Subversion Repositories HelenOS-historic

Rev

Rev 1288 | Rev 1554 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 1288 Rev 1428
1
/*
1
/*
2
 * Copyright (C) 2006 Ondrej Palkovsky
2
 * Copyright (C) 2006 Ondrej Palkovsky
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/**
29
/**
30
 * @file    slab.c
30
 * @file    slab.c
31
 * @brief   Slab allocator.
31
 * @brief   Slab allocator.
32
 *
32
 *
33
 * The slab allocator is closely modelled after OpenSolaris slab allocator.
33
 * The slab allocator is closely modelled after OpenSolaris slab allocator.
34
 * @see http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/
34
 * @see http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/
35
 *
35
 *
36
 * with the following exceptions:
36
 * with the following exceptions:
37
 * @li empty slabs are deallocated immediately
37
 * @li empty slabs are deallocated immediately
38
 *     (in Linux they are kept in linked list, in Solaris ???)
38
 *     (in Linux they are kept in linked list, in Solaris ???)
39
 * @li empty magazines are deallocated when not needed
39
 * @li empty magazines are deallocated when not needed
40
 *     (in Solaris they are held in linked list in slab cache)
40
 *     (in Solaris they are held in linked list in slab cache)
41
 *
41
 *
42
 * Following features are not currently supported but would be easy to do:
42
 * Following features are not currently supported but would be easy to do:
43
 * @li cache coloring
43
 * @li cache coloring
44
 * @li dynamic magazine growing (different magazine sizes are already
44
 * @li dynamic magazine growing (different magazine sizes are already
45
 *     supported, but we would need to adjust allocation strategy)
45
 *     supported, but we would need to adjust allocation strategy)
46
 *
46
 *
47
 * The slab allocator supports per-CPU caches ('magazines') to facilitate
47
 * The slab allocator supports per-CPU caches ('magazines') to facilitate
48
 * good SMP scaling.
48
 * good SMP scaling.
49
 *
49
 *
50
 * When a new object is being allocated, it is first checked, if it is
50
 * When a new object is being allocated, it is first checked, if it is
51
 * available in CPU-bound magazine. If it is not found there, it is
51
 * available in CPU-bound magazine. If it is not found there, it is
52
 * allocated from CPU-shared slab - if partial full is found, it is used,
52
 * allocated from CPU-shared slab - if partial full is found, it is used,
53
 * otherwise a new one is allocated.
53
 * otherwise a new one is allocated.
54
 *
54
 *
55
 * When an object is being deallocated, it is put to CPU-bound magazine.
55
 * When an object is being deallocated, it is put to CPU-bound magazine.
56
 * If there is no such magazine, new one is allocated (if it fails,
56
 * If there is no such magazine, new one is allocated (if it fails,
57
 * the object is deallocated into slab). If the magazine is full, it is
57
 * the object is deallocated into slab). If the magazine is full, it is
58
 * put into cpu-shared list of magazines and new one is allocated.
58
 * put into cpu-shared list of magazines and new one is allocated.
59
 *
59
 *
60
 * The CPU-bound magazine is actually a pair of magazine to avoid
60
 * The CPU-bound magazine is actually a pair of magazine to avoid
61
 * thrashing when somebody is allocating/deallocating 1 item at the magazine
61
 * thrashing when somebody is allocating/deallocating 1 item at the magazine
62
 * size boundary. LIFO order is enforced, which should avoid fragmentation
62
 * size boundary. LIFO order is enforced, which should avoid fragmentation
63
 * as much as possible.
63
 * as much as possible.
64
 *  
64
 *  
65
 * Every cache contains list of full slabs and list of partialy full slabs.
65
 * Every cache contains list of full slabs and list of partialy full slabs.
66
 * Empty slabs are immediately freed (thrashing will be avoided because
66
 * Empty slabs are immediately freed (thrashing will be avoided because
67
 * of magazines).
67
 * of magazines).
68
 *
68
 *
69
 * The slab information structure is kept inside the data area, if possible.
69
 * The slab information structure is kept inside the data area, if possible.
70
 * The cache can be marked that it should not use magazines. This is used
70
 * The cache can be marked that it should not use magazines. This is used
71
 * only for slab related caches to avoid deadlocks and infinite recursion
71
 * only for slab related caches to avoid deadlocks and infinite recursion
72
 * (the slab allocator uses itself for allocating all it's control structures).
72
 * (the slab allocator uses itself for allocating all it's control structures).
73
 *
73
 *
74
 * The slab allocator allocates lot of space and does not free it. When
74
 * The slab allocator allocates lot of space and does not free it. When
75
 * frame allocator fails to allocate the frame, it calls slab_reclaim().
75
 * frame allocator fails to allocate the frame, it calls slab_reclaim().
76
 * It tries 'light reclaim' first, then brutal reclaim. The light reclaim
76
 * It tries 'light reclaim' first, then brutal reclaim. The light reclaim
77
 * releases slabs from cpu-shared magazine-list, until at least 1 slab
77
 * releases slabs from cpu-shared magazine-list, until at least 1 slab
78
 * is deallocated in each cache (this algorithm should probably change).
78
 * is deallocated in each cache (this algorithm should probably change).
79
 * The brutal reclaim removes all cached objects, even from CPU-bound
79
 * The brutal reclaim removes all cached objects, even from CPU-bound
80
 * magazines.
80
 * magazines.
81
 *
81
 *
82
 * TODO:@n
82
 * TODO:@n
83
 * For better CPU-scaling the magazine allocation strategy should
83
 * For better CPU-scaling the magazine allocation strategy should
84
 * be extended. Currently, if the cache does not have magazine, it asks
84
 * be extended. Currently, if the cache does not have magazine, it asks
85
 * for non-cpu cached magazine cache to provide one. It might be feasible
85
 * for non-cpu cached magazine cache to provide one. It might be feasible
86
 * to add cpu-cached magazine cache (which would allocate it's magazines
86
 * to add cpu-cached magazine cache (which would allocate it's magazines
87
 * from non-cpu-cached mag. cache). This would provide a nice per-cpu
87
 * from non-cpu-cached mag. cache). This would provide a nice per-cpu
88
 * buffer. The other possibility is to use the per-cache
88
 * buffer. The other possibility is to use the per-cache
89
 * 'empty-magazine-list', which decreases competing for 1 per-system
89
 * 'empty-magazine-list', which decreases competing for 1 per-system
90
 * magazine cache.
90
 * magazine cache.
91
 *
91
 *
92
 * @li it might be good to add granularity of locks even to slab level,
92
 * @li it might be good to add granularity of locks even to slab level,
93
 *     we could then try_spinlock over all partial slabs and thus improve
93
 *     we could then try_spinlock over all partial slabs and thus improve
94
 *     scalability even on slab level
94
 *     scalability even on slab level
95
 */
95
 */
96
 
96
 
97
#include <synch/spinlock.h>
97
#include <synch/spinlock.h>
98
#include <mm/slab.h>
98
#include <mm/slab.h>
99
#include <adt/list.h>
99
#include <adt/list.h>
100
#include <memstr.h>
100
#include <memstr.h>
101
#include <align.h>
101
#include <align.h>
102
#include <mm/frame.h>
102
#include <mm/frame.h>
103
#include <config.h>
103
#include <config.h>
104
#include <print.h>
104
#include <print.h>
105
#include <arch.h>
105
#include <arch.h>
106
#include <panic.h>
106
#include <panic.h>
107
#include <debug.h>
107
#include <debug.h>
108
#include <bitops.h>
108
#include <bitops.h>
109
 
109
 
110
SPINLOCK_INITIALIZE(slab_cache_lock);
110
SPINLOCK_INITIALIZE(slab_cache_lock);
111
static LIST_INITIALIZE(slab_cache_list);
111
static LIST_INITIALIZE(slab_cache_list);
112
 
