Subversion Repositories HelenOS-historic

Rev

Rev 1705 | Rev 1757 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 1705 Rev 1735
1
/*
1
/*
2
 * Copyright (C) 2001-2006 Jakub Jermar
2
 * Copyright (C) 2001-2006 Jakub Jermar
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
 /** @addtogroup genericmm
29
 /** @addtogroup genericmm
30
 * @{
30
 * @{
31
 */
31
 */
32
 
32
 
33
/**
33
/**
34
 * @file
34
 * @file
35
 * @brief   Address space related functions.
35
 * @brief   Address space related functions.
36
 *
36
 *
37
 * This file contains address space manipulation functions.
37
 * This file contains address space manipulation functions.
38
 * Roughly speaking, this is a higher-level client of
38
 * Roughly speaking, this is a higher-level client of
39
 * Virtual Address Translation (VAT) subsystem.
39
 * Virtual Address Translation (VAT) subsystem.
40
 *
40
 *
41
 * Functionality provided by this file allows one to
41
 * Functionality provided by this file allows one to
42
 * create address space and create, resize and share
42
 * create address space and create, resize and share
43
 * address space areas.
43
 * address space areas.
44
 *
44
 *
45
 * @see page.c
45
 * @see page.c
46
 *
46
 *
47
 */
47
 */
48
 
48
 
49
#include <mm/as.h>
49
#include <mm/as.h>
50
#include <arch/mm/as.h>
50
#include <arch/mm/as.h>
51
#include <mm/page.h>
51
#include <mm/page.h>
52
#include <mm/frame.h>
52
#include <mm/frame.h>
53
#include <mm/slab.h>
53
#include <mm/slab.h>
54
#include <mm/tlb.h>
54
#include <mm/tlb.h>
55
#include <arch/mm/page.h>
55
#include <arch/mm/page.h>
56
#include <genarch/mm/page_pt.h>
56
#include <genarch/mm/page_pt.h>
57
#include <genarch/mm/page_ht.h>
57
#include <genarch/mm/page_ht.h>
58
#include <mm/asid.h>
58
#include <mm/asid.h>
59
#include <arch/mm/asid.h>
59
#include <arch/mm/asid.h>
60
#include <synch/spinlock.h>
60
#include <synch/spinlock.h>
61
#include <synch/mutex.h>
61
#include <synch/mutex.h>
62
#include <adt/list.h>
62
#include <adt/list.h>
63
#include <adt/btree.h>
63
#include <adt/btree.h>
64
#include <proc/task.h>
64
#include <proc/task.h>
65
#include <proc/thread.h>
65
#include <proc/thread.h>
66
#include <arch/asm.h>
66
#include <arch/asm.h>
67
#include <panic.h>
67
#include <panic.h>
68
#include <debug.h>
68
#include <debug.h>
69
#include <print.h>
69
#include <print.h>
70
#include <memstr.h>
70
#include <memstr.h>
71
#include <macros.h>
71
#include <macros.h>
72
#include <arch.h>
72
#include <arch.h>
73
#include <errno.h>
73
#include <errno.h>
74
#include <config.h>
74
#include <config.h>
75
#include <align.h>
75
#include <align.h>
76
#include <arch/types.h>
76
#include <arch/types.h>
77
#include <typedefs.h>
77
#include <typedefs.h>
78
#include <syscall/copy.h>
78
#include <syscall/copy.h>
79
#include <arch/interrupt.h>
79
#include <arch/interrupt.h>
80
 
80
 
81
as_operations_t *as_operations = NULL;
81
as_operations_t *as_operations = NULL;
82
 
82
 
83
/** This lock protects inactive_as_with_asid_head list. It must be acquired before as_t mutex. */
83
/** This lock protects inactive_as_with_asid_head list. It must be acquired before as_t mutex. */
84
SPINLOCK_INITIALIZE(inactive_as_with_asid_lock);
84
SPINLOCK_INITIALIZE(inactive_as_with_asid_lock);
85
 
85
 
86
/**
86
/**
87
 * This list contains address spaces that are not active on any
87
 * This list contains address spaces that are not active on any
88
 * processor and that have valid ASID.
88
 * processor and that have valid ASID.
89
 */
89
 */
90
LIST_INITIALIZE(inactive_as_with_asid_head);
90
LIST_INITIALIZE(inactive_as_with_asid_head);
91
 
91
 
92
/** Kernel address space. */
92
/** Kernel address space. */
93
as_t *AS_KERNEL = NULL;
93
as_t *AS_KERNEL = NULL;
94
 
94
 
95
static int area_flags_to_page_flags(int aflags);
95
static int area_flags_to_page_flags(int aflags);
96
static as_area_t *find_area_and_lock(as_t *as, __address va);
96
static as_area_t *find_area_and_lock(as_t *as, __address va);
97
static bool check_area_conflicts(as_t *as, __address va, size_t size, as_area_t *avoid_area);
97
static bool check_area_conflicts(as_t *as, __address va, size_t size, as_area_t *avoid_area);
98
static void sh_info_remove_reference(share_info_t *sh_info);
98
static void sh_info_remove_reference(share_info_t *sh_info);
99
 
99
 
100
/** Initialize address space subsystem. */
100
/** Initialize address space subsystem. */
101
void as_init(void)
101
void as_init(void)
102
{
102
{
103
    as_arch_init();
103
    as_arch_init();
104
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
104
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
105
    if (!AS_KERNEL)
105
    if (!AS_KERNEL)
106
        panic("can't create kernel address space\n");
106
        panic("can't create kernel address space\n");
107
   
107
   
108
}
108
}
109
 
109
 
110
/** Create address space.
110
/** Create address space.
111
 *
111
 *
112
 * @param flags Flags that influence way in wich the address space is created.
112
 * @param flags Flags that influence way in wich the address space is created.
113
 */
113
 */
114
as_t *as_create(int flags)
114
as_t *as_create(int flags)
115
{
115
{
116
    as_t *as;
116
    as_t *as;
117
 
117
 
118
    as = (as_t *) malloc(sizeof(as_t), 0);
118
    as = (as_t *) malloc(sizeof(as_t), 0);
119
    link_initialize(&as->inactive_as_with_asid_link);
119
    link_initialize(&as->inactive_as_with_asid_link);
120
    mutex_initialize(&as->lock);
120
    mutex_initialize(&as->lock);
121
    btree_create(&as->as_area_btree);
121
    btree_create(&as->as_area_btree);
122
   
122
   
123
    if (flags & FLAG_AS_KERNEL)
123
    if (flags & FLAG_AS_KERNEL)
124
        as->asid = ASID_KERNEL;
124
        as->asid = ASID_KERNEL;
125
    else
125
    else
126
        as->asid = ASID_INVALID;
126
        as->asid = ASID_INVALID;
127
   
127
   
128
    as->refcount = 0;
128
    as->refcount = 0;
129
    as->cpu_refcount = 0;
129
    as->cpu_refcount = 0;
130
    as->page_table = page_table_create(flags);
130
    as->page_table = page_table_create(flags);
131
 
131
 
132
    return as;
132
    return as;
133
}
133
}
134
 
134
 
135
/** Destroy adress space.
135
/** Destroy adress space.
136
 *
136
 *
137
 * When there are no tasks referencing this address space (i.e. its refcount is zero),
137
 * When there are no tasks referencing this address space (i.e. its refcount is zero),
138
 * the address space can be destroyed.
138
 * the address space can be destroyed.
139
 */
139
 */
140
void as_destroy(as_t *as)
140
void as_destroy(as_t *as)
141
{
141
{
142
    ipl_t ipl;
142
    ipl_t ipl;
143
    bool cond;
143
    bool cond;
144
 
144
 
145
    ASSERT(as->refcount == 0);
145
    ASSERT(as->refcount == 0);
146
   
146
   
147
    /*
147
    /*
148
     * Since there is no reference to this area,
148
     * Since there is no reference to this area,
149
     * it is safe not to lock its mutex.
149
     * it is safe not to lock its mutex.
150
     */
150
     */
151
    ipl = interrupts_disable();
151
    ipl = interrupts_disable();
152
    spinlock_lock(&inactive_as_with_asid_lock);
152
    spinlock_lock(&inactive_as_with_asid_lock);
153
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
153
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
154
        if (as != AS && as->cpu_refcount == 0)
154
        if (as != AS && as->cpu_refcount == 0)
155
            list_remove(&as->inactive_as_with_asid_link);
155
            list_remove(&as->inactive_as_with_asid_link);
156
        asid_put(as->asid);
156
        asid_put(as->asid);
157
    }
157
    }
158
    spinlock_unlock(&inactive_as_with_asid_lock);
158
    spinlock_unlock(&inactive_as_with_asid_lock);
159
 
159
 
160
    /*
160
    /*
161
     * Destroy address space areas of the address space.
161
     * Destroy address space areas of the address space.
162
     * The B+tee must be walked carefully because it is
162
     * The B+tee must be walked carefully because it is
163
     * also being destroyed.
163
     * also being destroyed.
164
     */
164
     */
165
    for (cond = true; cond; ) {
165
    for (cond = true; cond; ) {
166
        btree_node_t *node;
166
        btree_node_t *node;
167
 
167
 
168
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
168
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
169
        node = list_get_instance(as->as_area_btree.leaf_head.next, btree_node_t, leaf_link);
169
        node = list_get_instance(as->as_area_btree.leaf_head.next, btree_node_t, leaf_link);
170
 
170
 
171
        if ((cond = node->keys)) {
171
        if ((cond = node->keys)) {
172
            as_area_destroy(as, node->key[0]);
172
            as_area_destroy(as, node->key[0]);
173
        }
173
        }
174
    }
174
    }
175
 
175
 
176
    btree_destroy(&as->as_area_btree);
176
    btree_destroy(&as->as_area_btree);
177
    page_table_destroy(as->page_table);
177
    page_table_destroy(as->page_table);
178
 
178
 
179
    interrupts_restore(ipl);
179
    interrupts_restore(ipl);
180
   
180
   
181
    free(as);
181
    free(as);
182
}
182
}
183
 
183
 
184
/** Create address space area of common attributes.
184
/** Create address space area of common attributes.
185
 *
185
 *
186
 * The created address space area is added to the target address space.
186
 * The created address space area is added to the target address space.
187
 *
187
 *
188
 * @param as Target address space.
188
 * @param as Target address space.
189
 * @param flags Flags of the area memory.
189
 * @param flags Flags of the area memory.
190
 * @param size Size of area.
190
 * @param size Size of area.
191
 * @param base Base address of area.
191
 * @param base Base address of area.
192
 * @param attrs Attributes of the area.
192
 * @param attrs Attributes of the area.
193
 * @param backend Address space area backend. NULL if no backend is used.
193
 * @param backend Address space area backend. NULL if no backend is used.
194
 * @param backend_data NULL or a pointer to an array holding two void *.
194
 * @param backend_data NULL or a pointer to an array holding two void *.
195
 *
195
 *
196
 * @return Address space area on success or NULL on failure.
196
 * @return Address space area on success or NULL on failure.
197
 */
197
 */
198
as_area_t *as_area_create(as_t *as, int flags, size_t size, __address base, int attrs,
198
as_area_t *as_area_create(as_t *as, int flags, size_t size, __address base, int attrs,
199
           mem_backend_t *backend, mem_backend_data_t *backend_data)
199
           mem_backend_t *backend, mem_backend_data_t *backend_data)
200
{
200
{
201
    ipl_t ipl;
201
    ipl_t ipl;
202
    as_area_t *a;
202
    as_area_t *a;
203
   
