Subversion Repositories HelenOS-historic

Rev

Rev 1760 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 1760 Rev 1766
1
/*
1
/*
2
 * Copyright (C) 2006 Ondrej Palkovsky
2
 * Copyright (C) 2006 Ondrej Palkovsky
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/** @addtogroup genericmm
29
/** @addtogroup genericmm
30
 * @{
30
 * @{
31
 */
31
 */
32
 
32
 
33
/**
33
/**
34
 * @file
34
 * @file
35
 * @brief   Slab allocator.
35
 * @brief   Slab allocator.
36
 *
36
 *
37
 * The slab allocator is closely modelled after OpenSolaris slab allocator.
37
 * The slab allocator is closely modelled after OpenSolaris slab allocator.
38
 * @see http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/
38
 * @see http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/
39
 *
39
 *
40
 * with the following exceptions:
40
 * with the following exceptions:
41
 * @li empty slabs are deallocated immediately
41
 * @li empty slabs are deallocated immediately
42
 *     (in Linux they are kept in linked list, in Solaris ???)
42
 *     (in Linux they are kept in linked list, in Solaris ???)
43
 * @li empty magazines are deallocated when not needed
43
 * @li empty magazines are deallocated when not needed
44
 *     (in Solaris they are held in linked list in slab cache)
44
 *     (in Solaris they are held in linked list in slab cache)
45
 *
45
 *
46
 * Following features are not currently supported but would be easy to do:
46
 * Following features are not currently supported but would be easy to do:
47
 * @li cache coloring
47
 * @li cache coloring
48
 * @li dynamic magazine growing (different magazine sizes are already
48
 * @li dynamic magazine growing (different magazine sizes are already
49
 *     supported, but we would need to adjust allocation strategy)
49
 *     supported, but we would need to adjust allocation strategy)
50
 *
50
 *
51
 * The slab allocator supports per-CPU caches ('magazines') to facilitate
51
 * The slab allocator supports per-CPU caches ('magazines') to facilitate
52
 * good SMP scaling.
52
 * good SMP scaling.
53
 *
53
 *
54
 * When a new object is being allocated, it is first checked, if it is
54
 * When a new object is being allocated, it is first checked, if it is
55
 * available in a CPU-bound magazine. If it is not found there, it is
55
 * available in a CPU-bound magazine. If it is not found there, it is
56
 * allocated from a CPU-shared slab - if a partially full one is found,
56
 * allocated from a CPU-shared slab - if a partially full one is found,
57
 * it is used, otherwise a new one is allocated.
57
 * it is used, otherwise a new one is allocated.
58
 *
58
 *
59
 * When an object is being deallocated, it is put to a CPU-bound magazine.
59
 * When an object is being deallocated, it is put to a CPU-bound magazine.
60
 * If there is no such magazine, a new one is allocated (if this fails,
60
 * If there is no such magazine, a new one is allocated (if this fails,
61
 * the object is deallocated into slab). If the magazine is full, it is
61
 * the object is deallocated into slab). If the magazine is full, it is
62
 * put into cpu-shared list of magazines and a new one is allocated.
62
 * put into cpu-shared list of magazines and a new one is allocated.
63
 *
63
 *
64
 * The CPU-bound magazine is actually a pair of magazines in order to avoid
64
 * The CPU-bound magazine is actually a pair of magazines in order to avoid
65
 * thrashing when somebody is allocating/deallocating 1 item at the magazine
65
 * thrashing when somebody is allocating/deallocating 1 item at the magazine
66
 * size boundary. LIFO order is enforced, which should avoid fragmentation
66
 * size boundary. LIFO order is enforced, which should avoid fragmentation
67
 * as much as possible.
67
 * as much as possible.
68
 *  
68
 *  
69
 * Every cache contains list of full slabs and list of partially full slabs.
69
 * Every cache contains list of full slabs and list of partially full slabs.
70
 * Empty slabs are immediately freed (thrashing will be avoided because
70
 * Empty slabs are immediately freed (thrashing will be avoided because
71
 * of magazines).
71
 * of magazines).
72
 *
72
 *
73
 * The slab information structure is kept inside the data area, if possible.
73
 * The slab information structure is kept inside the data area, if possible.
74
 * The cache can be marked that it should not use magazines. This is used
74
 * The cache can be marked that it should not use magazines. This is used
75
 * only for slab related caches to avoid deadlocks and infinite recursion
75
 * only for slab related caches to avoid deadlocks and infinite recursion
76
 * (the slab allocator uses itself for allocating all it's control structures).
76
 * (the slab allocator uses itself for allocating all it's control structures).
77
 *
77
 *
78
 * The slab allocator allocates a lot of space and does not free it. When
78
 * The slab allocator allocates a lot of space and does not free it. When
79
 * the frame allocator fails to allocate a frame, it calls slab_reclaim().
79
 * the frame allocator fails to allocate a frame, it calls slab_reclaim().
80
 * It tries 'light reclaim' first, then brutal reclaim. The light reclaim
80
 * It tries 'light reclaim' first, then brutal reclaim. The light reclaim
81
 * releases slabs from cpu-shared magazine-list, until at least 1 slab
81
 * releases slabs from cpu-shared magazine-list, until at least 1 slab
82
 * is deallocated in each cache (this algorithm should probably change).
82
 * is deallocated in each cache (this algorithm should probably change).
83
 * The brutal reclaim removes all cached objects, even from CPU-bound
83
 * The brutal reclaim removes all cached objects, even from CPU-bound
84
 * magazines.
84
 * magazines.
85
 *
85
 *
86
 * @todo
86
 * @todo
87
 * For better CPU-scaling the magazine allocation strategy should
87
 * For better CPU-scaling the magazine allocation strategy should
88
 * be extended. Currently, if the cache does not have magazine, it asks
88
 * be extended. Currently, if the cache does not have magazine, it asks
89
 * for non-cpu cached magazine cache to provide one. It might be feasible
89
 * for non-cpu cached magazine cache to provide one. It might be feasible
90
 * to add cpu-cached magazine cache (which would allocate it's magazines
90
 * to add cpu-cached magazine cache (which would allocate it's magazines
91
 * from non-cpu-cached mag. cache). This would provide a nice per-cpu
91
 * from non-cpu-cached mag. cache). This would provide a nice per-cpu
92
 * buffer. The other possibility is to use the per-cache
92
 * buffer. The other possibility is to use the per-cache
93
 * 'empty-magazine-list', which decreases competing for 1 per-system
93
 * 'empty-magazine-list', which decreases competing for 1 per-system
94
 * magazine cache.
94
 * magazine cache.
95
 *
95
 *
96
 * @todo
96
 * @todo
97
 * it might be good to add granularity of locks even to slab level,
97
 * it might be good to add granularity of locks even to slab level,
98
 * we could then try_spinlock over all partial slabs and thus improve
98
 * we could then try_spinlock over all partial slabs and thus improve
99
 * scalability even on slab level
99
 * scalability even on slab level
100
 */
100
 */
101
 
101
 
102
#include <synch/spinlock.h>
102
#include <synch/spinlock.h>
103
#include <mm/slab.h>
103
#include <mm/slab.h>
104
#include <adt/list.h>
104
#include <adt/list.h>
105
#include <memstr.h>
105
#include <memstr.h>
106
#include <align.h>
106
#include <align.h>
107
#include <mm/frame.h>
107
#include <mm/frame.h>
108
#include <config.h>
108
#include <config.h>
109
#include <print.h>
109
#include <print.h>
110
#include <arch.h>
110
#include <arch.h>
111
#include <panic.h>
111
#include <panic.h>
112
#include <debug.h>
112
#include <debug.h>
113
#include <bitops.h>
113
#include <bitops.h>
114
 
114
 
115
SPINLOCK_INITIALIZE(slab_cache_lock);
115
SPINLOCK_INITIALIZE(slab_cache_lock);
116
static LIST_INITIALIZE(slab_cache_list);
116
static LIST_INITIALIZE(slab_cache_list);
117
 