112
 
113
/** Magazine cache */
113
/** Magazine cache */
114
static slab_cache_t mag_cache;
114
static slab_cache_t mag_cache;
115
/** Cache for cache descriptors */
115
/** Cache for cache descriptors */
116
static slab_cache_t slab_cache_cache;
116
static slab_cache_t slab_cache_cache;
117
/** Cache for external slab descriptors
117
/** Cache for external slab descriptors
118
 * This time we want per-cpu cache, so do not make it static
118
 * This time we want per-cpu cache, so do not make it static
119
 * - using slab for internal slab structures will not deadlock,
119
 * - using slab for internal slab structures will not deadlock,
120
 *   as all slab structures are 'small' - control structures of
120
 *   as all slab structures are 'small' - control structures of
121
 *   their caches do not require further allocation
121
 *   their caches do not require further allocation
122
 */
122
 */
123
static slab_cache_t *slab_extern_cache;
123
static slab_cache_t *slab_extern_cache;
124
/** Caches for malloc */
124
/** Caches for malloc */
125
static slab_cache_t *malloc_caches[SLAB_MAX_MALLOC_W-SLAB_MIN_MALLOC_W+1];
125
static slab_cache_t *malloc_caches[SLAB_MAX_MALLOC_W-SLAB_MIN_MALLOC_W+1];
126
char *malloc_names[] =  {
126
char *malloc_names[] =  {
127
    "malloc-16","malloc-32","malloc-64","malloc-128",
127
    "malloc-16","malloc-32","malloc-64","malloc-128",
128
    "malloc-256","malloc-512","malloc-1K","malloc-2K",
128
    "malloc-256","malloc-512","malloc-1K","malloc-2K",
129
    "malloc-4K","malloc-8K","malloc-16K","malloc-32K",
129
    "malloc-4K","malloc-8K","malloc-16K","malloc-32K",
130
    "malloc-64K","malloc-128K"
130
    "malloc-64K","malloc-128K","malloc-256K"
131
};
131
};
132
 
132
 
133
/** Slab descriptor */
133
/** Slab descriptor */
134
typedef struct {
134
typedef struct {
135
    slab_cache_t *cache; /**< Pointer to parent cache */
135
    slab_cache_t *cache; /**< Pointer to parent cache */
136
    link_t link;       /* List of full/partial slabs */
136
    link_t link;       /* List of full/partial slabs */
137
    void *start;       /**< Start address of first available item */
137
    void *start;       /**< Start address of first available item */
138
    count_t available; /**< Count of available items in this slab */
138
    count_t available; /**< Count of available items in this slab */
139
    index_t nextavail; /**< The index of next available item */
139
    index_t nextavail; /**< The index of next available item */
140
}slab_t;
140
}slab_t;
141
 
141
 
142
#ifdef CONFIG_DEBUG
142
#ifdef CONFIG_DEBUG
143
static int _slab_initialized = 0;
143
static int _slab_initialized = 0;
144
#endif
144
#endif
145
 
145
 
146
/**************************************/
146
/**************************************/
147
/* Slab allocation functions          */
147
/* Slab allocation functions          */
148
 
148
 
149
/**
149
/**
150
 * Allocate frames for slab space and initialize
150
 * Allocate frames for slab space and initialize
151
 *
151
 *
152
 */
152
 */
153
static slab_t * slab_space_alloc(slab_cache_t *cache, int flags)
153
static slab_t * slab_space_alloc(slab_cache_t *cache, int flags)
154
{
154
{
155
    void *data;
155
    void *data;
156
    slab_t *slab;
156
    slab_t *slab;
157
    size_t fsize;
157
    size_t fsize;
158
    int i;
158
    int i;
159
    int status;
159
    int status;
160
    pfn_t pfn;
160
    pfn_t pfn;
161
    int zone=0;
161
    int zone=0;
162
   
162
   
163
    pfn = frame_alloc_rc_zone(cache->order, FRAME_KA | flags, &status, &zone);
163
    pfn = frame_alloc_rc_zone(cache->order, FRAME_KA | flags, &status, &zone);
164
    data = (void *) PA2KA(PFN2ADDR(pfn));
164
    data = (void *) PA2KA(PFN2ADDR(pfn));
165
    if (status != FRAME_OK) {
165
    if (status != FRAME_OK) {
166
        return NULL;
166
        return NULL;
167
    }
167
    }
168
    if (! (cache->flags & SLAB_CACHE_SLINSIDE)) {
168
    if (! (cache->flags & SLAB_CACHE_SLINSIDE)) {
169
        slab = slab_alloc(slab_extern_cache, flags);
169
        slab = slab_alloc(slab_extern_cache, flags);
170
        if (!slab) {
170
        if (!slab) {
171
            frame_free(ADDR2PFN(KA2PA(data)));
171
            frame_free(ADDR2PFN(KA2PA(data)));
172
            return NULL;
172
            return NULL;
173
        }
173
        }
174
    } else {
174
    } else {
175
        fsize = (PAGE_SIZE << cache->order);
175
        fsize = (PAGE_SIZE << cache->order);
176
        slab = data + fsize - sizeof(*slab);
176
        slab = data + fsize - sizeof(*slab);
177
    }
177
    }
178
   
178
   
179
    /* Fill in slab structures */
179
    /* Fill in slab structures */
180
    for (i=0; i < (1 << cache->order); i++)
180
    for (i=0; i < (1 << cache->order); i++)
181
        frame_set_parent(pfn+i, slab, zone);
181
        frame_set_parent(pfn+i, slab, zone);
182
 
182
 
183
    slab->start = data;
183
    slab->start = data;
184
    slab->available = cache->objects;
184
    slab->available = cache->objects;
185
    slab->nextavail = 0;
185
    slab->nextavail = 0;
186
    slab->cache = cache;
186
    slab->cache = cache;
187
 
187
 
188
    for (i=0; i<cache->objects;i++)
188
    for (i=0; i<cache->objects;i++)
189
        *((int *) (slab->start + i*cache->size)) = i+1;
189
        *((int *) (slab->start + i*cache->size)) = i+1;
190
 
190
 
191
    atomic_inc(&cache->allocated_slabs);
191
    atomic_inc(&cache->allocated_slabs);
192
    return slab;
192
    return slab;
193
}
193
}
194
 
194
 
195
/**
195
/**
196
 * Deallocate space associated with slab
196
 * Deallocate space associated with slab
197
 *
197
 *
198
 * @return number of freed frames
198
 * @return number of freed frames
199
 */
199
 */
200
static count_t slab_space_free(slab_cache_t *cache, slab_t *slab)
200
static count_t slab_space_free(slab_cache_t *cache, slab_t *slab)
201
{
201
{
202
    frame_free(ADDR2PFN(KA2PA(slab->start)));
202
    frame_free(ADDR2PFN(KA2PA(slab->start)));
203
    if (! (cache->flags & SLAB_CACHE_SLINSIDE))
203
    if (! (cache->flags & SLAB_CACHE_SLINSIDE))
204
        slab_free(slab_extern_cache, slab);
204
        slab_free(slab_extern_cache, slab);
205
 
205
 
206
    atomic_dec(&cache->allocated_slabs);
206
    atomic_dec(&cache->allocated_slabs);
207
   
207
   
208
    return 1 << cache->order;
208
    return 1 << cache->order;
209
}
209
}
210
 
210
 
211
/** Map object to slab structure */
211
/** Map object to slab structure */
212
static slab_t * obj2slab(void *obj)
212
static slab_t * obj2slab(void *obj)
213
{
213
{
214
    return (slab_t *)frame_get_parent(ADDR2PFN(KA2PA(obj)), 0);
214
    return (slab_t *)frame_get_parent(ADDR2PFN(KA2PA(obj)), 0);
215
}
215
}
216
 
216
 
217
/**************************************/
217
/**************************************/
218
/* Slab functions */
218
/* Slab functions */
219
 
