CPU->id, t->tid, CPU->id, atomic_get(&CPU->nrdy), atomic_get(&nrdy) / config.cpu_active);
563
#endif
563
#endif
564
                t->flags |= X_STOLEN;
564
                t->flags |= X_STOLEN;
565
                spinlock_unlock(&t->lock);
565
                spinlock_unlock(&t->lock);
566
   
566
   
567
                thread_ready(t);
567
                thread_ready(t);
568
 
568
 
569
                interrupts_restore(ipl);
569
                interrupts_restore(ipl);
570
   
570
   
571
                if (--count == 0)
571
                if (--count == 0)
572
                    goto satisfied;
572
                    goto satisfied;
573
                   
573
                   
574
                /*
574
                /*
575
                 * We are not satisfied yet, focus on another CPU next time.
575
                 * We are not satisfied yet, focus on another CPU next time.
576
                 */
576
                 */
577
                k++;
577
                k++;
578
               
578
               
579
                continue;
579
                continue;
580
            }
580
            }
581
            interrupts_restore(ipl);
581
            interrupts_restore(ipl);
582
        }
582
        }
583
    }
583
    }
584
 
584
 
585
    if (atomic_get(&CPU->nrdy)) {
585
    if (atomic_get(&CPU->nrdy)) {
586
        /*
586
        /*
587
         * Be a little bit light-weight and let migrated threads run.
587
         * Be a little bit light-weight and let migrated threads run.
588
         */
588
         */
589
        scheduler();
589
        scheduler();
590
    } else {
590
    } else {
591
        /*
591
        /*
592
         * We failed to migrate a single thread.
592
         * We failed to migrate a single thread.
593
         * Give up this turn.
593
         * Give up this turn.
594
         */
594
         */
595
        goto loop;
595
        goto loop;
596
    }
596
    }
597
       
597
       
598
    goto not_satisfied;
598
    goto not_satisfied;
599
 
599
 
600
satisfied:
600
satisfied:
601
    goto loop;
601
    goto loop;
602
}
602
}
603
 
603
 
604
#endif /* CONFIG_SMP */
604
#endif /* CONFIG_SMP */
605
 
605
 
606
 
606
 
607
/** Print information about threads & scheduler queues */
607
/** Print information about threads & scheduler queues */
608
void sched_print_list(void)
608
void sched_print_list(void)
609
{
609
{
610
    ipl_t ipl;
610
    ipl_t ipl;
611
    int cpu,i;
611
    int cpu,i;
612
    runq_t *r;
612
    runq_t *r;
613
    thread_t *t;
613
    thread_t *t;
614
    link_t *cur;
614
    link_t *cur;
615
 
615
 
616
    /* We are going to mess with scheduler structures,
616
    /* We are going to mess with scheduler structures,
617
     * let's not be interrupted */
617
     * let's not be interrupted */
618
    ipl = interrupts_disable();
618
    ipl = interrupts_disable();
619
    for (cpu=0;cpu < config.cpu_count; cpu++) {
619
    for (cpu=0;cpu < config.cpu_count; cpu++) {
620
 
620
 
621
        if (!cpus[cpu].active)
621
        if (!cpus[cpu].active)
622
            continue;
622
            continue;
623
 
623
 
624
        spinlock_lock(&cpus[cpu].lock);
624
        spinlock_lock(&cpus[cpu].lock);
625
        printf("cpu%d: address=%P, nrdy=%d, needs_relink=%d\n",
625
        printf("cpu%d: address=%P, nrdy=%d, needs_relink=%d\n",
626
               cpus[cpu].id, &cpus[cpu], atomic_get(&cpus[cpu].nrdy), cpus[cpu].needs_relink);
626
               cpus[cpu].id, &cpus[cpu], atomic_get(&cpus[cpu].nrdy), cpus[cpu].needs_relink);
627
       
627
       
628
        for (i=0; i<RQ_COUNT; i++) {
628
        for (i=0; i<RQ_COUNT; i++) {
629
            r = &cpus[cpu].rq[i];
629
            r = &cpus[cpu].rq[i];
630
            spinlock_lock(&r->lock);
630
            spinlock_lock(&r->lock);
631
            if (!r->n) {
631
            if (!r->n) {
632
                spinlock_unlock(&r->lock);
632
                spinlock_unlock(&r->lock);
633
                continue;
633
                continue;
634
            }
634
            }
635
            printf("\trq[%d]: ", i);
635
            printf("\trq[%d]: ", i);
636
            for (cur=r->rq_head.next; cur!=&r->rq_head; cur=cur->next) {
636
            for (cur=r->rq_head.next; cur!=&r->rq_head; cur=cur->next) {
637
                t = list_get_instance(cur, thread_t, rq_link);
637
                t = list_get_instance(cur, thread_t, rq_link);
638
                printf("%d(%s) ", t->tid,
638
                printf("%d(%s) ", t->tid,
639
                       thread_states[t->state]);
639
                       thread_states[t->state]);
640
            }
640
            }
641
            printf("\n");
641
            printf("\n");
642
            spinlock_unlock(&r->lock);
642
            spinlock_unlock(&r->lock);
643
        }
643
        }
644
        spinlock_unlock(&cpus[cpu].lock);
644
        spinlock_unlock(&cpus[cpu].lock);
645
    }
645
    }
646
   
646
   
647
    interrupts_restore(ipl);
647
    interrupts_restore(ipl);
648
}
648
}
649
 
649