117
 
118
/** Magazine cache */
118
/** Magazine cache */
119
static slab_cache_t mag_cache;
119
static slab_cache_t mag_cache;
120
/** Cache for cache descriptors */
120
/** Cache for cache descriptors */
121
static slab_cache_t slab_cache_cache;
121
static slab_cache_t slab_cache_cache;
122
/** Cache for external slab descriptors
122
/** Cache for external slab descriptors
123
 * This time we want per-cpu cache, so do not make it static
123
 * This time we want per-cpu cache, so do not make it static
124
 * - using slab for internal slab structures will not deadlock,
124
 * - using slab for internal slab structures will not deadlock,
125
 *   as all slab structures are 'small' - control structures of
125
 *   as all slab structures are 'small' - control structures of
126
 *   their caches do not require further allocation
126
 *   their caches do not require further allocation
127
 */
127
 */
128
static slab_cache_t *slab_extern_cache;
128
static slab_cache_t *slab_extern_cache;
129
/** Caches for malloc */
129
/** Caches for malloc */
130
static slab_cache_t *malloc_caches[SLAB_MAX_MALLOC_W-SLAB_MIN_MALLOC_W+1];
130
static slab_cache_t *malloc_caches[SLAB_MAX_MALLOC_W-SLAB_MIN_MALLOC_W+1];
131
char *malloc_names[] =  {
131
char *malloc_names[] =  {
132
    "malloc-16","malloc-32","malloc-64","malloc-128",
132
    "malloc-16","malloc-32","malloc-64","malloc-128",
133
    "malloc-256","malloc-512","malloc-1K","malloc-2K",
133
    "malloc-256","malloc-512","malloc-1K","malloc-2K",
134
    "malloc-4K","malloc-8K","malloc-16K","malloc-32K",
134
    "malloc-4K","malloc-8K","malloc-16K","malloc-32K",
135
    "malloc-64K","malloc-128K","malloc-256K"
135
    "malloc-64K","malloc-128K","malloc-256K"
136
};
136
};
137
 
137
 
138
/** Slab descriptor */
138
/** Slab descriptor */
139
typedef struct {
139
typedef struct {
140
    slab_cache_t *cache; /**< Pointer to parent cache */
140
    slab_cache_t *cache; /**< Pointer to parent cache */
141
    link_t link;       /* List of full/partial slabs */
141
    link_t link;       /* List of full/partial slabs */
142
    void *start;       /**< Start address of first available item */
142
    void *start;       /**< Start address of first available item */
143
    count_t available; /**< Count of available items in this slab */
143
    count_t available; /**< Count of available items in this slab */
144
    index_t nextavail; /**< The index of next available item */
144
    index_t nextavail; /**< The index of next available item */
145
}slab_t;
145
}slab_t;
146
 
146
 
147
#ifdef CONFIG_DEBUG
147
#ifdef CONFIG_DEBUG
148
static int _slab_initialized = 0;
148
static int _slab_initialized = 0;
149
#endif
149
#endif
150
 
150
 
151
/**************************************/
151
/**************************************/
152
/* Slab allocation functions          */
152
/* Slab allocation functions          */
153
 
153
 
154
/**
154
/**
155
 * Allocate frames for slab space and initialize
155
 * Allocate frames for slab space and initialize
156
 *
156
 *
157
 */
157
 */
158
static slab_t * slab_space_alloc(slab_cache_t *cache, int flags)
158
static slab_t * slab_space_alloc(slab_cache_t *cache, int flags)
159
{
159
{
160
    void *data;
160
    void *data;
161
    slab_t *slab;
161
    slab_t *slab;
162
    size_t fsize;
162
    size_t fsize;
163
    int i;
163
    int i;
164
    int status;
-
 
165
    int zone=0;
164
    int zone=0;
166
   
165
   
167
    data = frame_alloc_rc_zone(cache->order, FRAME_KA | flags, &status, &zone);
166
    data = frame_alloc_generic(cache->order, FRAME_KA | flags, &zone);
168
    if (status != FRAME_OK) {
167
    if (!data) {
169
        return NULL;
168
        return NULL;
170
    }
169
    }
171
    if (! (cache->flags & SLAB_CACHE_SLINSIDE)) {
170
    if (! (cache->flags & SLAB_CACHE_SLINSIDE)) {
172
        slab = slab_alloc(slab_extern_cache, flags);
171
        slab = slab_alloc(slab_extern_cache, flags);
173
        if (!slab) {
172
        if (!slab) {
174
            frame_free(KA2PA(data));
173
            frame_free(KA2PA(data));
175
            return NULL;
174
            return NULL;
176
        }
175
        }
177
    } else {
176
    } else {
178
        fsize = (PAGE_SIZE << cache->order);
177
        fsize = (PAGE_SIZE << cache->order);
179
        slab = data + fsize - sizeof(*slab);
178
        slab = data + fsize - sizeof(*slab);
180
    }
179
    }
181
   
180
   
182
    /* Fill in slab structures */
181
    /* Fill in slab structures */
183
    for (i=0; i < (1 << cache->order); i++)
182
    for (i=0; i < (1 << cache->order); i++)
184
        frame_set_parent(ADDR2PFN(KA2PA(data))+i, slab, zone);
183
        frame_set_parent(ADDR2PFN(KA2PA(data))+i, slab, zone);
185
 
184
 
186
    slab->start = data;
185
    slab->start = data;
187
    slab->available = cache->objects;
186
    slab->available = cache->objects;
188
    slab->nextavail = 0;
187
    slab->nextavail = 0;
189
    slab->cache = cache;
188
    slab->cache = cache;
190
 
189
 
191
    for (i=0; i<cache->objects;i++)
190
    for (i=0; i<cache->objects;i++)
192
        *((int *) (slab->start + i*cache->size)) = i+1;
191
        *((int *) (slab->start + i*cache->size)) = i+1;
193
 
192
 
194
    atomic_inc(&cache->allocated_slabs);
193
    atomic_inc(&cache->allocated_slabs);
195
    return slab;
194
    return slab;
196
}
195
}
197
 
196
 
198
/**
197
/**
199
 * Deallocate space associated with slab
198
 * Deallocate space associated with slab
200
 *
199
 *
201
 * @return number of freed frames
200
 * @return number of freed frames
202
 */
201
 */
203
static count_t slab_space_free(slab_cache_t *cache, slab_t *slab)
202
static count_t slab_space_free(slab_cache_t *cache, slab_t *slab)
204
{
203
{
205
    frame_free(KA2PA(slab->start));
204
    frame_free(KA2PA(slab->start));
206
    if (! (cache->flags & SLAB_CACHE_SLINSIDE))
205
    if (! (cache->flags & SLAB_CACHE_SLINSIDE))
207
        slab_free(slab_extern_cache, slab);
206
        slab_free(slab_extern_cache, slab);
208
 
207
 
209
    atomic_dec(&cache->allocated_slabs);
208
    atomic_dec(&cache->allocated_slabs);
210
   
209
   
211
    return 1 << cache->order;
210
    return 1 << cache->order;
212
}
211
}
213
 
212
 
214
/** Map object to slab structure */
213
/** Map object to slab structure */
215
static slab_t * obj2slab(void *obj)
214
static slab_t * obj2slab(void *obj)
216
{
215
{
217
    return (slab_t *)frame_get_parent(ADDR2PFN(KA2PA(obj)), 0);
216
    return (slab_t *)frame_get_parent(ADDR2PFN(KA2PA(obj)), 0);
218
}
217
}
219
 
218
 
220
/**************************************/
219
/**************************************/
221
/* Slab functions */
220
/* Slab functions */
222
 