219
 
220
 
220
 
221
/**
221
/**
222
 * Return object to slab and call a destructor
222
 * Return object to slab and call a destructor
223
 *
223
 *
224
 * @param slab If the caller knows directly slab of the object, otherwise NULL
224
 * @param slab If the caller knows directly slab of the object, otherwise NULL
225
 *
225
 *
226
 * @return Number of freed pages
226
 * @return Number of freed pages
227
 */
227
 */
228
static count_t slab_obj_destroy(slab_cache_t *cache, void *obj,
228
static count_t slab_obj_destroy(slab_cache_t *cache, void *obj,
229
                slab_t *slab)
229
                slab_t *slab)
230
{
230
{
231
    int freed = 0;
231
    int freed = 0;
232
 
232
 
233
    if (!slab)
233
    if (!slab)
234
        slab = obj2slab(obj);
234
        slab = obj2slab(obj);
235
 
235
 
236
    ASSERT(slab->cache == cache);
236
    ASSERT(slab->cache == cache);
237
 
237
 
238
    if (cache->destructor)
238
    if (cache->destructor)
239
        freed = cache->destructor(obj);
239
        freed = cache->destructor(obj);
240
   
240
   
241
    spinlock_lock(&cache->slablock);
241
    spinlock_lock(&cache->slablock);
242
    ASSERT(slab->available < cache->objects);
242
    ASSERT(slab->available < cache->objects);
243
 
243
 
244
    *((int *)obj) = slab->nextavail;
244
    *((int *)obj) = slab->nextavail;
245
    slab->nextavail = (obj - slab->start)/cache->size;
245
    slab->nextavail = (obj - slab->start)/cache->size;
246
    slab->available++;
246
    slab->available++;
247
 
247
 
248
    /* Move it to correct list */
248
    /* Move it to correct list */
249
    if (slab->available == cache->objects) {
249
    if (slab->available == cache->objects) {
250
        /* Free associated memory */
250
        /* Free associated memory */
251
        list_remove(&slab->link);
251
        list_remove(&slab->link);
252
        spinlock_unlock(&cache->slablock);
252
        spinlock_unlock(&cache->slablock);
253
 
253
 
254
        return freed + slab_space_free(cache, slab);
254
        return freed + slab_space_free(cache, slab);
255
 
255
 
256
    } else if (slab->available == 1) {
256
    } else if (slab->available == 1) {
257
        /* It was in full, move to partial */
257
        /* It was in full, move to partial */
258
        list_remove(&slab->link);
258
        list_remove(&slab->link);
259
        list_prepend(&slab->link, &cache->partial_slabs);
259
        list_prepend(&slab->link, &cache->partial_slabs);
260
    }
260
    }
261
    spinlock_unlock(&cache->slablock);
261
    spinlock_unlock(&cache->slablock);
262
    return freed;
262
    return freed;
263
}
263
}
264
 
264
 
265
/**
265
/**
266
 * Take new object from slab or create new if needed
266
 * Take new object from slab or create new if needed
267
 *
267
 *
268
 * @return Object address or null
268
 * @return Object address or null
269
 */
269
 */
270
static void * slab_obj_create(slab_cache_t *cache, int flags)
270
static void * slab_obj_create(slab_cache_t *cache, int flags)
271
{
271
{
272
    slab_t *slab;
272
    slab_t *slab;
273
    void *obj;
273
    void *obj;
274
 
274
 
275
    spinlock_lock(&cache->slablock);
275
    spinlock_lock(&cache->slablock);
276
 
276
 
277
    if (list_empty(&cache->partial_slabs)) {
277
    if (list_empty(&cache->partial_slabs)) {
278
        /* Allow recursion and reclaiming
278
        /* Allow recursion and reclaiming
279
         * - this should work, as the slab control structures
279
         * - this should work, as the slab control structures
280
         *   are small and do not need to allocate with anything
280
         *   are small and do not need to allocate with anything
281
         *   other than frame_alloc when they are allocating,
281
         *   other than frame_alloc when they are allocating,
282
         *   that's why we should get recursion at most 1-level deep
282
         *   that's why we should get recursion at most 1-level deep
283
         */
283
         */
284
        spinlock_unlock(&cache->slablock);
284
        spinlock_unlock(&cache->slablock);
285
        slab = slab_space_alloc(cache, flags);
285
        slab = slab_space_alloc(cache, flags);
286
        if (!slab)
286
        if (!slab)
287
            return NULL;
287
            return NULL;
288
        spinlock_lock(&cache->slablock);
288
        spinlock_lock(&cache->slablock);
289
    } else {
289
    } else {
290
        slab = list_get_instance(cache->partial_slabs.next,
290
        slab = list_get_instance(cache->partial_slabs.next,
291
                     slab_t,
291
                     slab_t,
292
                     link);
292
                     link);
293
        list_remove(&slab->link);
293
        list_remove(&slab->link);
294
    }
294
    }
295
    obj = slab->start + slab->nextavail * cache->size;
295
    obj = slab->start + slab->nextavail * cache->size;
296
    slab->nextavail = *((int *)obj);
296
    slab->nextavail = *((int *)obj);
297
    slab->available--;
297
    slab->available--;
298
 
298
 
299
    if (! slab->available)
299
    if (! slab->available)
300
        list_prepend(&slab->link, &cache->full_slabs);
300
        list_prepend(&slab->link, &cache->full_slabs);
301
    else
301
    else
302
        list_prepend(&slab->link, &cache->partial_slabs);
302
        list_prepend(&slab->link, &cache->partial_slabs);
303
 
303
 
304
    spinlock_unlock(&cache->slablock);
304
    spinlock_unlock(&cache->slablock);
305
 
305
 
306
    if (cache->constructor && cache->constructor(obj, flags)) {
306
    if (cache->constructor && cache->constructor(obj, flags)) {
307
        /* Bad, bad, construction failed */
307
        /* Bad, bad, construction failed */
308
        slab_obj_destroy(cache, obj, slab);
308
        slab_obj_destroy(cache, obj, slab);
309
        return NULL;
309
        return NULL;
310
    }
310
    }
311
    return obj;
311
    return obj;
312
}
312
}
313
 
313
 
314
/**************************************/
314
/**************************************/
315
/* CPU-Cache slab functions */
315
/* CPU-Cache slab functions */
316
 
316
 
317
/**
317
/**
318
 * Finds a full magazine in cache, takes it from list
318
 * Finds a full magazine in cache, takes it from list
319
 * and returns it
319
 * and returns it
320
 *
320
 *
321
 * @param first If true, return first, else last mag
321
 * @param first If true, return first, else last mag
322
 */
322
 */
323
static slab_magazine_t * get_mag_from_cache(slab_cache_t *cache,
323
static slab_magazine_t * get_mag_from_cache(slab_cache_t *cache,
324
                        int first)
324
                        int first)
325
{
325
{
326
    slab_magazine_t *mag = NULL;
326
    slab_magazine_t *mag = NULL;
327
    link_t *cur;
327
    link_t *cur;
328
 
328
 
329
    spinlock_lock(&cache->maglock);
329
    spinlock_lock(&cache->maglock);
330
    if (!list_empty(&cache->magazines)) {
330
    if (!list_empty(&cache->magazines)) {
331
        if (first)
331
        if (first)
332
            cur = cache->magazines.next;
332
            cur = cache->magazines.next;
333
        else
333
        else
334
            cur = cache->magazines.prev;
334
            cur = cache->magazines.prev;
335
        mag = list_get_instance(cur, slab_magazine_t, link);
335
        mag = list_get_instance(cur, slab_magazine_t, link);
336
        list_remove(&mag->link);
336
        list_remove(&mag->link);
337
        atomic_dec(&cache->magazine_counter);
337
        atomic_dec(&cache->magazine_counter);
338
    }
338
    }
339
    spinlock_unlock(&cache->maglock);
339
    spinlock_unlock(&cache->maglock);
340
    return mag;
340
    return mag;
341
}
341
}
342
 