203
   
204
    if (base % PAGE_SIZE)
204
    if (base % PAGE_SIZE)
205
        return NULL;
205
        return NULL;
206
 
206
 
207
    if (!size)
207
    if (!size)
208
        return NULL;
208
        return NULL;
209
 
209
 
210
    /* Writeable executable areas are not supported. */
210
    /* Writeable executable areas are not supported. */
211
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
211
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
212
        return NULL;
212
        return NULL;
213
   
213
   
214
    ipl = interrupts_disable();
214
    ipl = interrupts_disable();
215
    mutex_lock(&as->lock);
215
    mutex_lock(&as->lock);
216
   
216
   
217
    if (!check_area_conflicts(as, base, size, NULL)) {
217
    if (!check_area_conflicts(as, base, size, NULL)) {
218
        mutex_unlock(&as->lock);
218
        mutex_unlock(&as->lock);
219
        interrupts_restore(ipl);
219
        interrupts_restore(ipl);
220
        return NULL;
220
        return NULL;
221
    }
221
    }
222
   
222
   
223
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
223
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
224
 
224
 
225
    mutex_initialize(&a->lock);
225
    mutex_initialize(&a->lock);
226
   
226
   
227
    a->as = as;
227
    a->as = as;
228
    a->flags = flags;
228
    a->flags = flags;
229
    a->attributes = attrs;
229
    a->attributes = attrs;
230
    a->pages = SIZE2FRAMES(size);
230
    a->pages = SIZE2FRAMES(size);
231
    a->base = base;
231
    a->base = base;
232
    a->sh_info = NULL;
232
    a->sh_info = NULL;
233
    a->backend = backend;
233
    a->backend = backend;
234
    if (backend_data)
234
    if (backend_data)
235
        a->backend_data = *backend_data;
235
        a->backend_data = *backend_data;
236
    else
236
    else
237
        memsetb((__address) &a->backend_data, sizeof(a->backend_data), 0);
237
        memsetb((__address) &a->backend_data, sizeof(a->backend_data), 0);
238
 
238
 
239
    btree_create(&a->used_space);
239
    btree_create(&a->used_space);
240
   
240
   
241
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
241
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
242
 
242
 
243
    mutex_unlock(&as->lock);
243
    mutex_unlock(&as->lock);
244
    interrupts_restore(ipl);
244
    interrupts_restore(ipl);
245
 
245
 
246
    return a;
246
    return a;
247
}
247
}
248
 
248
 
249
/** Find address space area and change it.
249
/** Find address space area and change it.
250
 *
250
 *
251
 * @param as Address space.
251
 * @param as Address space.
252
 * @param address Virtual address belonging to the area to be changed. Must be page-aligned.
252
 * @param address Virtual address belonging to the area to be changed. Must be page-aligned.
253
 * @param size New size of the virtual memory block starting at address.
253
 * @param size New size of the virtual memory block starting at address.
254
 * @param flags Flags influencing the remap operation. Currently unused.
254
 * @param flags Flags influencing the remap operation. Currently unused.
255
 *
255
 *
256
 * @return Zero on success or a value from @ref errno.h otherwise.
256
 * @return Zero on success or a value from @ref errno.h otherwise.
257
 */
257
 */
258
int as_area_resize(as_t *as, __address address, size_t size, int flags)
258
int as_area_resize(as_t *as, __address address, size_t size, int flags)
259
{
259
{
260
    as_area_t *area;
260
    as_area_t *area;
261
    ipl_t ipl;
261
    ipl_t ipl;
262
    size_t pages;
262
    size_t pages;
263
   
263
   
264
    ipl = interrupts_disable();
264
    ipl = interrupts_disable();
265
    mutex_lock(&as->lock);
265
    mutex_lock(&as->lock);
266
   
266
   
267
    /*
267
    /*
268
     * Locate the area.
268
     * Locate the area.
269
     */
269
     */
270
    area = find_area_and_lock(as, address);
270
    area = find_area_and_lock(as, address);
271
    if (!area) {
271
    if (!area) {
272
        mutex_unlock(&as->lock);
272
        mutex_unlock(&as->lock);
273
        interrupts_restore(ipl);
273
        interrupts_restore(ipl);
274
        return ENOENT;
274
        return ENOENT;
275
    }
275
    }
276
 
276
 
277
    if (area->backend == &phys_backend) {
277
    if (area->backend == &phys_backend) {
278
        /*
278
        /*
279
         * Remapping of address space areas associated
279
         * Remapping of address space areas associated
280
         * with memory mapped devices is not supported.
280
         * with memory mapped devices is not supported.
281
         */
281
         */
282
        mutex_unlock(&area->lock);
282
        mutex_unlock(&area->lock);
283
        mutex_unlock(&as->lock);
283
        mutex_unlock(&as->lock);
284
        interrupts_restore(ipl);
284
        interrupts_restore(ipl);
285
        return ENOTSUP;
285
        return ENOTSUP;
286
    }
286
    }
287
    if (area->sh_info) {
287
    if (area->sh_info) {
288
        /*
288
        /*
289
         * Remapping of shared address space areas
289
         * Remapping of shared address space areas
290
         * is not supported.
290
         * is not supported.
291
         */
291
         */
292
        mutex_unlock(&area->lock);
292
        mutex_unlock(&area->lock);
293
        mutex_unlock(&as->lock);
293
        mutex_unlock(&as->lock);
294
        interrupts_restore(ipl);
294
        interrupts_restore(ipl);
295
        return ENOTSUP;
295
        return ENOTSUP;
296
    }
296
    }
297
 
297
 
298
    pages = SIZE2FRAMES((address - area->base) + size);
298
    pages = SIZE2FRAMES((address - area->base) + size);
299
    if (!pages) {
299
    if (!pages) {
300
        /*
300
        /*
301
         * Zero size address space areas are not allowed.
301
         * Zero size address space areas are not allowed.
302
         */
302
         */
303
        mutex_unlock(&area->lock);
303
        mutex_unlock(&area->lock);
304
        mutex_unlock(&as->lock);
304
        mutex_unlock(&as->lock);
305
        interrupts_restore(ipl);
305
        interrupts_restore(ipl);
306
        return EPERM;
306
        return EPERM;
307
    }
307
    }
308
   
308
   
309
    if (pages < area->pages) {
309
    if (pages < area->pages) {
310
        bool cond;
310
        bool cond;
311
        __address start_free = area->base + pages*PAGE_SIZE;
311
        __address start_free = area->base + pages*PAGE_SIZE;
312
 
312
 
313
        /*
313
        /*
314
         * Shrinking the area.
314
         * Shrinking the area.
315
         * No need to check for overlaps.
315
         * No need to check for overlaps.
316
         */
316
         */
317
 
317
 
318
        /*
318
        /*
319
         * Start TLB shootdown sequence.
319
         * Start TLB shootdown sequence.
320
         */
320
         */
321
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
321
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
322
 
322
 
323
        /*
323
        /*
324
         * Remove frames belonging to used space starting from
324
         * Remove frames belonging to used space starting from
325
         * the highest addresses downwards until an overlap with
325
         * the highest addresses downwards until an overlap with
326
         * the resized address space area is found. Note that this
326
         * the resized address space area is found. Note that this
327
         * is also the right way to remove part of the used_space
327
         * is also the right way to remove part of the used_space
328
         * B+tree leaf list.
328
         * B+tree leaf list.
329
         */    
329
         */    
330
        for (cond = true; cond;) {
330
        for (cond = true; cond;) {
331
            btree_node_t *node;
331
            btree_node_t *node;
332
       
332
       
333
            ASSERT(!list_empty(&area->used_space.leaf_head));
333
            ASSERT(!list_empty(&area->used_space.leaf_head));
334
            node = list_get_instance(area->used_space.leaf_head.prev, btree_node_t, leaf_link);
334
            node = list_get_instance(area->used_space.leaf_head.prev, btree_node_t, leaf_link);
335
            if ((cond = (bool) node->keys)) {
335
            if ((cond = (bool) node->keys)) {
336
                __address b = node->key[node->keys - 1];
336
                __address b = node->key[node->keys - 1];
337
                count_t c = (count_t) node->value[node->keys - 1];
337
                count_t c = (count_t) node->value[node->keys - 1];
338
                int i = 0;
338
                int i = 0;
339
           
339
           
340
                if (overlaps(b, c*PAGE_SIZE, area->base, pages*PAGE_SIZE)) {
340
                if (overlaps(b, c*PAGE_SIZE, area->base, pages*PAGE_SIZE)) {
341
                   
341
                   
342
                    if (b + c*PAGE_SIZE <= start_free) {
342
                    if (b + c*PAGE_SIZE <= start_free) {
343
                        /*
343
                        /*
344
                         * The whole interval fits completely
344
                         * The whole interval fits completely
345
                         * in the resized address space area.
345
                         * in the resized address space area.
346
                         */
346
                         */
347
                        break;
347
                        break;
348
                    }
348
                    }
349
       
349
       
350
                    /*
350
                    /*
351
                     * Part of the interval corresponding to b and c
351
                     * Part of the interval corresponding to b and c
352
                     * overlaps with the resized address space area.
352
                     * overlaps with the resized address space area.
353
                     */
353
                     */
354
       
354
       
355
                    cond = false;   /* we are almost done */
355
                    cond = false;   /* we are almost done */
356
                    i = (start_free - b) >> PAGE_WIDTH;
356
                    i = (start_free - b) >> PAGE_WIDTH;
357
                    if (!used_space_remove(area, start_free, c - i))
357
                    if (!used_space_remove(area, start_free, c - i))
358
                        panic("Could not remove used space.");
358
                        panic("Could not remove used space.");
359
                } else {
359
                } else {
360
                    /*
360
                    /*
361
                     * The interval of used space can be completely removed.
361
                     * The interval of used space can be completely removed.
362
                     */
362
                     */
363
                    if (!used_space_remove(area, b, c))
363
                    if (!used_space_remove(area, b, c))
364
                        panic("Could not remove used space.\n");
364
                        panic("Could not remove used space.\n");
365
                }
365
                }
366
           
366
           
367
                for (; i < c; i++) {
367
                for (; i < c; i++) {
368
                    pte_t *pte;
368
                    pte_t *pte;
369
           
369
           
370
                    page_table_lock(as, false);
370
                    page_table_lock(as, false);
371
                    pte = page_mapping_find(as, b + i*PAGE_SIZE);
371
                    pte = page_mapping_find(as, b + i*PAGE_SIZE);
372
                    ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
372
                    ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
373
                    if (area->backend && area->backend->frame_free) {
373
                    if (area->backend && area->backend->frame_free) {
374
                        area->backend->frame_free(area,
374
                        area->backend->frame_free(area,
375
                            b + i*PAGE_SIZE, PTE_GET_FRAME(pte));
375
                            b + i*PAGE_SIZE, PTE_GET_FRAME(pte));
376
                    }
376
                    }
377
                    page_mapping_remove(as, b + i*PAGE_SIZE);
377
                    page_mapping_remove(as, b + i*PAGE_SIZE);
378
                    page_table_unlock(as, false);
378
                    page_table_unlock(as, false);
379
                }
379
                }
380
            }
380
            }
381
        }
381
        }
382
 