221
 
223
 
222
 
224
/**
223
/**
225
 * Return object to slab and call a destructor
224
 * Return object to slab and call a destructor
226
 *
225
 *
227
 * @param slab If the caller knows directly slab of the object, otherwise NULL
226
 * @param slab If the caller knows directly slab of the object, otherwise NULL
228
 *
227
 *
229
 * @return Number of freed pages
228
 * @return Number of freed pages
230
 */
229
 */
231
static count_t slab_obj_destroy(slab_cache_t *cache, void *obj,
230
static count_t slab_obj_destroy(slab_cache_t *cache, void *obj,
232
                slab_t *slab)
231
                slab_t *slab)
233
{
232
{
234
    int freed = 0;
233
    int freed = 0;
235
 
234
 
236
    if (!slab)
235
    if (!slab)
237
        slab = obj2slab(obj);
236
        slab = obj2slab(obj);
238
 
237
 
239
    ASSERT(slab->cache == cache);
238
    ASSERT(slab->cache == cache);
240
 
239
 
241
    if (cache->destructor)
240
    if (cache->destructor)
242
        freed = cache->destructor(obj);
241
        freed = cache->destructor(obj);
243
   
242
   
244
    spinlock_lock(&cache->slablock);
243
    spinlock_lock(&cache->slablock);
245
    ASSERT(slab->available < cache->objects);
244
    ASSERT(slab->available < cache->objects);
246
 
245
 
247
    *((int *)obj) = slab->nextavail;
246
    *((int *)obj) = slab->nextavail;
248
    slab->nextavail = (obj - slab->start)/cache->size;
247
    slab->nextavail = (obj - slab->start)/cache->size;
249
    slab->available++;
248
    slab->available++;
250
 
249
 
251
    /* Move it to correct list */
250
    /* Move it to correct list */
252
    if (slab->available == cache->objects) {
251
    if (slab->available == cache->objects) {
253
        /* Free associated memory */
252
        /* Free associated memory */
254
        list_remove(&slab->link);
253
        list_remove(&slab->link);
255
        spinlock_unlock(&cache->slablock);
254
        spinlock_unlock(&cache->slablock);
256
 
255
 
257
        return freed + slab_space_free(cache, slab);
256
        return freed + slab_space_free(cache, slab);
258
 
257
 
259
    } else if (slab->available == 1) {
258
    } else if (slab->available == 1) {
260
        /* It was in full, move to partial */
259
        /* It was in full, move to partial */
261
        list_remove(&slab->link);
260
        list_remove(&slab->link);
262
        list_prepend(&slab->link, &cache->partial_slabs);
261
        list_prepend(&slab->link, &cache->partial_slabs);
263
    }
262
    }
264
    spinlock_unlock(&cache->slablock);
263
    spinlock_unlock(&cache->slablock);
265
    return freed;
264
    return freed;
266
}
265
}
267
 
266
 
268
/**
267
/**
269
 * Take new object from slab or create new if needed
268
 * Take new object from slab or create new if needed
270
 *
269
 *
271
 * @return Object address or null
270
 * @return Object address or null
272
 */
271
 */
273
static void * slab_obj_create(slab_cache_t *cache, int flags)
272
static void * slab_obj_create(slab_cache_t *cache, int flags)
274
{
273
{
275
    slab_t *slab;
274
    slab_t *slab;
276
    void *obj;
275
    void *obj;
277
 
276
 
278
    spinlock_lock(&cache->slablock);
277
    spinlock_lock(&cache->slablock);
279
 
278
 
280
    if (list_empty(&cache->partial_slabs)) {
279
    if (list_empty(&cache->partial_slabs)) {
281
        /* Allow recursion and reclaiming
280
        /* Allow recursion and reclaiming
282
         * - this should work, as the slab control structures
281
         * - this should work, as the slab control structures
283
         *   are small and do not need to allocate with anything
282
         *   are small and do not need to allocate with anything
284
         *   other than frame_alloc when they are allocating,
283
         *   other than frame_alloc when they are allocating,
285
         *   that's why we should get recursion at most 1-level deep
284
         *   that's why we should get recursion at most 1-level deep
286
         */
285
         */
287
        spinlock_unlock(&cache->slablock);
286
        spinlock_unlock(&cache->slablock);
288
        slab = slab_space_alloc(cache, flags);
287
        slab = slab_space_alloc(cache, flags);
289
        if (!slab)
288
        if (!slab)
290
            return NULL;
289
            return NULL;
291
        spinlock_lock(&cache->slablock);
290
        spinlock_lock(&cache->slablock);
292
    } else {
291
    } else {
293
        slab = list_get_instance(cache->partial_slabs.next,
292
        slab = list_get_instance(cache->partial_slabs.next,
294
                     slab_t,
293
                     slab_t,
295
                     link);
294
                     link);
296
        list_remove(&slab->link);
295
        list_remove(&slab->link);
297
    }
296
    }
298
    obj = slab->start + slab->nextavail * cache->size;
297
    obj = slab->start + slab->nextavail * cache->size;
299
    slab->nextavail = *((int *)obj);
298
    slab->nextavail = *((int *)obj);
300
    slab->available--;
299
    slab->available--;
301
 
300
 
302
    if (! slab->available)
301
    if (! slab->available)
303
        list_prepend(&slab->link, &cache->full_slabs);
302
        list_prepend(&slab->link, &cache->full_slabs);
304
    else
303
    else
305
        list_prepend(&slab->link, &cache->partial_slabs);
304
        list_prepend(&slab->link, &cache->partial_slabs);
306
 
305
 
307
    spinlock_unlock(&cache->slablock);
306
    spinlock_unlock(&cache->slablock);
308
 
307
 
309
    if (cache->constructor && cache->constructor(obj, flags)) {
308
    if (cache->constructor && cache->constructor(obj, flags)) {
310
        /* Bad, bad, construction failed */
309
        /* Bad, bad, construction failed */
311
        slab_obj_destroy(cache, obj, slab);
310
        slab_obj_destroy(cache, obj, slab);
312
        return NULL;
311
        return NULL;
313
    }
312
    }
314
    return obj;
313
    return obj;
315
}
314
}
316
 
315
 
317
/**************************************/
316
/**************************************/
318
/* CPU-Cache slab functions */
317
/* CPU-Cache slab functions */
319
 
318
 
320
/**
319
/**
321
 * Finds a full magazine in cache, takes it from list
320
 * Finds a full magazine in cache, takes it from list
322
 * and returns it
321
 * and returns it
323
 *
322
 *
324
 * @param first If true, return first, else last mag
323
 * @param first If true, return first, else last mag
325
 */
324
 */
326
static slab_magazine_t * get_mag_from_cache(slab_cache_t *cache,
325
static slab_magazine_t * get_mag_from_cache(slab_cache_t *cache,
327
                        int first)
326
                        int first)
328
{
327
{
329
    slab_magazine_t *mag = NULL;
328
    slab_magazine_t *mag = NULL;
330
    link_t *cur;
329
    link_t *cur;
331
 
330
 
332
    spinlock_lock(&cache->maglock);
331
    spinlock_lock(&cache->maglock);
333
    if (!list_empty(&cache->magazines)) {
332
    if (!list_empty(&cache->magazines)) {
334
        if (first)
333
        if (first)
335
            cur = cache->magazines.next;
334
            cur = cache->magazines.next;
336
        else
335
        else
337
            cur = cache->magazines.prev;
336
            cur = cache->magazines.prev;
338
        mag = list_get_instance(cur, slab_magazine_t, link);
337
        mag = list_get_instance(cur, slab_magazine_t, link);
339
        list_remove(&mag->link);
338
        list_remove(&mag->link);
340
        atomic_dec(&cache->magazine_counter);
339
        atomic_dec(&cache->magazine_counter);
341
    }
340
    }
342
    spinlock_unlock(&cache->maglock);
341
    spinlock_unlock(&cache->maglock);
343
    return mag;
342
    return mag;
344
}
343
}
345
 