342
 
343
/** Prepend magazine to magazine list in cache */
343
/** Prepend magazine to magazine list in cache */
344
static void put_mag_to_cache(slab_cache_t *cache, slab_magazine_t *mag)
344
static void put_mag_to_cache(slab_cache_t *cache, slab_magazine_t *mag)
345
{
345
{
346
    spinlock_lock(&cache->maglock);
346
    spinlock_lock(&cache->maglock);
347
 
347
 
348
    list_prepend(&mag->link, &cache->magazines);
348
    list_prepend(&mag->link, &cache->magazines);
349
    atomic_inc(&cache->magazine_counter);
349
    atomic_inc(&cache->magazine_counter);
350
   
350
   
351
    spinlock_unlock(&cache->maglock);
351
    spinlock_unlock(&cache->maglock);
352
}
352
}
353
 
353
 
354
/**
354
/**
355
 * Free all objects in magazine and free memory associated with magazine
355
 * Free all objects in magazine and free memory associated with magazine
356
 *
356
 *
357
 * @return Number of freed pages
357
 * @return Number of freed pages
358
 */
358
 */
359
static count_t magazine_destroy(slab_cache_t *cache,
359
static count_t magazine_destroy(slab_cache_t *cache,
360
                slab_magazine_t *mag)
360
                slab_magazine_t *mag)
361
{
361
{
362
    int i;
362
    int i;
363
    count_t frames = 0;
363
    count_t frames = 0;
364
 
364
 
365
    for (i=0;i < mag->busy; i++) {
365
    for (i=0;i < mag->busy; i++) {
366
        frames += slab_obj_destroy(cache, mag->objs[i], NULL);
366
        frames += slab_obj_destroy(cache, mag->objs[i], NULL);
367
        atomic_dec(&cache->cached_objs);
367
        atomic_dec(&cache->cached_objs);
368
    }
368
    }
369
   
369
   
370
    slab_free(&mag_cache, mag);
370
    slab_free(&mag_cache, mag);
371
 
371
 
372
    return frames;
372
    return frames;
373
}
373
}
374
 
374
 
375
/**
375
/**
376
 * Find full magazine, set it as current and return it
376
 * Find full magazine, set it as current and return it
377
 *
377
 *
378
 * Assume cpu_magazine lock is held
378
 * Assume cpu_magazine lock is held
379
 */
379
 */
380
static slab_magazine_t * get_full_current_mag(slab_cache_t *cache)
380
static slab_magazine_t * get_full_current_mag(slab_cache_t *cache)
381
{
381
{
382
    slab_magazine_t *cmag, *lastmag, *newmag;
382
    slab_magazine_t *cmag, *lastmag, *newmag;
383
 
383
 
384
    cmag = cache->mag_cache[CPU->id].current;
384
    cmag = cache->mag_cache[CPU->id].current;
385
    lastmag = cache->mag_cache[CPU->id].last;
385
    lastmag = cache->mag_cache[CPU->id].last;
386
    if (cmag) { /* First try local CPU magazines */
386
    if (cmag) { /* First try local CPU magazines */
387
        if (cmag->busy)
387
        if (cmag->busy)
388
            return cmag;
388
            return cmag;
389
 
389
 
390
        if (lastmag && lastmag->busy) {
390
        if (lastmag && lastmag->busy) {
391
            cache->mag_cache[CPU->id].current = lastmag;
391
            cache->mag_cache[CPU->id].current = lastmag;
392
            cache->mag_cache[CPU->id].last = cmag;
392
            cache->mag_cache[CPU->id].last = cmag;
393
            return lastmag;
393
            return lastmag;
394
        }
394
        }
395
    }
395
    }
396
    /* Local magazines are empty, import one from magazine list */
396
    /* Local magazines are empty, import one from magazine list */
397
    newmag = get_mag_from_cache(cache, 1);
397
    newmag = get_mag_from_cache(cache, 1);
398
    if (!newmag)
398
    if (!newmag)
399
        return NULL;
399
        return NULL;
400
 
400
 
401
    if (lastmag)
401
    if (lastmag)
402
        magazine_destroy(cache, lastmag);
402
        magazine_destroy(cache, lastmag);
403
 
403
 
404
    cache->mag_cache[CPU->id].last = cmag;
404
    cache->mag_cache[CPU->id].last = cmag;
405
    cache->mag_cache[CPU->id].current = newmag;
405
    cache->mag_cache[CPU->id].current = newmag;
406
    return newmag;
406
    return newmag;
407
}
407
}
408
 
408
 
409
/**
409
/**
410
 * Try to find object in CPU-cache magazines
410
 * Try to find object in CPU-cache magazines
411
 *
411
 *
412
 * @return Pointer to object or NULL if not available
412
 * @return Pointer to object or NULL if not available
413
 */
413
 */
414
static void * magazine_obj_get(slab_cache_t *cache)
414
static void * magazine_obj_get(slab_cache_t *cache)
415
{
415
{
416
    slab_magazine_t *mag;
416
    slab_magazine_t *mag;
417
    void *obj;
417
    void *obj;
418
 
418
 
419
    if (!CPU)
419
    if (!CPU)
420
        return NULL;
420
        return NULL;
421
 
421
 
422
    spinlock_lock(&cache->mag_cache[CPU->id].lock);
422
    spinlock_lock(&cache->mag_cache[CPU->id].lock);
423
 
423
 
424
    mag = get_full_current_mag(cache);
424
    mag = get_full_current_mag(cache);
425
    if (!mag) {
425
    if (!mag) {
426
        spinlock_unlock(&cache->mag_cache[CPU->id].lock);
426
        spinlock_unlock(&cache->mag_cache[CPU->id].lock);
427
        return NULL;
427
        return NULL;
428
    }
428
    }
429
    obj = mag->objs[--mag->busy];
429
    obj = mag->objs[--mag->busy];
430
    spinlock_unlock(&cache->mag_cache[CPU->id].lock);
430
    spinlock_unlock(&cache->mag_cache[CPU->id].lock);
431
    atomic_dec(&cache->cached_objs);
431
    atomic_dec(&cache->cached_objs);
432
   
432
   
433
    return obj;
433
    return obj;
434
}
434
}
435
 
435
 
436
/**
436
/**
437
 * Assure that the current magazine is empty, return pointer to it, or NULL if
437
 * Assure that the current magazine is empty, return pointer to it, or NULL if
438
 * no empty magazine is available and cannot be allocated
438
 * no empty magazine is available and cannot be allocated
439
 *
439
 *
440
 * Assume mag_cache[CPU->id].lock is held
440
 * Assume mag_cache[CPU->id].lock is held
441
 *
441
 *
442
 * We have 2 magazines bound to processor.
442
 * We have 2 magazines bound to processor.
443
 * First try the current.
443
 * First try the current.
444
 *  If full, try the last.
444
 *  If full, try the last.
445
 *   If full, put to magazines list.
445
 *   If full, put to magazines list.
446
 *   allocate new, exchange last & current
446
 *   allocate new, exchange last & current
447
 *
447
 *
448
 */
448
 */
449
static slab_magazine_t * make_empty_current_mag(slab_cache_t *cache)
449
static slab_magazine_t * make_empty_current_mag(slab_cache_t *cache)
450
{
450
{
451
    slab_magazine_t *cmag,*lastmag,*newmag;
451
    slab_magazine_t *cmag,*lastmag,*newmag;
452
 
452
 
453
    cmag = cache->mag_cache[CPU->id].current;
453
    cmag = cache->mag_cache[CPU->id].current;
454
    lastmag = cache->mag_cache[CPU->id].last;
454
    lastmag = cache->mag_cache[CPU->id].last;
455
 