382
 
383
        /*
383
        /*
384
         * Finish TLB shootdown sequence.
384
         * Finish TLB shootdown sequence.
385
         */
385
         */
386
        tlb_invalidate_pages(AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
386
        tlb_invalidate_pages(AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
387
        tlb_shootdown_finalize();
387
        tlb_shootdown_finalize();
388
    } else {
388
    } else {
389
        /*
389
        /*
390
         * Growing the area.
390
         * Growing the area.
391
         * Check for overlaps with other address space areas.
391
         * Check for overlaps with other address space areas.
392
         */
392
         */
393
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE, area)) {
393
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE, area)) {
394
            mutex_unlock(&area->lock);
394
            mutex_unlock(&area->lock);
395
            mutex_unlock(&as->lock);       
395
            mutex_unlock(&as->lock);       
396
            interrupts_restore(ipl);
396
            interrupts_restore(ipl);
397
            return EADDRNOTAVAIL;
397
            return EADDRNOTAVAIL;
398
        }
398
        }
399
    }
399
    }
400
 
400
 
401
    area->pages = pages;
401
    area->pages = pages;
402
   
402
   
403
    mutex_unlock(&area->lock);
403
    mutex_unlock(&area->lock);
404
    mutex_unlock(&as->lock);
404
    mutex_unlock(&as->lock);
405
    interrupts_restore(ipl);
405
    interrupts_restore(ipl);
406
 
406
 
407
    return 0;
407
    return 0;
408
}
408
}
409
 
409
 
410
/** Destroy address space area.
410
/** Destroy address space area.
411
 *
411
 *
412
 * @param as Address space.
412
 * @param as Address space.
413
 * @param address Address withing the area to be deleted.
413
 * @param address Address withing the area to be deleted.
414
 *
414
 *
415
 * @return Zero on success or a value from @ref errno.h on failure.
415
 * @return Zero on success or a value from @ref errno.h on failure.
416
 */
416
 */
417
int as_area_destroy(as_t *as, __address address)
417
int as_area_destroy(as_t *as, __address address)
418
{
418
{
419
    as_area_t *area;
419
    as_area_t *area;
420
    __address base;
420
    __address base;
421
    link_t *cur;
421
    link_t *cur;
422
    ipl_t ipl;
422
    ipl_t ipl;
423
 
423
 
424
    ipl = interrupts_disable();
424
    ipl = interrupts_disable();
425
    mutex_lock(&as->lock);
425
    mutex_lock(&as->lock);
426
 
426
 
427
    area = find_area_and_lock(as, address);
427
    area = find_area_and_lock(as, address);
428
    if (!area) {
428
    if (!area) {
429
        mutex_unlock(&as->lock);
429
        mutex_unlock(&as->lock);
430
        interrupts_restore(ipl);
430
        interrupts_restore(ipl);
431
        return ENOENT;
431
        return ENOENT;
432
    }
432
    }
433
 
433
 
434
    base = area->base;
434
    base = area->base;
435
 
435
 
436
    /*
436
    /*
437
     * Start TLB shootdown sequence.
437
     * Start TLB shootdown sequence.
438
     */
438
     */
439
    tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base, area->pages);
439
    tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base, area->pages);
440
 
440
 
441
    /*
441
    /*
442
     * Visit only the pages mapped by used_space B+tree.
442
     * Visit only the pages mapped by used_space B+tree.
443
     */
443
     */
444
    for (cur = area->used_space.leaf_head.next; cur != &area->used_space.leaf_head; cur = cur->next) {
444
    for (cur = area->used_space.leaf_head.next; cur != &area->used_space.leaf_head; cur = cur->next) {
445
        btree_node_t *node;
445
        btree_node_t *node;
446
        int i;
446
        int i;
447
       
447
       
448
        node = list_get_instance(cur, btree_node_t, leaf_link);
448
        node = list_get_instance(cur, btree_node_t, leaf_link);
449
        for (i = 0; i < node->keys; i++) {
449
        for (i = 0; i < node->keys; i++) {
450
            __address b = node->key[i];
450
            __address b = node->key[i];
451
            count_t j;
451
            count_t j;
452
            pte_t *pte;
452
            pte_t *pte;
453
           
453
           
454
            for (j = 0; j < (count_t) node->value[i]; j++) {
454
            for (j = 0; j < (count_t) node->value[i]; j++) {
455
                page_table_lock(as, false);
455
                page_table_lock(as, false);
456
                pte = page_mapping_find(as, b + j*PAGE_SIZE);
456
                pte = page_mapping_find(as, b + j*PAGE_SIZE);
457
                ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
457
                ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
458
                if (area->backend && area->backend->frame_free) {
458
                if (area->backend && area->backend->frame_free) {
459
                    area->backend->frame_free(area,
459
                    area->backend->frame_free(area,
460
                        b + j*PAGE_SIZE, PTE_GET_FRAME(pte));
460
                        b + j*PAGE_SIZE, PTE_GET_FRAME(pte));
461
                }
461
                }
462
                page_mapping_remove(as, b + j*PAGE_SIZE);
462
                page_mapping_remove(as, b + j*PAGE_SIZE);
463
                page_table_unlock(as, false);
463
                page_table_unlock(as, false);
464
            }
464
            }
465
        }
465
        }
466
    }
466
    }
467
 
467
 
468
    /*
468
    /*
469
     * Finish TLB shootdown sequence.
469
     * Finish TLB shootdown sequence.
470
     */
470
     */
471
    tlb_invalidate_pages(AS->asid, area->base, area->pages);
471
    tlb_invalidate_pages(AS->asid, area->base, area->pages);
472
    tlb_shootdown_finalize();
472
    tlb_shootdown_finalize();
473
   
473
   
474
    btree_destroy(&area->used_space);
474
    btree_destroy(&area->used_space);
475
 
475
 
476
    area->attributes |= AS_AREA_ATTR_PARTIAL;
476
    area->attributes |= AS_AREA_ATTR_PARTIAL;
477
   
477
   
478
    if (area->sh_info)
478
    if (area->sh_info)
479
        sh_info_remove_reference(area->sh_info);
479
        sh_info_remove_reference(area->sh_info);
480
       
480
       
481
    mutex_unlock(&area->lock);
481
    mutex_unlock(&area->lock);
482
 
482
 
483
    /*
483
    /*
484
     * Remove the empty area from address space.
484
     * Remove the empty area from address space.
485
     */
485
     */
486
    btree_remove(&AS->as_area_btree, base, NULL);
486
    btree_remove(&AS->as_area_btree, base, NULL);
487
   
487
   
488
    free(area);
488
    free(area);
489
   
489
   
490
    mutex_unlock(&AS->lock);
490
    mutex_unlock(&AS->lock);
491
    interrupts_restore(ipl);
491
    interrupts_restore(ipl);
492
    return 0;
492
    return 0;
493
}
493
}
494
 
494
 
495
/** Share address space area with another or the same address space.
495
/** Share address space area with another or the same address space.
496
 *
496
 *
497
 * Address space area mapping is shared with a new address space area.
497
 * Address space area mapping is shared with a new address space area.
498
 * If the source address space area has not been shared so far,
498
 * If the source address space area has not been shared so far,
499
 * a new sh_info is created. The new address space area simply gets the
499
 * a new sh_info is created. The new address space area simply gets the
500
 * sh_info of the source area. The process of duplicating the
500
 * sh_info of the source area. The process of duplicating the
501
 * mapping is done through the backend share function.
501
 * mapping is done through the backend share function.
502
 *
502
 *
503
 * @param src_as Pointer to source address space.
503
 * @param src_as Pointer to source address space.
504
 * @param src_base Base address of the source address space area.
504
 * @param src_base Base address of the source address space area.
505
 * @param acc_size Expected size of the source area.
505
 * @param acc_size Expected size of the source area.
506
 * @param dst_as Pointer to destination address space.
506
 * @param dst_as Pointer to destination address space.
507
 * @param dst_base Target base address.
507
 * @param dst_base Target base address.
508
 * @param dst_flags_mask Destination address space area flags mask.
508
 * @param dst_flags_mask Destination address space area flags mask.
509
 *
509
 *
510
 * @return Zero on success or ENOENT if there is no such task or
510
 * @return Zero on success or ENOENT if there is no such task or
511
 *     if there is no such address space area,
511
 *     if there is no such address space area,
512
 *     EPERM if there was a problem in accepting the area or
512
 *     EPERM if there was a problem in accepting the area or
513
 *     ENOMEM if there was a problem in allocating destination
513
 *     ENOMEM if there was a problem in allocating destination
514
 *     address space area. ENOTSUP is returned if an attempt
514
 *     address space area. ENOTSUP is returned if an attempt
515
 *     to share non-anonymous address space area is detected.
515
 *     to share non-anonymous address space area is detected.
516
 */
516
 */
517
int as_area_share(as_t *src_as, __address src_base, size_t acc_size,
517
int as_area_share(as_t *src_as, __address src_base, size_t acc_size,
518
          as_t *dst_as, __address dst_base, int dst_flags_mask)
518
          as_t *dst_as, __address dst_base, int dst_flags_mask)
519
{
519
{
520
    ipl_t ipl;
520
    ipl_t ipl;
521
    int src_flags;
521
    int src_flags;
522
    size_t src_size;
522
    size_t src_size;
523
    as_area_t *src_area, *dst_area;
523
    as_area_t *src_area, *dst_area;
524
    share_info_t *sh_info;
524
    share_info_t *sh_info;
525
    mem_backend_t *src_backend;
525
    mem_backend_t *src_backend;
526
    mem_backend_data_t src_backend_data;
526
    mem_backend_data_t src_backend_data;
527
   
527
   
528
    ipl = interrupts_disable();
528
    ipl = interrupts_disable();
529
    mutex_lock(&src_as->lock);
529
    mutex_lock(&src_as->lock);
530
    src_area = find_area_and_lock(src_as, src_base);
530
    src_area = find_area_and_lock(src_as, src_base);
531
    if (!src_area) {
531
    if (!src_area) {
532
        /*
532
        /*
533
         * Could not find the source address space area.
533
         * Could not find the source address space area.
534
         */
534
         */
535
        mutex_unlock(&src_as->lock);
535
        mutex_unlock(&src_as->lock);
536
        interrupts_restore(ipl);
536
        interrupts_restore(ipl);
537
        return ENOENT;
537
        return ENOENT;
538
    }
538
    }
539
   
539
   
540
    if (!src_area->backend || !src_area->backend->share) {
540
    if (!src_area->backend || !src_area->backend->share) {
541
        /*
541
        /*
542
         * There is now backend or the backend does not
542
         * There is now backend or the backend does not
543
         * know how to share the area.
543
         * know how to share the area.
544
         */
544
         */
545
        mutex_unlock(&src_area->lock);
545
        mutex_unlock(&src_area->lock);
546
        mutex_unlock(&src_as->lock);
546
        mutex_unlock(&src_as->lock);
547
        interrupts_restore(ipl);
547
        interrupts_restore(ipl);
548
        return ENOTSUP;
548
        return ENOTSUP;
549
    }
549
    }
550
   
550
   
551
    src_size = src_area->pages * PAGE_SIZE;
551
    src_size = src_area->pages * PAGE_SIZE;
552
    src_flags = src_area->flags;
552
    src_flags = src_area->flags;
553
    src_backend = src_area->backend;
553
    src_backend = src_area->backend;
554
    src_backend_data = src_area->backend_data;
554
    src_backend_data = src_area->backend_data;
555
 
555
 
556
    /* Share the cacheable flag from the original mapping */
556
    /* Share the cacheable flag from the original mapping */
557
    if (src_flags & AS_AREA_CACHEABLE)
557
    if (src_flags & AS_AREA_CACHEABLE)
558
        dst_flags_mask |= AS_AREA_CACHEABLE;
558
        dst_flags_mask |= AS_AREA_CACHEABLE;
559
 