344
 
346
/** Prepend magazine to magazine list in cache */
345
/** Prepend magazine to magazine list in cache */
347
static void put_mag_to_cache(slab_cache_t *cache, slab_magazine_t *mag)
346
static void put_mag_to_cache(slab_cache_t *cache, slab_magazine_t *mag)
348
{
347
{
349
    spinlock_lock(&cache->maglock);
348
    spinlock_lock(&cache->maglock);
350
 
349
 
351
    list_prepend(&mag->link, &cache->magazines);
350
    list_prepend(&mag->link, &cache->magazines);
352
    atomic_inc(&cache->magazine_counter);
351
    atomic_inc(&cache->magazine_counter);
353
   
352
   
354
    spinlock_unlock(&cache->maglock);
353
    spinlock_unlock(&cache->maglock);
355
}
354
}
356
 
355
 
357
/**
356
/**
358
 * Free all objects in magazine and free memory associated with magazine
357
 * Free all objects in magazine and free memory associated with magazine
359
 *
358
 *
360
 * @return Number of freed pages
359
 * @return Number of freed pages
361
 */
360
 */
362
static count_t magazine_destroy(slab_cache_t *cache,
361
static count_t magazine_destroy(slab_cache_t *cache,
363
                slab_magazine_t *mag)
362
                slab_magazine_t *mag)
364
{
363
{
365
    int i;
364
    int i;
366
    count_t frames = 0;
365
    count_t frames = 0;
367
 
366
 
368
    for (i=0;i < mag->busy; i++) {
367
    for (i=0;i < mag->busy; i++) {
369
        frames += slab_obj_destroy(cache, mag->objs[i], NULL);
368
        frames += slab_obj_destroy(cache, mag->objs[i], NULL);
370
        atomic_dec(&cache->cached_objs);
369
        atomic_dec(&cache->cached_objs);
371
    }
370
    }
372
   
371
   
373
    slab_free(&mag_cache, mag);
372
    slab_free(&mag_cache, mag);
374
 
373
 
375
    return frames;
374
    return frames;
376
}
375
}
377
 
376
 
378
/**
377
/**
379
 * Find full magazine, set it as current and return it
378
 * Find full magazine, set it as current and return it
380
 *
379
 *
381
 * Assume cpu_magazine lock is held
380
 * Assume cpu_magazine lock is held
382
 */
381
 */
383
static slab_magazine_t * get_full_current_mag(slab_cache_t *cache)
382
static slab_magazine_t * get_full_current_mag(slab_cache_t *cache)
384
{
383
{
385
    slab_magazine_t *cmag, *lastmag, *newmag;
384
    slab_magazine_t *cmag, *lastmag, *newmag;
386
 
385
 
387
    cmag = cache->mag_cache[CPU->id].current;
386
    cmag = cache->mag_cache[CPU->id].current;
388
    lastmag = cache->mag_cache[CPU->id].last;
387
    lastmag = cache->mag_cache[CPU->id].last;
389
    if (cmag) { /* First try local CPU magazines */
388
    if (cmag) { /* First try local CPU magazines */
390
        if (cmag->busy)
389
        if (cmag->busy)
391
            return cmag;
390
            return cmag;
392
 
391
 
393
        if (lastmag && lastmag->busy) {
392
        if (lastmag && lastmag->busy) {
394
            cache->mag_cache[CPU->id].current = lastmag;
393
            cache->mag_cache[CPU->id].current = lastmag;
395
            cache->mag_cache[CPU->id].last = cmag;
394
            cache->mag_cache[CPU->id].last = cmag;
396
            return lastmag;
395
            return lastmag;
397
        }
396
        }
398
    }
397
    }
399
    /* Local magazines are empty, import one from magazine list */
398
    /* Local magazines are empty, import one from magazine list */
400
    newmag = get_mag_from_cache(cache, 1);
399
    newmag = get_mag_from_cache(cache, 1);
401
    if (!newmag)
400
    if (!newmag)
402
        return NULL;
401
        return NULL;
403
 
402
 
404
    if (lastmag)
403
    if (lastmag)
405
        magazine_destroy(cache, lastmag);
404
        magazine_destroy(cache, lastmag);
406
 
405
 
407
    cache->mag_cache[CPU->id].last = cmag;
406
    cache->mag_cache[CPU->id].last = cmag;
408
    cache->mag_cache[CPU->id].current = newmag;
407
    cache->mag_cache[CPU->id].current = newmag;
409
    return newmag;
408
    return newmag;
410
}
409
}
411
 
410
 
412
/**
411
/**
413
 * Try to find object in CPU-cache magazines
412
 * Try to find object in CPU-cache magazines
414
 *
413
 *
415
 * @return Pointer to object or NULL if not available
414
 * @return Pointer to object or NULL if not available
416
 */
415
 */
417
static void * magazine_obj_get(slab_cache_t *cache)
416
static void * magazine_obj_get(slab_cache_t *cache)
418
{
417
{
419
    slab_magazine_t *mag;
418
    slab_magazine_t *mag;
420
    void *obj;
419
    void *obj;
421
 
420
 
422
    if (!CPU)
421
    if (!CPU)
423
        return NULL;
422
        return NULL;
424
 
423
 
425
    spinlock_lock(&cache->mag_cache[CPU->id].lock);
424
    spinlock_lock(&cache->mag_cache[CPU->id].lock);
426
 
425
 
427
    mag = get_full_current_mag(cache);
426
    mag = get_full_current_mag(cache);
428
    if (!mag) {
427
    if (!mag) {
429
        spinlock_unlock(&cache->mag_cache[CPU->id].lock);
428
        spinlock_unlock(&cache->mag_cache[CPU->id].lock);
430
        return NULL;
429
        return NULL;
431
    }
430
    }
432
    obj = mag->objs[--mag->busy];
431
    obj = mag->objs[--mag->busy];
433
    spinlock_unlock(&cache->mag_cache[CPU->id].lock);
432
    spinlock_unlock(&cache->mag_cache[CPU->id].lock);
434
    atomic_dec(&cache->cached_objs);
433
    atomic_dec(&cache->cached_objs);
435
   
434
   
436
    return obj;
435
    return obj;
437
}
436
}
438
 
437
 
439
/**
438
/**
440
 * Assure that the current magazine is empty, return pointer to it, or NULL if
439
 * Assure that the current magazine is empty, return pointer to it, or NULL if
441
 * no empty magazine is available and cannot be allocated
440
 * no empty magazine is available and cannot be allocated
442
 *
441
 *
443
 * Assume mag_cache[CPU->id].lock is held
442
 * Assume mag_cache[CPU->id].lock is held
444
 *
443
 *
445
 * We have 2 magazines bound to processor.
444
 * We have 2 magazines bound to processor.
446
 * First try the current.
445
 * First try the current.
447
 *  If full, try the last.
446
 *  If full, try the last.
448
 *   If full, put to magazines list.
447
 *   If full, put to magazines list.
449
 *   allocate new, exchange last & current
448
 *   allocate new, exchange last & current
450
 *
449
 *
451
 */
450
 */
452
static slab_magazine_t * make_empty_current_mag(slab_cache_t *cache)
451
static slab_magazine_t * make_empty_current_mag(slab_cache_t *cache)
453
{
452
{
454
    slab_magazine_t *cmag,*lastmag,*newmag;
453
    slab_magazine_t *cmag,*lastmag,*newmag;
455
 
454
 
456
    cmag = cache->mag_cache[CPU->id].current;
455
    cmag = cache->mag_cache[CPU->id].current;
457
    lastmag = cache->mag_cache[CPU->id].last;
456
    lastmag = cache->mag_cache[CPU->id].last;
458
 