455
 
456
    if (cmag) {
456
    if (cmag) {
457
        if (cmag->busy < cmag->size)
457
        if (cmag->busy < cmag->size)
458
            return cmag;
458
            return cmag;
459
        if (lastmag && lastmag->busy < lastmag->size) {
459
        if (lastmag && lastmag->busy < lastmag->size) {
460
            cache->mag_cache[CPU->id].last = cmag;
460
            cache->mag_cache[CPU->id].last = cmag;
461
            cache->mag_cache[CPU->id].current = lastmag;
461
            cache->mag_cache[CPU->id].current = lastmag;
462
            return lastmag;
462
            return lastmag;
463
        }
463
        }
464
    }
464
    }
465
    /* current | last are full | nonexistent, allocate new */
465
    /* current | last are full | nonexistent, allocate new */
466
    /* We do not want to sleep just because of caching */
466
    /* We do not want to sleep just because of caching */
467
    /* Especially we do not want reclaiming to start, as
467
    /* Especially we do not want reclaiming to start, as
468
     * this would deadlock */
468
     * this would deadlock */
469
    newmag = slab_alloc(&mag_cache, FRAME_ATOMIC | FRAME_NO_RECLAIM);
469
    newmag = slab_alloc(&mag_cache, FRAME_ATOMIC | FRAME_NO_RECLAIM);
470
    if (!newmag)
470
    if (!newmag)
471
        return NULL;
471
        return NULL;
472
    newmag->size = SLAB_MAG_SIZE;
472
    newmag->size = SLAB_MAG_SIZE;
473
    newmag->busy = 0;
473
    newmag->busy = 0;
474
 
474
 
475
    /* Flush last to magazine list */
475
    /* Flush last to magazine list */
476
    if (lastmag)
476
    if (lastmag)
477
        put_mag_to_cache(cache, lastmag);
477
        put_mag_to_cache(cache, lastmag);
478
 
478
 
479
    /* Move current as last, save new as current */
479
    /* Move current as last, save new as current */
480
    cache->mag_cache[CPU->id].last = cmag; 
480
    cache->mag_cache[CPU->id].last = cmag; 
481
    cache->mag_cache[CPU->id].current = newmag;
481
    cache->mag_cache[CPU->id].current = newmag;
482
 
482
 
483
    return newmag;
483
    return newmag;
484
}
484
}
485
 
485
 
486
/**
486
/**
487
 * Put object into CPU-cache magazine
487
 * Put object into CPU-cache magazine
488
 *
488
 *
489
 * @return 0 - success, -1 - could not get memory
489
 * @return 0 - success, -1 - could not get memory
490
 */
490
 */
491
static int magazine_obj_put(slab_cache_t *cache, void *obj)
491
static int magazine_obj_put(slab_cache_t *cache, void *obj)
492
{
492
{
493
    slab_magazine_t *mag;
493
    slab_magazine_t *mag;
494
 
494
 
495
    if (!CPU)
495
    if (!CPU)
496
        return -1;
496
        return -1;
497
 
497
 
498
    spinlock_lock(&cache->mag_cache[CPU->id].lock);
498
    spinlock_lock(&cache->mag_cache[CPU->id].lock);
499
 
499
 
500
    mag = make_empty_current_mag(cache);
500
    mag = make_empty_current_mag(cache);
501
    if (!mag) {
501
    if (!mag) {
502
        spinlock_unlock(&cache->mag_cache[CPU->id].lock);
502
        spinlock_unlock(&cache->mag_cache[CPU->id].lock);
503
        return -1;
503
        return -1;
504
    }
504
    }
505
   
505
   
506
    mag->objs[mag->busy++] = obj;
506
    mag->objs[mag->busy++] = obj;
507
 
507
 
508
    spinlock_unlock(&cache->mag_cache[CPU->id].lock);
508
    spinlock_unlock(&cache->mag_cache[CPU->id].lock);
509
    atomic_inc(&cache->cached_objs);
509
    atomic_inc(&cache->cached_objs);
510
    return 0;
510
    return 0;
511
}
511
}
512
 
512
 
513
 
513
 
514
/**************************************/
514
/**************************************/
515
/* Slab cache functions */
515
/* Slab cache functions */
516
 
516
 
517
/** Return number of objects that fit in certain cache size */
517
/** Return number of objects that fit in certain cache size */
518
static int comp_objects(slab_cache_t *cache)
518
static int comp_objects(slab_cache_t *cache)
519
{
519
{
520
    if (cache->flags & SLAB_CACHE_SLINSIDE)
520
    if (cache->flags & SLAB_CACHE_SLINSIDE)
521
        return ((PAGE_SIZE << cache->order) - sizeof(slab_t)) / cache->size;
521
        return ((PAGE_SIZE << cache->order) - sizeof(slab_t)) / cache->size;
522
    else
522
    else
523
        return (PAGE_SIZE << cache->order) / cache->size;
523
        return (PAGE_SIZE << cache->order) / cache->size;
524
}
524
}
525
 
525
 
526
/** Return wasted space in slab */
526
/** Return wasted space in slab */
527
static int badness(slab_cache_t *cache)
527
static int badness(slab_cache_t *cache)
528
{
528
{
529
    int objects;
529
    int objects;
530
    int ssize;
530
    int ssize;
531
 
531
 
532
    objects = comp_objects(cache);
532
    objects = comp_objects(cache);
533
    ssize = PAGE_SIZE << cache->order;
533
    ssize = PAGE_SIZE << cache->order;
534
    if (cache->flags & SLAB_CACHE_SLINSIDE)
534
    if (cache->flags & SLAB_CACHE_SLINSIDE)
535
        ssize -= sizeof(slab_t);
535
        ssize -= sizeof(slab_t);
536
    return ssize - objects*cache->size;
536
    return ssize - objects*cache->size;
537
}
537
}
538
 
538
 
539
/**
539
/**
540
 * Initialize mag_cache structure in slab cache
540
 * Initialize mag_cache structure in slab cache
541
 */
541
 */
542
static void make_magcache(slab_cache_t *cache)
542
static void make_magcache(slab_cache_t *cache)
543
{
543
{
544
    int i;
544
    int i;
545
   
545
   
546
    ASSERT(_slab_initialized >= 2);
546
    ASSERT(_slab_initialized >= 2);
547
 
547
 
548
    cache->mag_cache = malloc(sizeof(slab_mag_cache_t)*config.cpu_count,0);
548
    cache->mag_cache = malloc(sizeof(slab_mag_cache_t)*config.cpu_count,0);
549
    for (i=0; i < config.cpu_count; i++) {
549
    for (i=0; i < config.cpu_count; i++) {
550
        memsetb((__address)&cache->mag_cache[i],
550
        memsetb((__address)&cache->mag_cache[i],
551
            sizeof(cache->mag_cache[i]), 0);
551
            sizeof(cache->mag_cache[i]), 0);
552
        spinlock_initialize(&cache->mag_cache[i].lock,
552
        spinlock_initialize(&cache->mag_cache[i].lock,
553
                    "slab_maglock_cpu");
553
                    "slab_maglock_cpu");
554
    }
554
    }
555
}
555
}
556
 
556
 
557
/** Initialize allocated memory as a slab cache */
557
/** Initialize allocated memory as a slab cache */
558
static void
558
static void
559
_slab_cache_create(slab_cache_t *cache,
559
_slab_cache_create(slab_cache_t *cache,
560
           char *name,
560
           char *name,
561
           size_t size,
561
           size_t size,
562
           size_t align,
562
           size_t align,
563
           int (*constructor)(void *obj, int kmflag),
563
           int (*constructor)(void *obj, int kmflag),
564
           int (*destructor)(void *obj),
564
           int (*destructor)(void *obj),
565
           int flags)
565
           int flags)
566
{
566
{
567
    int pages;
567
    int pages;
568
    ipl_t ipl;
568
    ipl_t ipl;
569
 
569
 
570
    memsetb((__address)cache, sizeof(*cache), 0);
570
    memsetb((__address)cache, sizeof(*cache), 0);
571
    cache->name = name;
571
    cache->name = name;
572
 