559
 
560
    if (src_size != acc_size || (src_flags & dst_flags_mask) != dst_flags_mask) {
560
    if (src_size != acc_size || (src_flags & dst_flags_mask) != dst_flags_mask) {
561
        mutex_unlock(&src_area->lock);
561
        mutex_unlock(&src_area->lock);
562
        mutex_unlock(&src_as->lock);
562
        mutex_unlock(&src_as->lock);
563
        interrupts_restore(ipl);
563
        interrupts_restore(ipl);
564
        return EPERM;
564
        return EPERM;
565
    }
565
    }
566
 
566
 
567
    /*
567
    /*
568
     * Now we are committed to sharing the area.
568
     * Now we are committed to sharing the area.
569
     * First prepare the area for sharing.
569
     * First prepare the area for sharing.
570
     * Then it will be safe to unlock it.
570
     * Then it will be safe to unlock it.
571
     */
571
     */
572
    sh_info = src_area->sh_info;
572
    sh_info = src_area->sh_info;
573
    if (!sh_info) {
573
    if (!sh_info) {
574
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
574
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
575
        mutex_initialize(&sh_info->lock);
575
        mutex_initialize(&sh_info->lock);
576
        sh_info->refcount = 2;
576
        sh_info->refcount = 2;
577
        btree_create(&sh_info->pagemap);
577
        btree_create(&sh_info->pagemap);
578
        src_area->sh_info = sh_info;
578
        src_area->sh_info = sh_info;
579
    } else {
579
    } else {
580
        mutex_lock(&sh_info->lock);
580
        mutex_lock(&sh_info->lock);
581
        sh_info->refcount++;
581
        sh_info->refcount++;
582
        mutex_unlock(&sh_info->lock);
582
        mutex_unlock(&sh_info->lock);
583
    }
583
    }
584
 
584
 
585
    src_area->backend->share(src_area);
585
    src_area->backend->share(src_area);
586
 
586
 
587
    mutex_unlock(&src_area->lock);
587
    mutex_unlock(&src_area->lock);
588
    mutex_unlock(&src_as->lock);
588
    mutex_unlock(&src_as->lock);
589
 
589
 
590
    /*
590
    /*
591
     * Create copy of the source address space area.
591
     * Create copy of the source address space area.
592
     * The destination area is created with AS_AREA_ATTR_PARTIAL
592
     * The destination area is created with AS_AREA_ATTR_PARTIAL
593
     * attribute set which prevents race condition with
593
     * attribute set which prevents race condition with
594
     * preliminary as_page_fault() calls.
594
     * preliminary as_page_fault() calls.
595
     * The flags of the source area are masked against dst_flags_mask
595
     * The flags of the source area are masked against dst_flags_mask
596
     * to support sharing in less privileged mode.
596
     * to support sharing in less privileged mode.
597
     */
597
     */
598
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
598
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
599
                  AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
599
                  AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
600
    if (!dst_area) {
600
    if (!dst_area) {
601
        /*
601
        /*
602
         * Destination address space area could not be created.
602
         * Destination address space area could not be created.
603
         */
603
         */
604
        sh_info_remove_reference(sh_info);
604
        sh_info_remove_reference(sh_info);
605
       
605
       
606
        interrupts_restore(ipl);
606
        interrupts_restore(ipl);
607
        return ENOMEM;
607
        return ENOMEM;
608
    }
608
    }
609
   
609
   
610
    /*
610
    /*
611
     * Now the destination address space area has been
611
     * Now the destination address space area has been
612
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
612
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
613
     * attribute and set the sh_info.
613
     * attribute and set the sh_info.
614
     */
614
     */
615
    mutex_lock(&dst_area->lock);
615
    mutex_lock(&dst_area->lock);
616
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
616
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
617
    dst_area->sh_info = sh_info;
617
    dst_area->sh_info = sh_info;
618
    mutex_unlock(&dst_area->lock);
618
    mutex_unlock(&dst_area->lock);
619
   
619
   
620
    interrupts_restore(ipl);
620
    interrupts_restore(ipl);
621
   
621
   
622
    return 0;
622
    return 0;
623
}
623
}
624
 
624
 
625
/** Check access mode for address space area.
625
/** Check access mode for address space area.
626
 *
626
 *
627
 * The address space area must be locked prior to this call.
627
 * The address space area must be locked prior to this call.
628
 *
628
 *
629
 * @param area Address space area.
629
 * @param area Address space area.
630
 * @param access Access mode.
630
 * @param access Access mode.
631
 *
631
 *
632
 * @return False if access violates area's permissions, true otherwise.
632
 * @return False if access violates area's permissions, true otherwise.
633
 */
633
 */
634
bool as_area_check_access(as_area_t *area, pf_access_t access)
634
bool as_area_check_access(as_area_t *area, pf_access_t access)
635
{
635
{
636
    int flagmap[] = {
636
    int flagmap[] = {
637
        [PF_ACCESS_READ] = AS_AREA_READ,
637
        [PF_ACCESS_READ] = AS_AREA_READ,
638
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
638
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
639
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
639
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
640
    };
640
    };
641
 
641
 
642
    if (!(area->flags & flagmap[access]))
642
    if (!(area->flags & flagmap[access]))
643
        return false;
643
        return false;
644
   
644
   
645
    return true;
645
    return true;
646
}
646
}
647
 
647
 
648
/** Handle page fault within the current address space.
648
/** Handle page fault within the current address space.
649
 *
649
 *
650
 * This is the high-level page fault handler. It decides
650
 * This is the high-level page fault handler. It decides
651
 * whether the page fault can be resolved by any backend
651
 * whether the page fault can be resolved by any backend
652
 * and if so, it invokes the backend to resolve the page
652
 * and if so, it invokes the backend to resolve the page
653
 * fault.
653
 * fault.
654
 *
654
 *
655
 * Interrupts are assumed disabled.
655
 * Interrupts are assumed disabled.
656
 *
656
 *
657
 * @param page Faulting page.
657
 * @param page Faulting page.
658
 * @param access Access mode that caused the fault (i.e. read/write/exec).
658
 * @param access Access mode that caused the fault (i.e. read/write/exec).
659
 * @param istate Pointer to interrupted state.
659
 * @param istate Pointer to interrupted state.
660
 *
660
 *
661
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
661
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
662
 *     fault was caused by copy_to_uspace() or copy_from_uspace().
662
 *     fault was caused by copy_to_uspace() or copy_from_uspace().
663
 */
663
 */
664
int as_page_fault(__address page, pf_access_t access, istate_t *istate)
664
int as_page_fault(__address page, pf_access_t access, istate_t *istate)
665
{
665
{
666
    pte_t *pte;
666
    pte_t *pte;
667
    as_area_t *area;
667
    as_area_t *area;
668
   
668
   
669
    if (!THREAD)
669
    if (!THREAD)
670
        return AS_PF_FAULT;
670
        return AS_PF_FAULT;
671
       
671
       
672
    ASSERT(AS);
672
    ASSERT(AS);
673
 
673
 
674
    mutex_lock(&AS->lock);
674
    mutex_lock(&AS->lock);
675
    area = find_area_and_lock(AS, page);   
675
    area = find_area_and_lock(AS, page);   
676
    if (!area) {
676
    if (!area) {
677
        /*
677
        /*
678
         * No area contained mapping for 'page'.
678
         * No area contained mapping for 'page'.
679
         * Signal page fault to low-level handler.
679
         * Signal page fault to low-level handler.
680
         */
680
         */
681
        mutex_unlock(&AS->lock);
681
        mutex_unlock(&AS->lock);
682
        goto page_fault;
682
        goto page_fault;
683
    }
683
    }
684
 
684
 
685
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
685
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
686
        /*
686
        /*
687
         * The address space area is not fully initialized.
687
         * The address space area is not fully initialized.
688
         * Avoid possible race by returning error.
688
         * Avoid possible race by returning error.
689
         */
689
         */
690
        mutex_unlock(&area->lock);
690
        mutex_unlock(&area->lock);
691
        mutex_unlock(&AS->lock);
691
        mutex_unlock(&AS->lock);
692
        goto page_fault;       
692
        goto page_fault;       
693
    }
693
    }
694
 
694
 
695
    if (!area->backend || !area->backend->page_fault) {
695
    if (!area->backend || !area->backend->page_fault) {
696
        /*
696
        /*
697
         * The address space area is not backed by any backend
697
         * The address space area is not backed by any backend
698
         * or the backend cannot handle page faults.
698
         * or the backend cannot handle page faults.
699
         */
699
         */
700
        mutex_unlock(&area->lock);
700
        mutex_unlock(&area->lock);
701
        mutex_unlock(&AS->lock);
701
        mutex_unlock(&AS->lock);
702
        goto page_fault;       
702
        goto page_fault;       
703
    }
703
    }
704
 
704
 
705
    page_table_lock(AS, false);
705
    page_table_lock(AS, false);
706
   
706
   
707
    /*
707
    /*
708
     * To avoid race condition between two page faults
708
     * To avoid race condition between two page faults
709
     * on the same address, we need to make sure
709
     * on the same address, we need to make sure
710
     * the mapping has not been already inserted.
710
     * the mapping has not been already inserted.
711
     */
711
     */
712
    if ((pte = page_mapping_find(AS, page))) {
712
    if ((pte = page_mapping_find(AS, page))) {
713
        if (PTE_PRESENT(pte)) {
713
        if (PTE_PRESENT(pte)) {
714
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
714
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
715
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
715
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
716
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
716
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
717
                page_table_unlock(AS, false);
717
                page_table_unlock(AS, false);
718
                mutex_unlock(&area->lock);
718
                mutex_unlock(&area->lock);
719
                mutex_unlock(&AS->lock);
719
                mutex_unlock(&AS->lock);
720
                return AS_PF_OK;
720
                return AS_PF_OK;
721
            }
721
            }
722
        }
722
        }
723
    }
723
    }
724
   
724
   
725
    /*
725
    /*
726
     * Resort to the backend page fault handler.
726
     * Resort to the backend page fault handler.
727
     */
727
     */
728
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
728
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
729
        page_table_unlock(AS, false);
729
        page_table_unlock(AS, false);
730
        mutex_unlock(&area->lock);
730
        mutex_unlock(&area->lock);
731
        mutex_unlock(&AS->lock);
731
        mutex_unlock(&AS->lock);
732
        goto page_fault;
732
        goto page_fault;
733
    }
733
    }
734
   
734
   
735
    page_table_unlock(AS, false);
735
    page_table_unlock(AS, false);
736
    mutex_unlock(&area->lock);
736
    mutex_unlock(&area->lock);
737
    mutex_unlock(&AS->lock);
737
    mutex_unlock(&AS->lock);
738
    return AS_PF_OK;
738
    return AS_PF_OK;
739
 
739
 
740
page_fault:
740
page_fault:
741
    if (THREAD->in_copy_from_uspace) {
741
    if (THREAD->in_copy_from_uspace) {
742
        THREAD->in_copy_from_uspace = false;
742
        THREAD->in_copy_from_uspace = false;
743
        istate_set_retaddr(istate, (__address) &memcpy_from_uspace_failover_address);
743
        istate_set_retaddr(istate, (__address) &memcpy_from_uspace_failover_address);
744
    } else if (THREAD->in_copy_to_uspace) {
744
    } else if (THREAD->in_copy_to_uspace) {
745
        THREAD->in_copy_to_uspace = false;
745
        THREAD->in_copy_to_uspace = false;
746
        istate_set_retaddr(istate, (__address) &memcpy_to_uspace_failover_address);
746
        istate_set_retaddr(istate, (__address) &memcpy_to_uspace_failover_address);
747
    } else {
747
    } else {
748
        return AS_PF_FAULT;
748
        return AS_PF_FAULT;
749
    }
749
    }
750
 