457
 
459
    if (cmag) {
458
    if (cmag) {
460
        if (cmag->busy < cmag->size)
459
        if (cmag->busy < cmag->size)
461
            return cmag;
460
            return cmag;
462
        if (lastmag && lastmag->busy < lastmag->size) {
461
        if (lastmag && lastmag->busy < lastmag->size) {
463
            cache->mag_cache[CPU->id].last = cmag;
462
            cache->mag_cache[CPU->id].last = cmag;
464
            cache->mag_cache[CPU->id].current = lastmag;
463
            cache->mag_cache[CPU->id].current = lastmag;
465
            return lastmag;
464
            return lastmag;
466
        }
465
        }
467
    }
466
    }
468
    /* current | last are full | nonexistent, allocate new */
467
    /* current | last are full | nonexistent, allocate new */
469
    /* We do not want to sleep just because of caching */
468
    /* We do not want to sleep just because of caching */
470
    /* Especially we do not want reclaiming to start, as
469
    /* Especially we do not want reclaiming to start, as
471
     * this would deadlock */
470
     * this would deadlock */
472
    newmag = slab_alloc(&mag_cache, FRAME_ATOMIC | FRAME_NO_RECLAIM);
471
    newmag = slab_alloc(&mag_cache, FRAME_ATOMIC | FRAME_NO_RECLAIM);
473
    if (!newmag)
472
    if (!newmag)
474
        return NULL;
473
        return NULL;
475
    newmag->size = SLAB_MAG_SIZE;
474
    newmag->size = SLAB_MAG_SIZE;
476
    newmag->busy = 0;
475
    newmag->busy = 0;
477
 
476
 
478
    /* Flush last to magazine list */
477
    /* Flush last to magazine list */
479
    if (lastmag)
478
    if (lastmag)
480
        put_mag_to_cache(cache, lastmag);
479
        put_mag_to_cache(cache, lastmag);
481
 
480
 
482
    /* Move current as last, save new as current */
481
    /* Move current as last, save new as current */
483
    cache->mag_cache[CPU->id].last = cmag; 
482
    cache->mag_cache[CPU->id].last = cmag; 
484
    cache->mag_cache[CPU->id].current = newmag;
483
    cache->mag_cache[CPU->id].current = newmag;
485
 
484
 
486
    return newmag;
485
    return newmag;
487
}
486
}
488
 
487
 
489
/**
488
/**
490
 * Put object into CPU-cache magazine
489
 * Put object into CPU-cache magazine
491
 *
490
 *
492
 * @return 0 - success, -1 - could not get memory
491
 * @return 0 - success, -1 - could not get memory
493
 */
492
 */
494
static int magazine_obj_put(slab_cache_t *cache, void *obj)
493
static int magazine_obj_put(slab_cache_t *cache, void *obj)
495
{
494
{
496
    slab_magazine_t *mag;
495
    slab_magazine_t *mag;
497
 
496
 
498
    if (!CPU)
497
    if (!CPU)
499
        return -1;
498
        return -1;
500
 
499
 
501
    spinlock_lock(&cache->mag_cache[CPU->id].lock);
500
    spinlock_lock(&cache->mag_cache[CPU->id].lock);
502
 
501
 
503
    mag = make_empty_current_mag(cache);
502
    mag = make_empty_current_mag(cache);
504
    if (!mag) {
503
    if (!mag) {
505
        spinlock_unlock(&cache->mag_cache[CPU->id].lock);
504
        spinlock_unlock(&cache->mag_cache[CPU->id].lock);
506
        return -1;
505
        return -1;
507
    }
506
    }
508
   
507
   
509
    mag->objs[mag->busy++] = obj;
508
    mag->objs[mag->busy++] = obj;
510
 
509
 
511
    spinlock_unlock(&cache->mag_cache[CPU->id].lock);
510
    spinlock_unlock(&cache->mag_cache[CPU->id].lock);
512
    atomic_inc(&cache->cached_objs);
511
    atomic_inc(&cache->cached_objs);
513
    return 0;
512
    return 0;
514
}
513
}
515
 
514
 
516
 
515
 
517
/**************************************/
516
/**************************************/
518
/* Slab cache functions */
517
/* Slab cache functions */
519
 
518
 
520
/** Return number of objects that fit in certain cache size */
519
/** Return number of objects that fit in certain cache size */
521
static int comp_objects(slab_cache_t *cache)
520
static int comp_objects(slab_cache_t *cache)
522
{
521
{
523
    if (cache->flags & SLAB_CACHE_SLINSIDE)
522
    if (cache->flags & SLAB_CACHE_SLINSIDE)
524
        return ((PAGE_SIZE << cache->order) - sizeof(slab_t)) / cache->size;
523
        return ((PAGE_SIZE << cache->order) - sizeof(slab_t)) / cache->size;
525
    else
524
    else
526
        return (PAGE_SIZE << cache->order) / cache->size;
525
        return (PAGE_SIZE << cache->order) / cache->size;
527
}
526
}
528
 
527
 
529
/** Return wasted space in slab */
528
/** Return wasted space in slab */
530
static int badness(slab_cache_t *cache)
529
static int badness(slab_cache_t *cache)
531
{
530
{
532
    int objects;
531
    int objects;
533
    int ssize;
532
    int ssize;
534
 
533
 
535
    objects = comp_objects(cache);
534
    objects = comp_objects(cache);
536
    ssize = PAGE_SIZE << cache->order;
535
    ssize = PAGE_SIZE << cache->order;
537
    if (cache->flags & SLAB_CACHE_SLINSIDE)
536
    if (cache->flags & SLAB_CACHE_SLINSIDE)
538
        ssize -= sizeof(slab_t);
537
        ssize -= sizeof(slab_t);
539
    return ssize - objects*cache->size;
538
    return ssize - objects*cache->size;
540
}
539
}
541
 
540
 
542
/**
541
/**
543
 * Initialize mag_cache structure in slab cache
542
 * Initialize mag_cache structure in slab cache
544
 */
543
 */
545
static void make_magcache(slab_cache_t *cache)
544
static void make_magcache(slab_cache_t *cache)
546
{
545
{
547
    int i;
546
    int i;
548
   
547
   
549
    ASSERT(_slab_initialized >= 2);
548
    ASSERT(_slab_initialized >= 2);
550
 
549
 
551
    cache->mag_cache = malloc(sizeof(slab_mag_cache_t)*config.cpu_count,0);
550
    cache->mag_cache = malloc(sizeof(slab_mag_cache_t)*config.cpu_count,0);
552
    for (i=0; i < config.cpu_count; i++) {
551
    for (i=0; i < config.cpu_count; i++) {
553
        memsetb((__address)&cache->mag_cache[i],
552
        memsetb((__address)&cache->mag_cache[i],
554
            sizeof(cache->mag_cache[i]), 0);
553
            sizeof(cache->mag_cache[i]), 0);
555
        spinlock_initialize(&cache->mag_cache[i].lock,
554
        spinlock_initialize(&cache->mag_cache[i].lock,
556
                    "slab_maglock_cpu");
555
                    "slab_maglock_cpu");
557
    }
556
    }
558
}
557
}
559
 
558
 
560
/** Initialize allocated memory as a slab cache */
559
/** Initialize allocated memory as a slab cache */
561
static void
560
static void
562
_slab_cache_create(slab_cache_t *cache,
561
_slab_cache_create(slab_cache_t *cache,
563
           char *name,
562
           char *name,
564
           size_t size,
563
           size_t size,
565
           size_t align,
564
           size_t align,
566
           int (*constructor)(void *obj, int kmflag),
565
           int (*constructor)(void *obj, int kmflag),
567
           int (*destructor)(void *obj),
566
           int (*destructor)(void *obj),
568
           int flags)
567
           int flags)
569
{
568
{
570
    int pages;
569
    int pages;
571
    ipl_t ipl;
570
    ipl_t ipl;
572
 
571
 
573
    memsetb((__address)cache, sizeof(*cache), 0);
572
    memsetb((__address)cache, sizeof(*cache), 0);
574
    cache->name = name;
573
    cache->name = name;
575
 
574
 
576
    if (align < sizeof(__native))
575
    if (align < sizeof(__native))
577
        align = sizeof(__native);
576
        align = sizeof(__native);
578
    size = ALIGN_UP(size, align);
577
    size = ALIGN_UP(size, align);
579
       