572
 
573
    if (align < sizeof(__native))
573
    if (align < sizeof(__native))
574
        align = sizeof(__native);
574
        align = sizeof(__native);
575
    size = ALIGN_UP(size, align);
575
    size = ALIGN_UP(size, align);
576
       
576
       
577
    cache->size = size;
577
    cache->size = size;
578
 
578
 
579
    cache->constructor = constructor;
579
    cache->constructor = constructor;
580
    cache->destructor = destructor;
580
    cache->destructor = destructor;
581
    cache->flags = flags;
581
    cache->flags = flags;
582
 
582
 
583
    list_initialize(&cache->full_slabs);
583
    list_initialize(&cache->full_slabs);
584
    list_initialize(&cache->partial_slabs);
584
    list_initialize(&cache->partial_slabs);
585
    list_initialize(&cache->magazines);
585
    list_initialize(&cache->magazines);
586
    spinlock_initialize(&cache->slablock, "slab_lock");
586
    spinlock_initialize(&cache->slablock, "slab_lock");
587
    spinlock_initialize(&cache->maglock, "slab_maglock");
587
    spinlock_initialize(&cache->maglock, "slab_maglock");
588
    if (! (cache->flags & SLAB_CACHE_NOMAGAZINE))
588
    if (! (cache->flags & SLAB_CACHE_NOMAGAZINE))
589
        make_magcache(cache);
589
        make_magcache(cache);
590
 
590
 
591
    /* Compute slab sizes, object counts in slabs etc. */
591
    /* Compute slab sizes, object counts in slabs etc. */
592
    if (cache->size < SLAB_INSIDE_SIZE)
592
    if (cache->size < SLAB_INSIDE_SIZE)
593
        cache->flags |= SLAB_CACHE_SLINSIDE;
593
        cache->flags |= SLAB_CACHE_SLINSIDE;
594
 
594
 
595
    /* Minimum slab order */
595
    /* Minimum slab order */
596
    pages = ((cache->size-1) >> PAGE_WIDTH) + 1;
596
    pages = ((cache->size-1) >> PAGE_WIDTH) + 1;
597
    cache->order = fnzb(pages);
597
    cache->order = fnzb(pages);
598
 
598
 
599
    while (badness(cache) > SLAB_MAX_BADNESS(cache)) {
599
    while (badness(cache) > SLAB_MAX_BADNESS(cache)) {
600
        cache->order += 1;
600
        cache->order += 1;
601
    }
601
    }
602
    cache->objects = comp_objects(cache);
602
    cache->objects = comp_objects(cache);
603
    /* If info fits in, put it inside */
603
    /* If info fits in, put it inside */
604
    if (badness(cache) > sizeof(slab_t))
604
    if (badness(cache) > sizeof(slab_t))
605
        cache->flags |= SLAB_CACHE_SLINSIDE;
605
        cache->flags |= SLAB_CACHE_SLINSIDE;
606
 
606
 
607
    /* Add cache to cache list */
607
    /* Add cache to cache list */
608
    ipl = interrupts_disable();
608
    ipl = interrupts_disable();
609
    spinlock_lock(&slab_cache_lock);
609
    spinlock_lock(&slab_cache_lock);
610
 
610
 
611
    list_append(&cache->link, &slab_cache_list);
611
    list_append(&cache->link, &slab_cache_list);
612
 
612
 
613
    spinlock_unlock(&slab_cache_lock);
613
    spinlock_unlock(&slab_cache_lock);
614
    interrupts_restore(ipl);
614
    interrupts_restore(ipl);
615
}
615
}
616
 
616
 
617
/** Create slab cache  */
617
/** Create slab cache  */
618
slab_cache_t * slab_cache_create(char *name,
618
slab_cache_t * slab_cache_create(char *name,
619
                 size_t size,
619
                 size_t size,
620
                 size_t align,
620
                 size_t align,
621
                 int (*constructor)(void *obj, int kmflag),
621
                 int (*constructor)(void *obj, int kmflag),
622
                 int (*destructor)(void *obj),
622
                 int (*destructor)(void *obj),
623
                 int flags)
623
                 int flags)
624
{
624
{
625
    slab_cache_t *cache;
625
    slab_cache_t *cache;
626
 
626
 
627
    cache = slab_alloc(&slab_cache_cache, 0);
627
    cache = slab_alloc(&slab_cache_cache, 0);
628
    _slab_cache_create(cache, name, size, align, constructor, destructor,
628
    _slab_cache_create(cache, name, size, align, constructor, destructor,
629
               flags);
629
               flags);
630
    return cache;
630
    return cache;
631
}
631
}
632
 
632
 
633
/**
633
/**
634
 * Reclaim space occupied by objects that are already free
634
 * Reclaim space occupied by objects that are already free
635
 *
635
 *
636
 * @param flags If contains SLAB_RECLAIM_ALL, do aggressive freeing
636
 * @param flags If contains SLAB_RECLAIM_ALL, do aggressive freeing
637
 * @return Number of freed pages
637
 * @return Number of freed pages
638
 */
638
 */
639
static count_t _slab_reclaim(slab_cache_t *cache, int flags)
639
static count_t _slab_reclaim(slab_cache_t *cache, int flags)
640
{
640
{
641
    int i;
641
    int i;
642
    slab_magazine_t *mag;
642
    slab_magazine_t *mag;
643
    count_t frames = 0;
643
    count_t frames = 0;
644
    int magcount;
644
    int magcount;
645
   
645
   
646
    if (cache->flags & SLAB_CACHE_NOMAGAZINE)
646
    if (cache->flags & SLAB_CACHE_NOMAGAZINE)
647
        return 0; /* Nothing to do */
647
        return 0; /* Nothing to do */
648
 
648
 
649
    /* We count up to original magazine count to avoid
649
    /* We count up to original magazine count to avoid
650
     * endless loop
650
     * endless loop
651
     */
651
     */
652
    magcount = atomic_get(&cache->magazine_counter);
652
    magcount = atomic_get(&cache->magazine_counter);
653
    while (magcount-- && (mag=get_mag_from_cache(cache,0))) {
653
    while (magcount-- && (mag=get_mag_from_cache(cache,0))) {
654
        frames += magazine_destroy(cache,mag);
654
        frames += magazine_destroy(cache,mag);
655
        if (!(flags & SLAB_RECLAIM_ALL) && frames)
655
        if (!(flags & SLAB_RECLAIM_ALL) && frames)
656
            break;
656
            break;
657
    }
657
    }
658
   
658
   
659
    if (flags & SLAB_RECLAIM_ALL) {
659
    if (flags & SLAB_RECLAIM_ALL) {
660
        /* Free cpu-bound magazines */
660
        /* Free cpu-bound magazines */
661
        /* Destroy CPU magazines */
661
        /* Destroy CPU magazines */
662
        for (i=0; i<config.cpu_count; i++) {
662
        for (i=0; i<config.cpu_count; i++) {
663
            spinlock_lock(&cache->mag_cache[i].lock);
663
            spinlock_lock(&cache->mag_cache[i].lock);
664
 
664
 
665
            mag = cache->mag_cache[i].current;
665
            mag = cache->mag_cache[i].current;
666
            if (mag)
666
            if (mag)
667
                frames += magazine_destroy(cache, mag);
667
                frames += magazine_destroy(cache, mag);
668
            cache->mag_cache[i].current = NULL;
668
            cache->mag_cache[i].current = NULL;
669
           
669
           
670
            mag = cache->mag_cache[i].last;
670
            mag = cache->mag_cache[i].last;
671
            if (mag)
671
            if (mag)
672
                frames += magazine_destroy(cache, mag);
672
                frames += magazine_destroy(cache, mag);
673
            cache->mag_cache[i].last = NULL;
673
            cache->mag_cache[i].last = NULL;
674
 
674
 
675
            spinlock_unlock(&cache->mag_cache[i].lock);
675
            spinlock_unlock(&cache->mag_cache[i].lock);
676
        }
676
        }
677
    }
677
    }
678
 