750
 
751
    return AS_PF_DEFER;
751
    return AS_PF_DEFER;
752
}
752
}
753
 
753
 
754
/** Switch address spaces.
754
/** Switch address spaces.
755
 *
755
 *
756
 * Note that this function cannot sleep as it is essentially a part of
756
 * Note that this function cannot sleep as it is essentially a part of
757
 * scheduling. Sleeping here would lead to deadlock on wakeup.
757
 * scheduling. Sleeping here would lead to deadlock on wakeup.
758
 *
758
 *
759
 * @param old Old address space or NULL.
759
 * @param old Old address space or NULL.
760
 * @param new New address space.
760
 * @param new New address space.
761
 */
761
 */
762
void as_switch(as_t *old, as_t *new)
762
void as_switch(as_t *old, as_t *new)
763
{
763
{
764
    ipl_t ipl;
764
    ipl_t ipl;
765
    bool needs_asid = false;
765
    bool needs_asid = false;
766
   
766
   
767
    ipl = interrupts_disable();
767
    ipl = interrupts_disable();
768
    spinlock_lock(&inactive_as_with_asid_lock);
768
    spinlock_lock(&inactive_as_with_asid_lock);
769
 
769
 
770
    /*
770
    /*
771
     * First, take care of the old address space.
771
     * First, take care of the old address space.
772
     */
772
     */
773
    if (old) {
773
    if (old) {
774
        mutex_lock_active(&old->lock);
774
        mutex_lock_active(&old->lock);
775
        ASSERT(old->cpu_refcount);
775
        ASSERT(old->cpu_refcount);
776
        if((--old->cpu_refcount == 0) && (old != AS_KERNEL)) {
776
        if((--old->cpu_refcount == 0) && (old != AS_KERNEL)) {
777
            /*
777
            /*
778
             * The old address space is no longer active on
778
             * The old address space is no longer active on
779
             * any processor. It can be appended to the
779
             * any processor. It can be appended to the
780
             * list of inactive address spaces with assigned
780
             * list of inactive address spaces with assigned
781
             * ASID.
781
             * ASID.
782
             */
782
             */
783
             ASSERT(old->asid != ASID_INVALID);
783
             ASSERT(old->asid != ASID_INVALID);
784
             list_append(&old->inactive_as_with_asid_link, &inactive_as_with_asid_head);
784
             list_append(&old->inactive_as_with_asid_link, &inactive_as_with_asid_head);
785
        }
785
        }
786
        mutex_unlock(&old->lock);
786
        mutex_unlock(&old->lock);
787
    }
787
    }
788
 
788
 
789
    /*
789
    /*
790
     * Second, prepare the new address space.
790
     * Second, prepare the new address space.
791
     */
791
     */
792
    mutex_lock_active(&new->lock);
792
    mutex_lock_active(&new->lock);
793
    if ((new->cpu_refcount++ == 0) && (new != AS_KERNEL)) {
793
    if ((new->cpu_refcount++ == 0) && (new != AS_KERNEL)) {
794
        if (new->asid != ASID_INVALID)
794
        if (new->asid != ASID_INVALID)
795
            list_remove(&new->inactive_as_with_asid_link);
795
            list_remove(&new->inactive_as_with_asid_link);
796
        else
796
        else
797
            needs_asid = true;  /* defer call to asid_get() until new->lock is released */
797
            needs_asid = true;  /* defer call to asid_get() until new->lock is released */
798
    }
798
    }
799
    SET_PTL0_ADDRESS(new->page_table);
799
    SET_PTL0_ADDRESS(new->page_table);
800
    mutex_unlock(&new->lock);
800
    mutex_unlock(&new->lock);
801
 
801
 
802
    if (needs_asid) {
802
    if (needs_asid) {
803
        /*
803
        /*
804
         * Allocation of new ASID was deferred
804
         * Allocation of new ASID was deferred
805
         * until now in order to avoid deadlock.
805
         * until now in order to avoid deadlock.
806
         */
806
         */
807
        asid_t asid;
807
        asid_t asid;
808
       
808
       
809
        asid = asid_get();
809
        asid = asid_get();
810
        mutex_lock_active(&new->lock);
810
        mutex_lock_active(&new->lock);
811
        new->asid = asid;
811
        new->asid = asid;
812
        mutex_unlock(&new->lock);
812
        mutex_unlock(&new->lock);
813
    }
813
    }
814
    spinlock_unlock(&inactive_as_with_asid_lock);
814
    spinlock_unlock(&inactive_as_with_asid_lock);
815
    interrupts_restore(ipl);
815
    interrupts_restore(ipl);
816
   
816
   
817
    /*
817
    /*
818
     * Perform architecture-specific steps.
818
     * Perform architecture-specific steps.
819
     * (e.g. write ASID to hardware register etc.)
819
     * (e.g. write ASID to hardware register etc.)
820
     */
820
     */
821
    as_install_arch(new);
821
    as_install_arch(new);
822
   
822
   
823
    AS = new;
823
    AS = new;
824
}
824
}
825
 
825
 
826
/** Convert address space area flags to page flags.
826
/** Convert address space area flags to page flags.
827
 *
827
 *
828
 * @param aflags Flags of some address space area.
828
 * @param aflags Flags of some address space area.
829
 *
829
 *
830
 * @return Flags to be passed to page_mapping_insert().
830
 * @return Flags to be passed to page_mapping_insert().
831
 */
831
 */
832
int area_flags_to_page_flags(int aflags)
832
int area_flags_to_page_flags(int aflags)
833
{
833
{
834
    int flags;
834
    int flags;
835
 
835
 
836
    flags = PAGE_USER | PAGE_PRESENT;
836
    flags = PAGE_USER | PAGE_PRESENT;
837
   
837
   
838
    if (aflags & AS_AREA_READ)
838
    if (aflags & AS_AREA_READ)
839
        flags |= PAGE_READ;
839
        flags |= PAGE_READ;
840
       
840
       
841
    if (aflags & AS_AREA_WRITE)
841
    if (aflags & AS_AREA_WRITE)
842
        flags |= PAGE_WRITE;
842
        flags |= PAGE_WRITE;
843
   
843
   
844
    if (aflags & AS_AREA_EXEC)
844
    if (aflags & AS_AREA_EXEC)
845
        flags |= PAGE_EXEC;
845
        flags |= PAGE_EXEC;
846
   
846
   
847
    if (aflags & AS_AREA_CACHEABLE)
847
    if (aflags & AS_AREA_CACHEABLE)
848
        flags |= PAGE_CACHEABLE;
848
        flags |= PAGE_CACHEABLE;
849
       
849
       
850
    return flags;
850
    return flags;
851
}
851
}
852
 
852
 
853
/** Compute flags for virtual address translation subsytem.
853
/** Compute flags for virtual address translation subsytem.
854
 *
854
 *
855
 * The address space area must be locked.
855
 * The address space area must be locked.
856
 * Interrupts must be disabled.
856
 * Interrupts must be disabled.
857
 *
857
 *
858
 * @param a Address space area.
858
 * @param a Address space area.
859
 *
859
 *
860
 * @return Flags to be used in page_mapping_insert().
860
 * @return Flags to be used in page_mapping_insert().
861
 */
861
 */
862
int as_area_get_flags(as_area_t *a)
862
int as_area_get_flags(as_area_t *a)
863
{
863
{
864
    return area_flags_to_page_flags(a->flags);
864
    return area_flags_to_page_flags(a->flags);
865
}
865
}
866
 
866
 
867
/** Create page table.
867
/** Create page table.
868
 *
868
 *
869
 * Depending on architecture, create either address space
869
 * Depending on architecture, create either address space
870
 * private or global page table.
870
 * private or global page table.
871
 *
871
 *
872
 * @param flags Flags saying whether the page table is for kernel address space.
872
 * @param flags Flags saying whether the page table is for kernel address space.
873
 *
873
 *
874
 * @return First entry of the page table.
874
 * @return First entry of the page table.
875
 */
875
 */
876
pte_t *page_table_create(int flags)
876
pte_t *page_table_create(int flags)
877
{
877
{
878
        ASSERT(as_operations);
878
        ASSERT(as_operations);
879
        ASSERT(as_operations->page_table_create);
879
        ASSERT(as_operations->page_table_create);
880
 
880
 
881
        return as_operations->page_table_create(flags);
881
        return as_operations->page_table_create(flags);
882
}
882
}
883
 
883
 
884
/** Destroy page table.
884
/** Destroy page table.
885
 *
885
 *
886
 * Destroy page table in architecture specific way.
886
 * Destroy page table in architecture specific way.
887
 *
887
 *
888
 * @param page_table Physical address of PTL0.
888
 * @param page_table Physical address of PTL0.
889
 */
889
 */
890
void page_table_destroy(pte_t *page_table)
890
void page_table_destroy(pte_t *page_table)
891
{
891
{
892
        ASSERT(as_operations);
892
        ASSERT(as_operations);
893
        ASSERT(as_operations->page_table_destroy);
893
        ASSERT(as_operations->page_table_destroy);
894
 
894
 
895
        as_operations->page_table_destroy(page_table);
895
        as_operations->page_table_destroy(page_table);
896
}
896
}
897
 
897
 
898
/** Lock page table.
898
/** Lock page table.
899
 *
899
 *
900
 * This function should be called before any page_mapping_insert(),
900
 * This function should be called before any page_mapping_insert(),
901
 * page_mapping_remove() and page_mapping_find().
901
 * page_mapping_remove() and page_mapping_find().
902
 *
902
 *
903
 * Locking order is such that address space areas must be locked
903
 * Locking order is such that address space areas must be locked
904
 * prior to this call. Address space can be locked prior to this
904
 * prior to this call. Address space can be locked prior to this
905
 * call in which case the lock argument is false.
905
 * call in which case the lock argument is false.
906
 *
906
 *
907
 * @param as Address space.
907
 * @param as Address space.
908
 * @param lock If false, do not attempt to lock as->lock.
908
 * @param lock If false, do not attempt to lock as->lock.
909
 */
909
 */
910
void page_table_lock(as_t *as, bool lock)
910
void page_table_lock(as_t *as, bool lock)
911
{
911
{
912
    ASSERT(as_operations);
912
    ASSERT(as_operations);
913
    ASSERT(as_operations->page_table_lock);
913
    ASSERT(as_operations->page_table_lock);
914
 
914
 
915
    as_operations->page_table_lock(as, lock);
915
    as_operations->page_table_lock(as, lock);
916
}
916
}
917
 
917
 
918
/** Unlock page table.
918
/** Unlock page table.
919
 *
919
 *
920
 * @param as Address space.
920
 * @param as Address space.
921
 * @param unlock If false, do not attempt to unlock as->lock.
921
 * @param unlock If false, do not attempt to unlock as->lock.
922
 */
922
 */
923
void page_table_unlock(as_t *as, bool unlock)
923
void page_table_unlock(as_t *as, bool unlock)
924
{
924
{
925
    ASSERT(as_operations);
925
    ASSERT(as_operations);
926
    ASSERT(as_operations->page_table_unlock);
926
    ASSERT(as_operations->page_table_unlock);
927
 
927
 
928
    as_operations->page_table_unlock(as, unlock);
928
    as_operations->page_table_unlock(as, unlock);
929
}
929
}
930
 