578
       
580
    cache->size = size;
579
    cache->size = size;
581
 
580
 
582
    cache->constructor = constructor;
581
    cache->constructor = constructor;
583
    cache->destructor = destructor;
582
    cache->destructor = destructor;
584
    cache->flags = flags;
583
    cache->flags = flags;
585
 
584
 
586
    list_initialize(&cache->full_slabs);
585
    list_initialize(&cache->full_slabs);
587
    list_initialize(&cache->partial_slabs);
586
    list_initialize(&cache->partial_slabs);
588
    list_initialize(&cache->magazines);
587
    list_initialize(&cache->magazines);
589
    spinlock_initialize(&cache->slablock, "slab_lock");
588
    spinlock_initialize(&cache->slablock, "slab_lock");
590
    spinlock_initialize(&cache->maglock, "slab_maglock");
589
    spinlock_initialize(&cache->maglock, "slab_maglock");
591
    if (! (cache->flags & SLAB_CACHE_NOMAGAZINE))
590
    if (! (cache->flags & SLAB_CACHE_NOMAGAZINE))
592
        make_magcache(cache);
591
        make_magcache(cache);
593
 
592
 
594
    /* Compute slab sizes, object counts in slabs etc. */
593
    /* Compute slab sizes, object counts in slabs etc. */
595
    if (cache->size < SLAB_INSIDE_SIZE)
594
    if (cache->size < SLAB_INSIDE_SIZE)
596
        cache->flags |= SLAB_CACHE_SLINSIDE;
595
        cache->flags |= SLAB_CACHE_SLINSIDE;
597
 
596
 
598
    /* Minimum slab order */
597
    /* Minimum slab order */
599
    pages = SIZE2FRAMES(cache->size);
598
    pages = SIZE2FRAMES(cache->size);
600
    /* We need the 2^order >= pages */
599
    /* We need the 2^order >= pages */
601
    if (pages == 1)
600
    if (pages == 1)
602
        cache->order = 0;
601
        cache->order = 0;
603
    else
602
    else
604
        cache->order = fnzb(pages-1)+1;
603
        cache->order = fnzb(pages-1)+1;
605
 
604
 
606
    while (badness(cache) > SLAB_MAX_BADNESS(cache)) {
605
    while (badness(cache) > SLAB_MAX_BADNESS(cache)) {
607
        cache->order += 1;
606
        cache->order += 1;
608
    }
607
    }
609
    cache->objects = comp_objects(cache);
608
    cache->objects = comp_objects(cache);
610
    /* If info fits in, put it inside */
609
    /* If info fits in, put it inside */
611
    if (badness(cache) > sizeof(slab_t))
610
    if (badness(cache) > sizeof(slab_t))
612
        cache->flags |= SLAB_CACHE_SLINSIDE;
611
        cache->flags |= SLAB_CACHE_SLINSIDE;
613
 
612
 
614
    /* Add cache to cache list */
613
    /* Add cache to cache list */
615
    ipl = interrupts_disable();
614
    ipl = interrupts_disable();
616
    spinlock_lock(&slab_cache_lock);
615
    spinlock_lock(&slab_cache_lock);
617
 
616
 
618
    list_append(&cache->link, &slab_cache_list);
617
    list_append(&cache->link, &slab_cache_list);
619
 
618
 
620
    spinlock_unlock(&slab_cache_lock);
619
    spinlock_unlock(&slab_cache_lock);
621
    interrupts_restore(ipl);
620
    interrupts_restore(ipl);
622
}
621
}
623
 
622
 
624
/** Create slab cache  */
623
/** Create slab cache  */
625
slab_cache_t * slab_cache_create(char *name,
624
slab_cache_t * slab_cache_create(char *name,
626
                 size_t size,
625
                 size_t size,
627
                 size_t align,
626
                 size_t align,
628
                 int (*constructor)(void *obj, int kmflag),
627
                 int (*constructor)(void *obj, int kmflag),
629
                 int (*destructor)(void *obj),
628
                 int (*destructor)(void *obj),
630
                 int flags)
629
                 int flags)
631
{
630
{
632
    slab_cache_t *cache;
631
    slab_cache_t *cache;
633
 
632
 
634
    cache = slab_alloc(&slab_cache_cache, 0);
633
    cache = slab_alloc(&slab_cache_cache, 0);
635
    _slab_cache_create(cache, name, size, align, constructor, destructor,
634
    _slab_cache_create(cache, name, size, align, constructor, destructor,
636
               flags);
635
               flags);
637
    return cache;
636
    return cache;
638
}
637
}
639
 
638
 
640
/**
639
/**
641
 * Reclaim space occupied by objects that are already free
640
 * Reclaim space occupied by objects that are already free
642
 *
641
 *
643
 * @param flags If contains SLAB_RECLAIM_ALL, do aggressive freeing
642
 * @param flags If contains SLAB_RECLAIM_ALL, do aggressive freeing
644
 * @return Number of freed pages
643
 * @return Number of freed pages
645
 */
644
 */
646
static count_t _slab_reclaim(slab_cache_t *cache, int flags)
645
static count_t _slab_reclaim(slab_cache_t *cache, int flags)
647
{
646
{
648
    int i;
647
    int i;
649
    slab_magazine_t *mag;
648
    slab_magazine_t *mag;
650
    count_t frames = 0;
649
    count_t frames = 0;
651
    int magcount;
650
    int magcount;
652
   
651
   
653
    if (cache->flags & SLAB_CACHE_NOMAGAZINE)
652
    if (cache->flags & SLAB_CACHE_NOMAGAZINE)
654
        return 0; /* Nothing to do */
653
        return 0; /* Nothing to do */
655
 
654
 
656
    /* We count up to original magazine count to avoid
655
    /* We count up to original magazine count to avoid
657
     * endless loop
656
     * endless loop
658
     */
657
     */
659
    magcount = atomic_get(&cache->magazine_counter);
658
    magcount = atomic_get(&cache->magazine_counter);
660
    while (magcount-- && (mag=get_mag_from_cache(cache,0))) {
659
    while (magcount-- && (mag=get_mag_from_cache(cache,0))) {
661
        frames += magazine_destroy(cache,mag);
660
        frames += magazine_destroy(cache,mag);
662
        if (!(flags & SLAB_RECLAIM_ALL) && frames)
661
        if (!(flags & SLAB_RECLAIM_ALL) && frames)
663
            break;
662
            break;
664
    }
663
    }
665
   
664
   
666
    if (flags & SLAB_RECLAIM_ALL) {
665
    if (flags & SLAB_RECLAIM_ALL) {
667
        /* Free cpu-bound magazines */
666
        /* Free cpu-bound magazines */
668
        /* Destroy CPU magazines */
667
        /* Destroy CPU magazines */
669
        for (i=0; i<config.cpu_count; i++) {
668
        for (i=0; i<config.cpu_count; i++) {
670
            spinlock_lock(&cache->mag_cache[i].lock);
669
            spinlock_lock(&cache->mag_cache[i].lock);
671
 
670
 
672
            mag = cache->mag_cache[i].current;
671
            mag = cache->mag_cache[i].current;
673
            if (mag)
672
            if (mag)
674
                frames += magazine_destroy(cache, mag);
673
                frames += magazine_destroy(cache, mag);
675
            cache->mag_cache[i].current = NULL;
674
            cache->mag_cache[i].current = NULL;
676
           
675
           
677
            mag = cache->mag_cache[i].last;
676
            mag = cache->mag_cache[i].last;
678
            if (mag)
677
            if (mag)
679
                frames += magazine_destroy(cache, mag);
678
                frames += magazine_destroy(cache, mag);
680
            cache->mag_cache[i].last = NULL;
679
            cache->mag_cache[i].last = NULL;
681
 
680
 
682
            spinlock_unlock(&cache->mag_cache[i].lock);
681
            spinlock_unlock(&cache->mag_cache[i].lock);
683
        }
682
        }
684
    }
683
    }
685
 