678
 
679
    return frames;
679
    return frames;
680
}
680
}
681
 
681
 
682
/** Check that there are no slabs and remove cache from system  */
682
/** Check that there are no slabs and remove cache from system  */
683
void slab_cache_destroy(slab_cache_t *cache)
683
void slab_cache_destroy(slab_cache_t *cache)
684
{
684
{
685
    ipl_t ipl;
685
    ipl_t ipl;
686
 
686
 
687
    /* First remove cache from link, so that we don't need
687
    /* First remove cache from link, so that we don't need
688
     * to disable interrupts later
688
     * to disable interrupts later
689
     */
689
     */
690
 
690
 
691
    ipl = interrupts_disable();
691
    ipl = interrupts_disable();
692
    spinlock_lock(&slab_cache_lock);
692
    spinlock_lock(&slab_cache_lock);
693
 
693
 
694
    list_remove(&cache->link);
694
    list_remove(&cache->link);
695
 
695
 
696
    spinlock_unlock(&slab_cache_lock);
696
    spinlock_unlock(&slab_cache_lock);
697
    interrupts_restore(ipl);
697
    interrupts_restore(ipl);
698
 
698
 
699
    /* Do not lock anything, we assume the software is correct and
699
    /* Do not lock anything, we assume the software is correct and
700
     * does not touch the cache when it decides to destroy it */
700
     * does not touch the cache when it decides to destroy it */
701
   
701
   
702
    /* Destroy all magazines */
702
    /* Destroy all magazines */
703
    _slab_reclaim(cache, SLAB_RECLAIM_ALL);
703
    _slab_reclaim(cache, SLAB_RECLAIM_ALL);
704
 
704
 
705
    /* All slabs must be empty */
705
    /* All slabs must be empty */
706
    if (!list_empty(&cache->full_slabs) \
706
    if (!list_empty(&cache->full_slabs) \
707
        || !list_empty(&cache->partial_slabs))
707
        || !list_empty(&cache->partial_slabs))
708
        panic("Destroying cache that is not empty.");
708
        panic("Destroying cache that is not empty.");
709
 
709
 
710
    if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
710
    if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
711
        free(cache->mag_cache);
711
        free(cache->mag_cache);
712
    slab_free(&slab_cache_cache, cache);
712
    slab_free(&slab_cache_cache, cache);
713
}
713
}
714
 
714
 
715
/** Allocate new object from cache - if no flags given, always returns
715
/** Allocate new object from cache - if no flags given, always returns
716
    memory */
716
    memory */
717
void * slab_alloc(slab_cache_t *cache, int flags)
717
void * slab_alloc(slab_cache_t *cache, int flags)
718
{
718
{
719
    ipl_t ipl;
719
    ipl_t ipl;
720
    void *result = NULL;
720
    void *result = NULL;
721
   
721
   
722
    /* Disable interrupts to avoid deadlocks with interrupt handlers */
722
    /* Disable interrupts to avoid deadlocks with interrupt handlers */
723
    ipl = interrupts_disable();
723
    ipl = interrupts_disable();
724
 
724
 
725
    if (!(cache->flags & SLAB_CACHE_NOMAGAZINE)) {
725
    if (!(cache->flags & SLAB_CACHE_NOMAGAZINE)) {
726
        result = magazine_obj_get(cache);
726
        result = magazine_obj_get(cache);
727
    }
727
    }
728
    if (!result)
728
    if (!result)
729
        result = slab_obj_create(cache, flags);
729
        result = slab_obj_create(cache, flags);
730
 
730
 
731
    interrupts_restore(ipl);
731
    interrupts_restore(ipl);
732
 
732
 
733
    if (result)
733
    if (result)
734
        atomic_inc(&cache->allocated_objs);
734
        atomic_inc(&cache->allocated_objs);
735
 
735
 
736
    return result;
736
    return result;
737
}
737
}
738
 
738
 
739
/** Return object to cache, use slab if known  */
739
/** Return object to cache, use slab if known  */
740
static void _slab_free(slab_cache_t *cache, void *obj, slab_t *slab)
740
static void _slab_free(slab_cache_t *cache, void *obj, slab_t *slab)
741
{
741
{
742
    ipl_t ipl;
742
    ipl_t ipl;
743
 
743
 
744
    ipl = interrupts_disable();
744
    ipl = interrupts_disable();
745
 
745
 
746
    if ((cache->flags & SLAB_CACHE_NOMAGAZINE) \
746
    if ((cache->flags & SLAB_CACHE_NOMAGAZINE) \
747
        || magazine_obj_put(cache, obj)) {
747
        || magazine_obj_put(cache, obj)) {
748
 
748
 
749
        slab_obj_destroy(cache, obj, slab);
749
        slab_obj_destroy(cache, obj, slab);
750
 
750
 
751
    }
751
    }
752
    interrupts_restore(ipl);
752
    interrupts_restore(ipl);
753
    atomic_dec(&cache->allocated_objs);
753
    atomic_dec(&cache->allocated_objs);
754
}
754
}
755
 
755
 
756
/** Return slab object to cache */
756
/** Return slab object to cache */
757
void slab_free(slab_cache_t *cache, void *obj)
757
void slab_free(slab_cache_t *cache, void *obj)
758
{
758
{
759
    _slab_free(cache,obj,NULL);
759
    _slab_free(cache,obj,NULL);
760
}
760
}
761
 
761
 
762
/* Go through all caches and reclaim what is possible */
762
/* Go through all caches and reclaim what is possible */
763
count_t slab_reclaim(int flags)
763
count_t slab_reclaim(int flags)
764
{
764
{
765
    slab_cache_t *cache;
765
    slab_cache_t *cache;
766
    link_t *cur;
766
    link_t *cur;
767
    count_t frames = 0;
767
    count_t frames = 0;
768
 
768
 
769
    spinlock_lock(&slab_cache_lock);
769
    spinlock_lock(&slab_cache_lock);
770
 
770
 
771
    /* TODO: Add assert, that interrupts are disabled, otherwise
771
    /* TODO: Add assert, that interrupts are disabled, otherwise
772
     * memory allocation from interrupts can deadlock.
772
     * memory allocation from interrupts can deadlock.
773
     */
773
     */
774
 
774
 
775
    for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
775
    for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
776
        cache = list_get_instance(cur, slab_cache_t, link);
776
        cache = list_get_instance(cur, slab_cache_t, link);
777
        frames += _slab_reclaim(cache, flags);
777
        frames += _slab_reclaim(cache, flags);
778
    }
778
    }
779
 
779
 
780
    spinlock_unlock(&slab_cache_lock);
780
    spinlock_unlock(&slab_cache_lock);
781
 
781
 
782
    return frames;
782
    return frames;
783
}
783
}
784
 
784
 
785
 
785
 
786
/* Print list of slabs */
786
/* Print list of slabs */
787
void slab_print_list(void)
787
void slab_print_list(void)
788
{
788
{
789
    slab_cache_t *cache;
789
    slab_cache_t *cache;
790
    link_t *cur;
790
    link_t *cur;
791
    ipl_t ipl;
791
    ipl_t ipl;
792
   