930
 
931
 
931
 
932
/** Find address space area and lock it.
932
/** Find address space area and lock it.
933
 *
933
 *
934
 * The address space must be locked and interrupts must be disabled.
934
 * The address space must be locked and interrupts must be disabled.
935
 *
935
 *
936
 * @param as Address space.
936
 * @param as Address space.
937
 * @param va Virtual address.
937
 * @param va Virtual address.
938
 *
938
 *
939
 * @return Locked address space area containing va on success or NULL on failure.
939
 * @return Locked address space area containing va on success or NULL on failure.
940
 */
940
 */
941
as_area_t *find_area_and_lock(as_t *as, __address va)
941
as_area_t *find_area_and_lock(as_t *as, __address va)
942
{
942
{
943
    as_area_t *a;
943
    as_area_t *a;
944
    btree_node_t *leaf, *lnode;
944
    btree_node_t *leaf, *lnode;
945
    int i;
945
    int i;
946
   
946
   
947
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
947
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
948
    if (a) {
948
    if (a) {
949
        /* va is the base address of an address space area */
949
        /* va is the base address of an address space area */
950
        mutex_lock(&a->lock);
950
        mutex_lock(&a->lock);
951
        return a;
951
        return a;
952
    }
952
    }
953
   
953
   
954
    /*
954
    /*
955
     * Search the leaf node and the righmost record of its left neighbour
955
     * Search the leaf node and the righmost record of its left neighbour
956
     * to find out whether this is a miss or va belongs to an address
956
     * to find out whether this is a miss or va belongs to an address
957
     * space area found there.
957
     * space area found there.
958
     */
958
     */
959
   
959
   
960
    /* First, search the leaf node itself. */
960
    /* First, search the leaf node itself. */
961
    for (i = 0; i < leaf->keys; i++) {
961
    for (i = 0; i < leaf->keys; i++) {
962
        a = (as_area_t *) leaf->value[i];
962
        a = (as_area_t *) leaf->value[i];
963
        mutex_lock(&a->lock);
963
        mutex_lock(&a->lock);
964
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
964
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
965
            return a;
965
            return a;
966
        }
966
        }
967
        mutex_unlock(&a->lock);
967
        mutex_unlock(&a->lock);
968
    }
968
    }
969
 
969
 
970
    /*
970
    /*
971
     * Second, locate the left neighbour and test its last record.
971
     * Second, locate the left neighbour and test its last record.
972
     * Because of its position in the B+tree, it must have base < va.
972
     * Because of its position in the B+tree, it must have base < va.
973
     */
973
     */
974
    if ((lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
974
    if ((lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
975
        a = (as_area_t *) lnode->value[lnode->keys - 1];
975
        a = (as_area_t *) lnode->value[lnode->keys - 1];
976
        mutex_lock(&a->lock);
976
        mutex_lock(&a->lock);
977
        if (va < a->base + a->pages * PAGE_SIZE) {
977
        if (va < a->base + a->pages * PAGE_SIZE) {
978
            return a;
978
            return a;
979
        }
979
        }
980
        mutex_unlock(&a->lock);
980
        mutex_unlock(&a->lock);
981
    }
981
    }
982
 
982
 
983
    return NULL;
983
    return NULL;
984
}
984
}
985
 
985
 
986
/** Check area conflicts with other areas.
986
/** Check area conflicts with other areas.
987
 *
987
 *
988
 * The address space must be locked and interrupts must be disabled.
988
 * The address space must be locked and interrupts must be disabled.
989
 *
989
 *
990
 * @param as Address space.
990
 * @param as Address space.
991
 * @param va Starting virtual address of the area being tested.
991
 * @param va Starting virtual address of the area being tested.
992
 * @param size Size of the area being tested.
992
 * @param size Size of the area being tested.
993
 * @param avoid_area Do not touch this area.
993
 * @param avoid_area Do not touch this area.
994
 *
994
 *
995
 * @return True if there is no conflict, false otherwise.
995
 * @return True if there is no conflict, false otherwise.
996
 */
996
 */
997
bool check_area_conflicts(as_t *as, __address va, size_t size, as_area_t *avoid_area)
997
bool check_area_conflicts(as_t *as, __address va, size_t size, as_area_t *avoid_area)
998
{
998
{
999
    as_area_t *a;
999
    as_area_t *a;
1000
    btree_node_t *leaf, *node;
1000
    btree_node_t *leaf, *node;
1001
    int i;
1001
    int i;
1002
   
1002
   
1003
    /*
1003
    /*
1004
     * We don't want any area to have conflicts with NULL page.
1004
     * We don't want any area to have conflicts with NULL page.
1005
     */
1005
     */
1006
    if (overlaps(va, size, NULL, PAGE_SIZE))
1006
    if (overlaps(va, size, NULL, PAGE_SIZE))
1007
        return false;
1007
        return false;
1008
   
1008
   
1009
    /*
1009
    /*
1010
     * The leaf node is found in O(log n), where n is proportional to
1010
     * The leaf node is found in O(log n), where n is proportional to
1011
     * the number of address space areas belonging to as.
1011
     * the number of address space areas belonging to as.
1012
     * The check for conflicts is then attempted on the rightmost
1012
     * The check for conflicts is then attempted on the rightmost
1013
     * record in the left neighbour, the leftmost record in the right
1013
     * record in the left neighbour, the leftmost record in the right
1014
     * neighbour and all records in the leaf node itself.
1014
     * neighbour and all records in the leaf node itself.
1015
     */
1015
     */
1016
   
1016
   
1017
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1017
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1018
        if (a != avoid_area)
1018
        if (a != avoid_area)
1019
            return false;
1019
            return false;
1020
    }
1020
    }
1021
   
1021
   
1022
    /* First, check the two border cases. */
1022
    /* First, check the two border cases. */
1023
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1023
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1024
        a = (as_area_t *) node->value[node->keys - 1];
1024
        a = (as_area_t *) node->value[node->keys - 1];
1025
        mutex_lock(&a->lock);
1025
        mutex_lock(&a->lock);
1026
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1026
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1027
            mutex_unlock(&a->lock);
1027
            mutex_unlock(&a->lock);
1028
            return false;
1028
            return false;
1029
        }
1029
        }
1030
        mutex_unlock(&a->lock);
1030
        mutex_unlock(&a->lock);
1031
    }
1031
    }
1032
    if ((node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf))) {
1032
    if ((node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf))) {
1033
        a = (as_area_t *) node->value[0];
1033
        a = (as_area_t *) node->value[0];
1034
        mutex_lock(&a->lock);
1034
        mutex_lock(&a->lock);
1035
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1035
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1036
            mutex_unlock(&a->lock);
1036
            mutex_unlock(&a->lock);
1037
            return false;
1037
            return false;
1038
        }
1038
        }
1039
        mutex_unlock(&a->lock);
1039
        mutex_unlock(&a->lock);
1040
    }
1040
    }
1041
   
1041
   
1042
    /* Second, check the leaf node. */
1042
    /* Second, check the leaf node. */
1043
    for (i = 0; i < leaf->keys; i++) {
1043
    for (i = 0; i < leaf->keys; i++) {
1044
        a = (as_area_t *) leaf->value[i];
1044
        a = (as_area_t *) leaf->value[i];
1045
   
1045
   
1046
        if (a == avoid_area)
1046
        if (a == avoid_area)
1047
            continue;
1047
            continue;
1048
   
1048
   
1049
        mutex_lock(&a->lock);
1049
        mutex_lock(&a->lock);
1050
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1050
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1051
            mutex_unlock(&a->lock);
1051
            mutex_unlock(&a->lock);
1052
            return false;
1052
            return false;
1053
        }
1053
        }
1054
        mutex_unlock(&a->lock);
1054
        mutex_unlock(&a->lock);
1055
    }
1055
    }
1056
 
1056
 
1057
    /*
1057
    /*
1058
     * So far, the area does not conflict with other areas.
1058
     * So far, the area does not conflict with other areas.
1059
     * Check if it doesn't conflict with kernel address space.
1059
     * Check if it doesn't conflict with kernel address space.
1060
     */  
1060
     */  
1061
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1061
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1062
        return !overlaps(va, size,
1062
        return !overlaps(va, size,
1063
            KERNEL_ADDRESS_SPACE_START, KERNEL_ADDRESS_SPACE_END-KERNEL_ADDRESS_SPACE_START);
1063
            KERNEL_ADDRESS_SPACE_START, KERNEL_ADDRESS_SPACE_END-KERNEL_ADDRESS_SPACE_START);
1064
    }
1064
    }
1065
 
1065
 
1066
    return true;
1066
    return true;
1067
}
1067
}
1068
 
1068
 
1069
/** Return size of the address space area with given base.  */
1069
/** Return size of the address space area with given base.  */
1070
size_t as_get_size(__address base)
1070
size_t as_get_size(__address base)
1071
{
1071
{
1072
    ipl_t ipl;
1072
    ipl_t ipl;
1073
    as_area_t *src_area;
1073
    as_area_t *src_area;
1074
    size_t size;
1074
    size_t size;
1075
 
1075
 
1076
    ipl = interrupts_disable();
1076
    ipl = interrupts_disable();
1077
    src_area = find_area_and_lock(AS, base);
1077
    src_area = find_area_and_lock(AS, base);
1078
    if (src_area){
1078
    if (src_area){
1079
        size = src_area->pages * PAGE_SIZE;
1079
        size = src_area->pages * PAGE_SIZE;
1080
        mutex_unlock(&src_area->lock);
1080
        mutex_unlock(&src_area->lock);
1081
    } else {
1081
    } else {
1082
        size = 0;
1082
        size = 0;
1083
    }
1083
    }
1084
    interrupts_restore(ipl);
1084
    interrupts_restore(ipl);
1085
    return size;
1085
    return size;
1086
}
1086
}
1087
 
1087
 
1088
/** Mark portion of address space area as used.
1088
/** Mark portion of address space area as used.
1089
 *
1089
 *
1090
 * The address space area must be already locked.
1090
 * The address space area must be already locked.
1091
 *
1091
 *
1092
 * @param a Address space area.
1092
 * @param a Address space area.
1093
 * @param page First page to be marked.
1093
 * @param page First page to be marked.
1094
 * @param count Number of page to be marked.
1094
 * @param count Number of page to be marked.
1095
 *
1095
 *
1096
 * @return 0 on failure and 1 on success.
1096
 * @return 0 on failure and 1 on success.
1097
 */
1097
 */
1098
int used_space_insert(as_area_t *a, __address page, count_t count)
1098
int used_space_insert(as_area_t *a, __address page, count_t count)
1099
{
1099
{
1100
    btree_node_t *leaf, *node;
1100
    btree_node_t *leaf, *node;
1101
    count_t pages;
1101
    count_t pages;
1102
    int i;
1102
    int i;
1103
 
1103
 
1104
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1104
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1105
    ASSERT(count);
1105
    ASSERT(count);
1106
 
1106
 
1107
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1107
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1108
    if (pages) {
1108
    if (pages) {
1109
        /*
1109
        /*
1110
         * We hit the beginning of some used space.
1110
         * We hit the beginning of some used space.
1111
         */
1111
         */
1112
        return 0;
1112
        return 0;
1113
    }
1113
    }
1114
 
1114
 
1115
    if (!leaf->keys) {
1115
    if (!leaf->keys) {
1116
        btree_insert(&a->used_space, page, (void *) count, leaf);
1116
        btree_insert(&a->used_space, page, (void *) count, leaf);
1117
        return 1;
1117
        return 1;
1118
    }
1118
    }
1119
 