684
 
686
    return frames;
685
    return frames;
687
}
686
}
688
 
687
 
689
/** Check that there are no slabs and remove cache from system  */
688
/** Check that there are no slabs and remove cache from system  */
690
void slab_cache_destroy(slab_cache_t *cache)
689
void slab_cache_destroy(slab_cache_t *cache)
691
{
690
{
692
    ipl_t ipl;
691
    ipl_t ipl;
693
 
692
 
694
    /* First remove cache from link, so that we don't need
693
    /* First remove cache from link, so that we don't need
695
     * to disable interrupts later
694
     * to disable interrupts later
696
     */
695
     */
697
 
696
 
698
    ipl = interrupts_disable();
697
    ipl = interrupts_disable();
699
    spinlock_lock(&slab_cache_lock);
698
    spinlock_lock(&slab_cache_lock);
700
 
699
 
701
    list_remove(&cache->link);
700
    list_remove(&cache->link);
702
 
701
 
703
    spinlock_unlock(&slab_cache_lock);
702
    spinlock_unlock(&slab_cache_lock);
704
    interrupts_restore(ipl);
703
    interrupts_restore(ipl);
705
 
704
 
706
    /* Do not lock anything, we assume the software is correct and
705
    /* Do not lock anything, we assume the software is correct and
707
     * does not touch the cache when it decides to destroy it */
706
     * does not touch the cache when it decides to destroy it */
708
   
707
   
709
    /* Destroy all magazines */
708
    /* Destroy all magazines */
710
    _slab_reclaim(cache, SLAB_RECLAIM_ALL);
709
    _slab_reclaim(cache, SLAB_RECLAIM_ALL);
711
 
710
 
712
    /* All slabs must be empty */
711
    /* All slabs must be empty */
713
    if (!list_empty(&cache->full_slabs) \
712
    if (!list_empty(&cache->full_slabs) \
714
        || !list_empty(&cache->partial_slabs))
713
        || !list_empty(&cache->partial_slabs))
715
        panic("Destroying cache that is not empty.");
714
        panic("Destroying cache that is not empty.");
716
 
715
 
717
    if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
716
    if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
718
        free(cache->mag_cache);
717
        free(cache->mag_cache);
719
    slab_free(&slab_cache_cache, cache);
718
    slab_free(&slab_cache_cache, cache);
720
}
719
}
721
 
720
 
722
/** Allocate new object from cache - if no flags given, always returns
721
/** Allocate new object from cache - if no flags given, always returns
723
    memory */
722
    memory */
724
void * slab_alloc(slab_cache_t *cache, int flags)
723
void * slab_alloc(slab_cache_t *cache, int flags)
725
{
724
{
726
    ipl_t ipl;
725
    ipl_t ipl;
727
    void *result = NULL;
726
    void *result = NULL;
728
   
727
   
729
    /* Disable interrupts to avoid deadlocks with interrupt handlers */
728
    /* Disable interrupts to avoid deadlocks with interrupt handlers */
730
    ipl = interrupts_disable();
729
    ipl = interrupts_disable();
731
 
730
 
732
    if (!(cache->flags & SLAB_CACHE_NOMAGAZINE)) {
731
    if (!(cache->flags & SLAB_CACHE_NOMAGAZINE)) {
733
        result = magazine_obj_get(cache);
732
        result = magazine_obj_get(cache);
734
    }
733
    }
735
    if (!result)
734
    if (!result)
736
        result = slab_obj_create(cache, flags);
735
        result = slab_obj_create(cache, flags);
737
 
736
 
738
    interrupts_restore(ipl);
737
    interrupts_restore(ipl);
739
 
738
 
740
    if (result)
739
    if (result)
741
        atomic_inc(&cache->allocated_objs);
740
        atomic_inc(&cache->allocated_objs);
742
 
741
 
743
    return result;
742
    return result;
744
}
743
}
745
 
744
 
746
/** Return object to cache, use slab if known  */
745
/** Return object to cache, use slab if known  */
747
static void _slab_free(slab_cache_t *cache, void *obj, slab_t *slab)
746
static void _slab_free(slab_cache_t *cache, void *obj, slab_t *slab)
748
{
747
{
749
    ipl_t ipl;
748
    ipl_t ipl;
750
 
749
 
751
    ipl = interrupts_disable();
750
    ipl = interrupts_disable();
752
 
751
 
753
    if ((cache->flags & SLAB_CACHE_NOMAGAZINE) \
752
    if ((cache->flags & SLAB_CACHE_NOMAGAZINE) \
754
        || magazine_obj_put(cache, obj)) {
753
        || magazine_obj_put(cache, obj)) {
755
 
754
 
756
        slab_obj_destroy(cache, obj, slab);
755
        slab_obj_destroy(cache, obj, slab);
757
 
756
 
758
    }
757
    }
759
    interrupts_restore(ipl);
758
    interrupts_restore(ipl);
760
    atomic_dec(&cache->allocated_objs);
759
    atomic_dec(&cache->allocated_objs);
761
}
760
}
762
 
761
 
763
/** Return slab object to cache */
762
/** Return slab object to cache */
764
void slab_free(slab_cache_t *cache, void *obj)
763
void slab_free(slab_cache_t *cache, void *obj)
765
{
764
{
766
    _slab_free(cache,obj,NULL);
765
    _slab_free(cache,obj,NULL);
767
}
766
}
768
 
767
 
769
/* Go through all caches and reclaim what is possible */
768
/* Go through all caches and reclaim what is possible */
770
count_t slab_reclaim(int flags)
769
count_t slab_reclaim(int flags)
771
{
770
{
772
    slab_cache_t *cache;
771
    slab_cache_t *cache;
773
    link_t *cur;
772
    link_t *cur;
774
    count_t frames = 0;
773
    count_t frames = 0;
775
 
774
 
776
    spinlock_lock(&slab_cache_lock);
775
    spinlock_lock(&slab_cache_lock);
777
 
776
 
778
    /* TODO: Add assert, that interrupts are disabled, otherwise
777
    /* TODO: Add assert, that interrupts are disabled, otherwise
779
     * memory allocation from interrupts can deadlock.
778
     * memory allocation from interrupts can deadlock.
780
     */
779
     */
781
 
780
 
782
    for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
781
    for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
783
        cache = list_get_instance(cur, slab_cache_t, link);
782
        cache = list_get_instance(cur, slab_cache_t, link);
784
        frames += _slab_reclaim(cache, flags);
783
        frames += _slab_reclaim(cache, flags);
785
    }
784
    }
786
 
785
 
787
    spinlock_unlock(&slab_cache_lock);
786
    spinlock_unlock(&slab_cache_lock);
788
 
787
 
789
    return frames;
788
    return frames;
790
}
789
}
791
 
790
 
792
 
791
 
793
/* Print list of slabs */
792
/* Print list of slabs */
794
void slab_print_list(void)
793
void slab_print_list(void)
795
{
794
{
796
    slab_cache_t *cache;
795
    slab_cache_t *cache;
797
    link_t *cur;
796
    link_t *cur;
798
    ipl_t ipl;
797
    ipl_t ipl;
799
   