792
   
793
    ipl = interrupts_disable();
793
    ipl = interrupts_disable();
794
    spinlock_lock(&slab_cache_lock);
794
    spinlock_lock(&slab_cache_lock);
795
    printf("slab name\t  Osize\t  Pages\t Obj/pg\t  Slabs\t Cached\tAllocobjs\tCtl\n");
795
    printf("slab name\t  Osize\t  Pages\t Obj/pg\t  Slabs\t Cached\tAllocobjs\tCtl\n");
796
    for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
796
    for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
797
        cache = list_get_instance(cur, slab_cache_t, link);
797
        cache = list_get_instance(cur, slab_cache_t, link);
798
        printf("%s\t%7zd\t%7zd\t%7zd\t%7zd\t%7zd\t%7zd\t\t%s\n", cache->name, cache->size,
798
        printf("%s\t%7zd\t%7zd\t%7zd\t%7zd\t%7zd\t%7zd\t\t%s\n", cache->name, cache->size,
799
               (1 << cache->order), cache->objects,
799
               (1 << cache->order), cache->objects,
800
               atomic_get(&cache->allocated_slabs),
800
               atomic_get(&cache->allocated_slabs),
801
               atomic_get(&cache->cached_objs),
801
               atomic_get(&cache->cached_objs),
802
               atomic_get(&cache->allocated_objs),
802
               atomic_get(&cache->allocated_objs),
803
               cache->flags & SLAB_CACHE_SLINSIDE ? "In" : "Out");
803
               cache->flags & SLAB_CACHE_SLINSIDE ? "In" : "Out");
804
    }
804
    }
805
    spinlock_unlock(&slab_cache_lock);
805
    spinlock_unlock(&slab_cache_lock);
806
    interrupts_restore(ipl);
806
    interrupts_restore(ipl);
807
}
807
}
808
 
808
 
809
void slab_cache_init(void)
809
void slab_cache_init(void)
810
{
810
{
811
    int i, size;
811
    int i, size;
812
 
812
 
813
    /* Initialize magazine cache */
813
    /* Initialize magazine cache */
814
    _slab_cache_create(&mag_cache,
814
    _slab_cache_create(&mag_cache,
815
               "slab_magazine",
815
               "slab_magazine",
816
               sizeof(slab_magazine_t)+SLAB_MAG_SIZE*sizeof(void*),
816
               sizeof(slab_magazine_t)+SLAB_MAG_SIZE*sizeof(void*),
817
               sizeof(__address),
817
               sizeof(__address),
818
               NULL, NULL,
818
               NULL, NULL,
819
               SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
819
               SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
820
    /* Initialize slab_cache cache */
820
    /* Initialize slab_cache cache */
821
    _slab_cache_create(&slab_cache_cache,
821
    _slab_cache_create(&slab_cache_cache,
822
               "slab_cache",
822
               "slab_cache",
823
               sizeof(slab_cache_cache),
823
               sizeof(slab_cache_cache),
824
               sizeof(__address),
824
               sizeof(__address),
825
               NULL, NULL,
825
               NULL, NULL,
826
               SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
826
               SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
827
    /* Initialize external slab cache */
827
    /* Initialize external slab cache */
828
    slab_extern_cache = slab_cache_create("slab_extern",
828
    slab_extern_cache = slab_cache_create("slab_extern",
829
                          sizeof(slab_t),
829
                          sizeof(slab_t),
830
                          0, NULL, NULL,
830
                          0, NULL, NULL,
831
                          SLAB_CACHE_SLINSIDE | SLAB_CACHE_MAGDEFERRED);
831
                          SLAB_CACHE_SLINSIDE | SLAB_CACHE_MAGDEFERRED);
832
 
832
 
833
    /* Initialize structures for malloc */
833
    /* Initialize structures for malloc */
834
    for (i=0, size=(1<<SLAB_MIN_MALLOC_W);
834
    for (i=0, size=(1<<SLAB_MIN_MALLOC_W);
835
         i < (SLAB_MAX_MALLOC_W-SLAB_MIN_MALLOC_W+1);
835
         i < (SLAB_MAX_MALLOC_W-SLAB_MIN_MALLOC_W+1);
836
         i++, size <<= 1) {
836
         i++, size <<= 1) {
837
        malloc_caches[i] = slab_cache_create(malloc_names[i],
837
        malloc_caches[i] = slab_cache_create(malloc_names[i],
838
                             size, 0,
838
                             size, 0,
839
                             NULL,NULL, SLAB_CACHE_MAGDEFERRED);
839
                             NULL,NULL, SLAB_CACHE_MAGDEFERRED);
840
    }
840
    }
841
#ifdef CONFIG_DEBUG       
841
#ifdef CONFIG_DEBUG       
842
    _slab_initialized = 1;
842
    _slab_initialized = 1;
843
#endif
843
#endif
844
}
844
}
845
 
845
 
846
/** Enable cpu_cache
846
/** Enable cpu_cache
847
 *
847
 *
848
 * Kernel calls this function, when it knows the real number of
848
 * Kernel calls this function, when it knows the real number of
849
 * processors.
849
 * processors.
850
 * Allocate slab for cpucache and enable it on all existing
850
 * Allocate slab for cpucache and enable it on all existing
851
 * slabs that are SLAB_CACHE_MAGDEFERRED
851
 * slabs that are SLAB_CACHE_MAGDEFERRED
852
 */
852
 */
853
void slab_enable_cpucache(void)
853
void slab_enable_cpucache(void)
854
{
854
{
855
    link_t *cur;
855
    link_t *cur;
856
    slab_cache_t *s;
856
    slab_cache_t *s;
857
 
857
 
858
#ifdef CONFIG_DEBUG
858
#ifdef CONFIG_DEBUG
859
    _slab_initialized = 2;
859
    _slab_initialized = 2;
860
#endif
860
#endif
861
 
861
 
862
    spinlock_lock(&slab_cache_lock);
862
    spinlock_lock(&slab_cache_lock);
863
   
863
   
864
    for (cur=slab_cache_list.next; cur != &slab_cache_list;cur=cur->next){
864
    for (cur=slab_cache_list.next; cur != &slab_cache_list;cur=cur->next){
865
        s = list_get_instance(cur, slab_cache_t, link);
865
        s = list_get_instance(cur, slab_cache_t, link);
866
        if ((s->flags & SLAB_CACHE_MAGDEFERRED) != SLAB_CACHE_MAGDEFERRED)
866
        if ((s->flags & SLAB_CACHE_MAGDEFERRED) != SLAB_CACHE_MAGDEFERRED)
867
            continue;
867
            continue;
868
        make_magcache(s);
868
        make_magcache(s);
869
        s->flags &= ~SLAB_CACHE_MAGDEFERRED;
869
        s->flags &= ~SLAB_CACHE_MAGDEFERRED;
870
    }
870
    }
871
 
871
 
872
    spinlock_unlock(&slab_cache_lock);
872
    spinlock_unlock(&slab_cache_lock);
873
}
873
}
874
 
874
 
875
/**************************************/
875
/**************************************/
876
/* kalloc/kfree functions             */
876
/* kalloc/kfree functions             */
877
void * malloc(unsigned int size, int flags)
877
void * malloc(unsigned int size, int flags)
878
{
878
{
879
    int idx;
879
    int idx;
880
 
880
 
881
    ASSERT(_slab_initialized);
881
    ASSERT(_slab_initialized);
882
    ASSERT(size && size <= (1 << SLAB_MAX_MALLOC_W));
882
    ASSERT(size && size <= (1 << SLAB_MAX_MALLOC_W));
883
   
883
   
884
    if (size < (1 << SLAB_MIN_MALLOC_W))
884
    if (size < (1 << SLAB_MIN_MALLOC_W))
885
        size = (1 << SLAB_MIN_MALLOC_W);
885
        size = (1 << SLAB_MIN_MALLOC_W);
886
 
886
 
887
    idx = fnzb(size-1) - SLAB_MIN_MALLOC_W + 1;
887
    idx = fnzb(size-1) - SLAB_MIN_MALLOC_W + 1;
888
 
888
 
889
    return slab_alloc(malloc_caches[idx], flags);
889
    return slab_alloc(malloc_caches[idx], flags);
890
}
890
}
891
 
891
 
892
void free(void *obj)
892
void free(void *obj)
893
{
893
{
894
    slab_t *slab;
894
    slab_t *slab;
895
 
895
 
896
    if (!obj) return;
896
    if (!obj) return;
897
 
897
 
898
    slab = obj2slab(obj);
898
    slab = obj2slab(obj);
899
    _slab_free(slab->cache, obj, slab);
899
    _slab_free(slab->cache, obj, slab);
900
}
900
}
901
 
901