1119
 
1120
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1120
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1121
    if (node) {
1121
    if (node) {
1122
        __address left_pg = node->key[node->keys - 1], right_pg = leaf->key[0];
1122
        __address left_pg = node->key[node->keys - 1], right_pg = leaf->key[0];
1123
        count_t left_cnt = (count_t) node->value[node->keys - 1], right_cnt = (count_t) leaf->value[0];
1123
        count_t left_cnt = (count_t) node->value[node->keys - 1], right_cnt = (count_t) leaf->value[0];
1124
       
1124
       
1125
        /*
1125
        /*
1126
         * Examine the possibility that the interval fits
1126
         * Examine the possibility that the interval fits
1127
         * somewhere between the rightmost interval of
1127
         * somewhere between the rightmost interval of
1128
         * the left neigbour and the first interval of the leaf.
1128
         * the left neigbour and the first interval of the leaf.
1129
         */
1129
         */
1130
         
1130
         
1131
        if (page >= right_pg) {
1131
        if (page >= right_pg) {
1132
            /* Do nothing. */
1132
            /* Do nothing. */
1133
        } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1133
        } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1134
            /* The interval intersects with the left interval. */
1134
            /* The interval intersects with the left interval. */
1135
            return 0;
1135
            return 0;
1136
        } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1136
        } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1137
            /* The interval intersects with the right interval. */
1137
            /* The interval intersects with the right interval. */
1138
            return 0;          
1138
            return 0;          
1139
        } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1139
        } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1140
            /* The interval can be added by merging the two already present intervals. */
1140
            /* The interval can be added by merging the two already present intervals. */
1141
            node->value[node->keys - 1] += count + right_cnt;
1141
            node->value[node->keys - 1] += count + right_cnt;
1142
            btree_remove(&a->used_space, right_pg, leaf);
1142
            btree_remove(&a->used_space, right_pg, leaf);
1143
            return 1;
1143
            return 1;
1144
        } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1144
        } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1145
            /* The interval can be added by simply growing the left interval. */
1145
            /* The interval can be added by simply growing the left interval. */
1146
            node->value[node->keys - 1] += count;
1146
            node->value[node->keys - 1] += count;
1147
            return 1;
1147
            return 1;
1148
        } else if (page + count*PAGE_SIZE == right_pg) {
1148
        } else if (page + count*PAGE_SIZE == right_pg) {
1149
            /*
1149
            /*
1150
             * The interval can be addded by simply moving base of the right
1150
             * The interval can be addded by simply moving base of the right
1151
             * interval down and increasing its size accordingly.
1151
             * interval down and increasing its size accordingly.
1152
             */
1152
             */
1153
            leaf->value[0] += count;
1153
            leaf->value[0] += count;
1154
            leaf->key[0] = page;
1154
            leaf->key[0] = page;
1155
            return 1;
1155
            return 1;
1156
        } else {
1156
        } else {
1157
            /*
1157
            /*
1158
             * The interval is between both neigbouring intervals,
1158
             * The interval is between both neigbouring intervals,
1159
             * but cannot be merged with any of them.
1159
             * but cannot be merged with any of them.
1160
             */
1160
             */
1161
            btree_insert(&a->used_space, page, (void *) count, leaf);
1161
            btree_insert(&a->used_space, page, (void *) count, leaf);
1162
            return 1;
1162
            return 1;
1163
        }
1163
        }
1164
    } else if (page < leaf->key[0]) {
1164
    } else if (page < leaf->key[0]) {
1165
        __address right_pg = leaf->key[0];
1165
        __address right_pg = leaf->key[0];
1166
        count_t right_cnt = (count_t) leaf->value[0];
1166
        count_t right_cnt = (count_t) leaf->value[0];
1167
   
1167
   
1168
        /*
1168
        /*
1169
         * Investigate the border case in which the left neighbour does not
1169
         * Investigate the border case in which the left neighbour does not
1170
         * exist but the interval fits from the left.
1170
         * exist but the interval fits from the left.
1171
         */
1171
         */
1172
         
1172
         
1173
        if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1173
        if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1174
            /* The interval intersects with the right interval. */
1174
            /* The interval intersects with the right interval. */
1175
            return 0;
1175
            return 0;
1176
        } else if (page + count*PAGE_SIZE == right_pg) {
1176
        } else if (page + count*PAGE_SIZE == right_pg) {
1177
            /*
1177
            /*
1178
             * The interval can be added by moving the base of the right interval down
1178
             * The interval can be added by moving the base of the right interval down
1179
             * and increasing its size accordingly.
1179
             * and increasing its size accordingly.
1180
             */
1180
             */
1181
            leaf->key[0] = page;
1181
            leaf->key[0] = page;
1182
            leaf->value[0] += count;
1182
            leaf->value[0] += count;
1183
            return 1;
1183
            return 1;
1184
        } else {
1184
        } else {
1185
            /*
1185
            /*
1186
             * The interval doesn't adjoin with the right interval.
1186
             * The interval doesn't adjoin with the right interval.
1187
             * It must be added individually.
1187
             * It must be added individually.
1188
             */
1188
             */
1189
            btree_insert(&a->used_space, page, (void *) count, leaf);
1189
            btree_insert(&a->used_space, page, (void *) count, leaf);
1190
            return 1;
1190
            return 1;
1191
        }
1191
        }
1192
    }
1192
    }
1193
 
1193
 
1194
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1194
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1195
    if (node) {
1195
    if (node) {
1196
        __address left_pg = leaf->key[leaf->keys - 1], right_pg = node->key[0];
1196
        __address left_pg = leaf->key[leaf->keys - 1], right_pg = node->key[0];
1197
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1], right_cnt = (count_t) node->value[0];
1197
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1], right_cnt = (count_t) node->value[0];
1198
       
1198
       
1199
        /*
1199
        /*
1200
         * Examine the possibility that the interval fits
1200
         * Examine the possibility that the interval fits
1201
         * somewhere between the leftmost interval of
1201
         * somewhere between the leftmost interval of
1202
         * the right neigbour and the last interval of the leaf.
1202
         * the right neigbour and the last interval of the leaf.
1203
         */
1203
         */
1204
 
1204
 
1205
        if (page < left_pg) {
1205
        if (page < left_pg) {
1206
            /* Do nothing. */
1206
            /* Do nothing. */
1207
        } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1207
        } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1208
            /* The interval intersects with the left interval. */
1208
            /* The interval intersects with the left interval. */
1209
            return 0;
1209
            return 0;
1210
        } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1210
        } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1211
            /* The interval intersects with the right interval. */
1211
            /* The interval intersects with the right interval. */
1212
            return 0;          
1212
            return 0;          
1213
        } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1213
        } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1214
            /* The interval can be added by merging the two already present intervals. */
1214
            /* The interval can be added by merging the two already present intervals. */
1215
            leaf->value[leaf->keys - 1] += count + right_cnt;
1215
            leaf->value[leaf->keys - 1] += count + right_cnt;
1216
            btree_remove(&a->used_space, right_pg, node);
1216
            btree_remove(&a->used_space, right_pg, node);
1217
            return 1;
1217
            return 1;
1218
        } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1218
        } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1219
            /* The interval can be added by simply growing the left interval. */
1219
            /* The interval can be added by simply growing the left interval. */
1220
            leaf->value[leaf->keys - 1] +=  count;
1220
            leaf->value[leaf->keys - 1] +=  count;
1221
            return 1;
1221
            return 1;
1222
        } else if (page + count*PAGE_SIZE == right_pg) {
1222
        } else if (page + count*PAGE_SIZE == right_pg) {
1223
            /*
1223
            /*
1224
             * The interval can be addded by simply moving base of the right
1224
             * The interval can be addded by simply moving base of the right
1225
             * interval down and increasing its size accordingly.
1225
             * interval down and increasing its size accordingly.
1226
             */
1226
             */
1227
            node->value[0] += count;
1227
            node->value[0] += count;
1228
            node->key[0] = page;
1228
            node->key[0] = page;
1229
            return 1;
1229
            return 1;
1230
        } else {
1230
        } else {
1231
            /*
1231
            /*
1232
             * The interval is between both neigbouring intervals,
1232
             * The interval is between both neigbouring intervals,
1233
             * but cannot be merged with any of them.
1233
             * but cannot be merged with any of them.
1234
             */
1234
             */
1235
            btree_insert(&a->used_space, page, (void *) count, leaf);
1235
            btree_insert(&a->used_space, page, (void *) count, leaf);
1236
            return 1;
1236
            return 1;
1237
        }
1237
        }
1238
    } else if (page >= leaf->key[leaf->keys - 1]) {
1238
    } else if (page >= leaf->key[leaf->keys - 1]) {
1239
        __address left_pg = leaf->key[leaf->keys - 1];
1239
        __address left_pg = leaf->key[leaf->keys - 1];
1240
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1240
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1241
   
1241
   
1242
        /*
1242
        /*
1243
         * Investigate the border case in which the right neighbour does not
1243
         * Investigate the border case in which the right neighbour does not
1244
         * exist but the interval fits from the right.
1244
         * exist but the interval fits from the right.
1245
         */
1245
         */
1246
         
1246
         
1247
        if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1247
        if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1248
            /* The interval intersects with the left interval. */
1248
            /* The interval intersects with the left interval. */
1249
            return 0;
1249
            return 0;
1250
        } else if (left_pg + left_cnt*PAGE_SIZE == page) {
1250
        } else if (left_pg + left_cnt*PAGE_SIZE == page) {
1251
            /* The interval can be added by growing the left interval. */
1251
            /* The interval can be added by growing the left interval. */
1252
            leaf->value[leaf->keys - 1] += count;
1252
            leaf->value[leaf->keys - 1] += count;
1253
            return 1;
1253
            return 1;
1254
        } else {
1254
        } else {
1255
            /*
1255
            /*
1256
             * The interval doesn't adjoin with the left interval.
1256
             * The interval doesn't adjoin with the left interval.
1257
             * It must be added individually.
1257
             * It must be added individually.
1258
             */
1258
             */
1259
            btree_insert(&a->used_space, page, (void *) count, leaf);
1259
            btree_insert(&a->used_space, page, (void *) count, leaf);
1260
            return 1;
1260
            return 1;
1261
        }
1261
        }
1262
    }
1262
    }
1263
   
1263
   
1264
    /*
1264
    /*
1265
     * Note that if the algorithm made it thus far, the interval can fit only
1265
     * Note that if the algorithm made it thus far, the interval can fit only
1266
     * between two other intervals of the leaf. The two border cases were already
1266
     * between two other intervals of the leaf. The two border cases were already
1267
     * resolved.
1267
     * resolved.
1268
     */
1268
     */
1269
    for (i = 1; i < leaf->keys; i++) {
1269
    for (i = 1; i < leaf->keys; i++) {
1270
        if (page < leaf->key[i]) {
1270
        if (page < leaf->key[i]) {
1271
            __address left_pg = leaf->key[i - 1], right_pg = leaf->key[i];
1271
            __address left_pg = leaf->key[i - 1], right_pg = leaf->key[i];
1272
            count_t left_cnt = (count_t) leaf->value[i - 1], right_cnt = (count_t) leaf->value[i];
1272
            count_t left_cnt = (count_t) leaf->value[i - 1], right_cnt = (count_t) leaf->value[i];
1273
 
1273
 
1274
            /*
1274
            /*
1275
             * The interval fits between left_pg and right_pg.
1275
             * The interval fits between left_pg and right_pg.
1276
             */
1276
             */
1277
 