798
   
800
    ipl = interrupts_disable();
799
    ipl = interrupts_disable();
801
    spinlock_lock(&slab_cache_lock);
800
    spinlock_lock(&slab_cache_lock);
802
    printf("slab name\t  Osize\t  Pages\t Obj/pg\t  Slabs\t Cached\tAllocobjs\tCtl\n");
801
    printf("slab name\t  Osize\t  Pages\t Obj/pg\t  Slabs\t Cached\tAllocobjs\tCtl\n");
803
    for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
802
    for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
804
        cache = list_get_instance(cur, slab_cache_t, link);
803
        cache = list_get_instance(cur, slab_cache_t, link);
805
        printf("%s\t%7zd\t%7zd\t%7zd\t%7zd\t%7zd\t%7zd\t\t%s\n", cache->name, cache->size,
804
        printf("%s\t%7zd\t%7zd\t%7zd\t%7zd\t%7zd\t%7zd\t\t%s\n", cache->name, cache->size,
806
               (1 << cache->order), cache->objects,
805
               (1 << cache->order), cache->objects,
807
               atomic_get(&cache->allocated_slabs),
806
               atomic_get(&cache->allocated_slabs),
808
               atomic_get(&cache->cached_objs),
807
               atomic_get(&cache->cached_objs),
809
               atomic_get(&cache->allocated_objs),
808
               atomic_get(&cache->allocated_objs),
810
               cache->flags & SLAB_CACHE_SLINSIDE ? "In" : "Out");
809
               cache->flags & SLAB_CACHE_SLINSIDE ? "In" : "Out");
811
    }
810
    }
812
    spinlock_unlock(&slab_cache_lock);
811
    spinlock_unlock(&slab_cache_lock);
813
    interrupts_restore(ipl);
812
    interrupts_restore(ipl);
814
}
813
}
815
 
814
 
816
void slab_cache_init(void)
815
void slab_cache_init(void)
817
{
816
{
818
    int i, size;
817
    int i, size;
819
 
818
 
820
    /* Initialize magazine cache */
819
    /* Initialize magazine cache */
821
    _slab_cache_create(&mag_cache,
820
    _slab_cache_create(&mag_cache,
822
               "slab_magazine",
821
               "slab_magazine",
823
               sizeof(slab_magazine_t)+SLAB_MAG_SIZE*sizeof(void*),
822
               sizeof(slab_magazine_t)+SLAB_MAG_SIZE*sizeof(void*),
824
               sizeof(__address),
823
               sizeof(__address),
825
               NULL, NULL,
824
               NULL, NULL,
826
               SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
825
               SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
827
    /* Initialize slab_cache cache */
826
    /* Initialize slab_cache cache */
828
    _slab_cache_create(&slab_cache_cache,
827
    _slab_cache_create(&slab_cache_cache,
829
               "slab_cache",
828
               "slab_cache",
830
               sizeof(slab_cache_cache),
829
               sizeof(slab_cache_cache),
831
               sizeof(__address),
830
               sizeof(__address),
832
               NULL, NULL,
831
               NULL, NULL,
833
               SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
832
               SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
834
    /* Initialize external slab cache */
833
    /* Initialize external slab cache */
835
    slab_extern_cache = slab_cache_create("slab_extern",
834
    slab_extern_cache = slab_cache_create("slab_extern",
836
                          sizeof(slab_t),
835
                          sizeof(slab_t),
837
                          0, NULL, NULL,
836
                          0, NULL, NULL,
838
                          SLAB_CACHE_SLINSIDE | SLAB_CACHE_MAGDEFERRED);
837
                          SLAB_CACHE_SLINSIDE | SLAB_CACHE_MAGDEFERRED);
839
 
838
 
840
    /* Initialize structures for malloc */
839
    /* Initialize structures for malloc */
841
    for (i=0, size=(1<<SLAB_MIN_MALLOC_W);
840
    for (i=0, size=(1<<SLAB_MIN_MALLOC_W);
842
         i < (SLAB_MAX_MALLOC_W-SLAB_MIN_MALLOC_W+1);
841
         i < (SLAB_MAX_MALLOC_W-SLAB_MIN_MALLOC_W+1);
843
         i++, size <<= 1) {
842
         i++, size <<= 1) {
844
        malloc_caches[i] = slab_cache_create(malloc_names[i],
843
        malloc_caches[i] = slab_cache_create(malloc_names[i],
845
                             size, 0,
844
                             size, 0,
846
                             NULL,NULL, SLAB_CACHE_MAGDEFERRED);
845
                             NULL,NULL, SLAB_CACHE_MAGDEFERRED);
847
    }
846
    }
848
#ifdef CONFIG_DEBUG       
847
#ifdef CONFIG_DEBUG       
849
    _slab_initialized = 1;
848
    _slab_initialized = 1;
850
#endif
849
#endif
851
}
850
}
852
 
851
 
853
/** Enable cpu_cache
852
/** Enable cpu_cache
854
 *
853
 *
855
 * Kernel calls this function, when it knows the real number of
854
 * Kernel calls this function, when it knows the real number of
856
 * processors.
855
 * processors.
857
 * Allocate slab for cpucache and enable it on all existing
856
 * Allocate slab for cpucache and enable it on all existing
858
 * slabs that are SLAB_CACHE_MAGDEFERRED
857
 * slabs that are SLAB_CACHE_MAGDEFERRED
859
 */
858
 */
860
void slab_enable_cpucache(void)
859
void slab_enable_cpucache(void)
861
{
860
{
862
    link_t *cur;
861
    link_t *cur;
863
    slab_cache_t *s;
862
    slab_cache_t *s;
864
 
863
 
865
#ifdef CONFIG_DEBUG
864
#ifdef CONFIG_DEBUG
866
    _slab_initialized = 2;
865
    _slab_initialized = 2;
867
#endif
866
#endif
868
 
867
 
869
    spinlock_lock(&slab_cache_lock);
868
    spinlock_lock(&slab_cache_lock);
870
   
869
   
871
    for (cur=slab_cache_list.next; cur != &slab_cache_list;cur=cur->next){
870
    for (cur=slab_cache_list.next; cur != &slab_cache_list;cur=cur->next){
872
        s = list_get_instance(cur, slab_cache_t, link);
871
        s = list_get_instance(cur, slab_cache_t, link);
873
        if ((s->flags & SLAB_CACHE_MAGDEFERRED) != SLAB_CACHE_MAGDEFERRED)
872
        if ((s->flags & SLAB_CACHE_MAGDEFERRED) != SLAB_CACHE_MAGDEFERRED)
874
            continue;
873
            continue;
875
        make_magcache(s);
874
        make_magcache(s);
876
        s->flags &= ~SLAB_CACHE_MAGDEFERRED;
875
        s->flags &= ~SLAB_CACHE_MAGDEFERRED;
877
    }
876
    }
878
 
877
 
879
    spinlock_unlock(&slab_cache_lock);
878
    spinlock_unlock(&slab_cache_lock);
880
}
879
}
881
 
880
 
882
/**************************************/
881
/**************************************/
883
/* kalloc/kfree functions             */
882
/* kalloc/kfree functions             */
884
void * malloc(unsigned int size, int flags)
883
void * malloc(unsigned int size, int flags)
885
{
884
{
886
    int idx;
885
    int idx;
887
 
886
 
888
    ASSERT(_slab_initialized);
887
    ASSERT(_slab_initialized);
889
    ASSERT(size && size <= (1 << SLAB_MAX_MALLOC_W));
888
    ASSERT(size && size <= (1 << SLAB_MAX_MALLOC_W));
890
   
889
   
891
    if (size < (1 << SLAB_MIN_MALLOC_W))
890
    if (size < (1 << SLAB_MIN_MALLOC_W))
892
        size = (1 << SLAB_MIN_MALLOC_W);
891
        size = (1 << SLAB_MIN_MALLOC_W);
893
 
892
 
894
    idx = fnzb(size-1) - SLAB_MIN_MALLOC_W + 1;
893
    idx = fnzb(size-1) - SLAB_MIN_MALLOC_W + 1;
895
 
894
 
896
    return slab_alloc(malloc_caches[idx], flags);
895
    return slab_alloc(malloc_caches[idx], flags);
897
}
896
}
898
 
897
 
899
void free(void *obj)
898
void free(void *obj)
900
{
899
{
901
    slab_t *slab;
900
    slab_t *slab;
902
 
901
 
903
    if (!obj) return;
902
    if (!obj) return;
904
 
903
 
905
    slab = obj2slab(obj);
904
    slab = obj2slab(obj);
906
    _slab_free(slab->cache, obj, slab);
905
    _slab_free(slab->cache, obj, slab);
907
}
906
}
908
 
907
 
909
/** @}
908
/** @}
910
 */
909
 */
911
 
910