1277
 
1278
            if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1278
            if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1279
                /* The interval intersects with the left interval. */
1279
                /* The interval intersects with the left interval. */
1280
                return 0;
1280
                return 0;
1281
            } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1281
            } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1282
                /* The interval intersects with the right interval. */
1282
                /* The interval intersects with the right interval. */
1283
                return 0;          
1283
                return 0;          
1284
            } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1284
            } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1285
                /* The interval can be added by merging the two already present intervals. */
1285
                /* The interval can be added by merging the two already present intervals. */
1286
                leaf->value[i - 1] += count + right_cnt;
1286
                leaf->value[i - 1] += count + right_cnt;
1287
                btree_remove(&a->used_space, right_pg, leaf);
1287
                btree_remove(&a->used_space, right_pg, leaf);
1288
                return 1;
1288
                return 1;
1289
            } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1289
            } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1290
                /* The interval can be added by simply growing the left interval. */
1290
                /* The interval can be added by simply growing the left interval. */
1291
                leaf->value[i - 1] += count;
1291
                leaf->value[i - 1] += count;
1292
                return 1;
1292
                return 1;
1293
            } else if (page + count*PAGE_SIZE == right_pg) {
1293
            } else if (page + count*PAGE_SIZE == right_pg) {
1294
                /*
1294
                /*
1295
                     * The interval can be addded by simply moving base of the right
1295
                     * The interval can be addded by simply moving base of the right
1296
                 * interval down and increasing its size accordingly.
1296
                 * interval down and increasing its size accordingly.
1297
                 */
1297
                 */
1298
                leaf->value[i] += count;
1298
                leaf->value[i] += count;
1299
                leaf->key[i] = page;
1299
                leaf->key[i] = page;
1300
                return 1;
1300
                return 1;
1301
            } else {
1301
            } else {
1302
                /*
1302
                /*
1303
                 * The interval is between both neigbouring intervals,
1303
                 * The interval is between both neigbouring intervals,
1304
                 * but cannot be merged with any of them.
1304
                 * but cannot be merged with any of them.
1305
                 */
1305
                 */
1306
                btree_insert(&a->used_space, page, (void *) count, leaf);
1306
                btree_insert(&a->used_space, page, (void *) count, leaf);
1307
                return 1;
1307
                return 1;
1308
            }
1308
            }
1309
        }
1309
        }
1310
    }
1310
    }
1311
 
1311
 
1312
    panic("Inconsistency detected while adding %d pages of used space at %P.\n", count, page);
1312
    panic("Inconsistency detected while adding %d pages of used space at %p.\n", count, page);
1313
}
1313
}
1314
 
1314
 
1315
/** Mark portion of address space area as unused.
1315
/** Mark portion of address space area as unused.
1316
 *
1316
 *
1317
 * The address space area must be already locked.
1317
 * The address space area must be already locked.
1318
 *
1318
 *
1319
 * @param a Address space area.
1319
 * @param a Address space area.
1320
 * @param page First page to be marked.
1320
 * @param page First page to be marked.
1321
 * @param count Number of page to be marked.
1321
 * @param count Number of page to be marked.
1322
 *
1322
 *
1323
 * @return 0 on failure and 1 on success.
1323
 * @return 0 on failure and 1 on success.
1324
 */
1324
 */
1325
int used_space_remove(as_area_t *a, __address page, count_t count)
1325
int used_space_remove(as_area_t *a, __address page, count_t count)
1326
{
1326
{
1327
    btree_node_t *leaf, *node;
1327
    btree_node_t *leaf, *node;
1328
    count_t pages;
1328
    count_t pages;
1329
    int i;
1329
    int i;
1330
 
1330
 
1331
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1331
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1332
    ASSERT(count);
1332
    ASSERT(count);
1333
 
1333
 
1334
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1334
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1335
    if (pages) {
1335
    if (pages) {
1336
        /*
1336
        /*
1337
         * We are lucky, page is the beginning of some interval.
1337
         * We are lucky, page is the beginning of some interval.
1338
         */
1338
         */
1339
        if (count > pages) {
1339
        if (count > pages) {
1340
            return 0;
1340
            return 0;
1341
        } else if (count == pages) {
1341
        } else if (count == pages) {
1342
            btree_remove(&a->used_space, page, leaf);
1342
            btree_remove(&a->used_space, page, leaf);
1343
            return 1;
1343
            return 1;
1344
        } else {
1344
        } else {
1345
            /*
1345
            /*
1346
             * Find the respective interval.
1346
             * Find the respective interval.
1347
             * Decrease its size and relocate its start address.
1347
             * Decrease its size and relocate its start address.
1348
             */
1348
             */
1349
            for (i = 0; i < leaf->keys; i++) {
1349
            for (i = 0; i < leaf->keys; i++) {
1350
                if (leaf->key[i] == page) {
1350
                if (leaf->key[i] == page) {
1351
                    leaf->key[i] += count*PAGE_SIZE;
1351
                    leaf->key[i] += count*PAGE_SIZE;
1352
                    leaf->value[i] -= count;
1352
                    leaf->value[i] -= count;
1353
                    return 1;
1353
                    return 1;
1354
                }
1354
                }
1355
            }
1355
            }
1356
            goto error;
1356
            goto error;
1357
        }
1357
        }
1358
    }
1358
    }
1359
 
1359
 
1360
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1360
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1361
    if (node && page < leaf->key[0]) {
1361
    if (node && page < leaf->key[0]) {
1362
        __address left_pg = node->key[node->keys - 1];
1362
        __address left_pg = node->key[node->keys - 1];
1363
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1363
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1364
 
1364
 
1365
        if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1365
        if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1366
            if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1366
            if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1367
                /*
1367
                /*
1368
                 * The interval is contained in the rightmost interval
1368
                 * The interval is contained in the rightmost interval
1369
                 * of the left neighbour and can be removed by
1369
                 * of the left neighbour and can be removed by
1370
                 * updating the size of the bigger interval.
1370
                 * updating the size of the bigger interval.
1371
                 */
1371
                 */
1372
                node->value[node->keys - 1] -= count;
1372
                node->value[node->keys - 1] -= count;
1373
                return 1;
1373
                return 1;
1374
            } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1374
            } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1375
                count_t new_cnt;
1375
                count_t new_cnt;
1376
               
1376
               
1377
                /*
1377
                /*
1378
                 * The interval is contained in the rightmost interval
1378
                 * The interval is contained in the rightmost interval
1379
                 * of the left neighbour but its removal requires
1379
                 * of the left neighbour but its removal requires
1380
                 * both updating the size of the original interval and
1380
                 * both updating the size of the original interval and
1381
                 * also inserting a new interval.
1381
                 * also inserting a new interval.
1382
                 */
1382
                 */
1383
                new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1383
                new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1384
                node->value[node->keys - 1] -= count + new_cnt;
1384
                node->value[node->keys - 1] -= count + new_cnt;
1385
                btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1385
                btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1386
                return 1;
1386
                return 1;
1387
            }
1387
            }
1388
        }
1388
        }
1389
        return 0;
1389
        return 0;
1390
    } else if (page < leaf->key[0]) {
1390
    } else if (page < leaf->key[0]) {
1391
        return 0;
1391
        return 0;
1392
    }
1392
    }
1393
   
1393
   
1394
    if (page > leaf->key[leaf->keys - 1]) {
1394
    if (page > leaf->key[leaf->keys - 1]) {
1395
        __address left_pg = leaf->key[leaf->keys - 1];
1395
        __address left_pg = leaf->key[leaf->keys - 1];
1396
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1396
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1397
 
1397
 
1398
        if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1398
        if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1399
            if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1399
            if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1400
                /*
1400
                /*
1401
                 * The interval is contained in the rightmost interval
1401
                 * The interval is contained in the rightmost interval
1402
                 * of the leaf and can be removed by updating the size
1402
                 * of the leaf and can be removed by updating the size
1403
                 * of the bigger interval.
1403
                 * of the bigger interval.
1404
                 */
1404
                 */
1405
                leaf->value[leaf->keys - 1] -= count;
1405
                leaf->value[leaf->keys - 1] -= count;
1406
                return 1;
1406
                return 1;
1407
            } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1407
            } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1408
                count_t new_cnt;
1408
                count_t new_cnt;
1409
               
1409
               
1410
                /*
1410
                /*
1411
                 * The interval is contained in the rightmost interval
1411
                 * The interval is contained in the rightmost interval
1412
                 * of the leaf but its removal requires both updating
1412
                 * of the leaf but its removal requires both updating
1413
                 * the size of the original interval and
1413
                 * the size of the original interval and
1414
                 * also inserting a new interval.
1414
                 * also inserting a new interval.
1415
                 */
1415
                 */
1416
                new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1416
                new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1417
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1417
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1418
                btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1418
                btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1419
                return 1;
1419
                return 1;
1420
            }
1420
            }
1421
        }
1421
        }
1422
        return 0;
1422
        return 0;
1423
    }  
1423
    }  
1424
   
1424
   
1425
    /*
1425
    /*
1426
     * The border cases have been already resolved.
1426
     * The border cases have been already resolved.
1427
     * Now the interval can be only between intervals of the leaf.
1427
     * Now the interval can be only between intervals of the leaf.
1428
     */
1428
     */
1429
    for (i = 1; i < leaf->keys - 1; i++) {
1429
    for (i = 1; i < leaf->keys - 1; i++) {
1430
        if (page < leaf->key[i]) {
1430
        if (page < leaf->key[i]) {
1431
            __address left_pg = leaf->key[i - 1];
1431
            __address left_pg = leaf->key[i - 1];
1432
            count_t left_cnt = (count_t) leaf->value[i - 1];
1432
            count_t left_cnt = (count_t) leaf->value[i - 1];
1433
 
1433
 
1434
            /*
1434
            /*
1435
             * Now the interval is between intervals corresponding to (i - 1) and i.
1435
             * Now the interval is between intervals corresponding to (i - 1) and i.
1436
             */
1436
             */
1437
            if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1437
            if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1438
                if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1438
                if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1439
                    /*
1439
                    /*
1440
                    * The interval is contained in the interval (i - 1)
1440
                    * The interval is contained in the interval (i - 1)
1441
                     * of the leaf and can be removed by updating the size
1441
                     * of the leaf and can be removed by updating the size
1442
                     * of the bigger interval.
1442
                     * of the bigger interval.
1443
                     */
1443
                     */
1444
                    leaf->value[i - 1] -= count;
1444
                    leaf->value[i - 1] -= count;
1445
                    return 1;
1445
                    return 1;
1446
                } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1446
                } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1447
                    count_t new_cnt;
1447
                    count_t new_cnt;
1448
               
1448
               
1449
                    /*
1449
                    /*
1450
                     * The interval is contained in the interval (i - 1)
1450
                     * The interval is contained in the interval (i - 1)
1451
                     * of the leaf but its removal requires both updating
1451
                     * of the leaf but its removal requires both updating
1452
                     * the size of the original interval and
1452
                     * the size of the original interval and
1453
                     * also inserting a new interval.
1453
                     * also inserting a new interval.
1454
                     */
1454
                     */
1455
                    new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1455
                    new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1456
                    leaf->value[i - 1] -= count + new_cnt;
1456
                    leaf->value[i - 1] -= count + new_cnt;
1457
                    btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1457
                    btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1458
                    return 1;
1458
                    return 1;
1459
                }
1459
                }
1460
            }
1460
            }
1461
            return 0;
1461
            return 0;
1462
        }
1462
        }
1463
    }
1463
    }
1464
 
1464
 
1465
error:
1465
error:
1466
    panic("Inconsistency detected while removing %d pages of used space from %P.\n", count, page);
1466
    panic("Inconsistency detected while removing %d pages of used space from %p.\n", count, page);
1467
}
1467
}
1468
 
1468
 
1469
/** Remove reference to address space area share info.
1469
/** Remove reference to address space area share info.
1470
 *
1470
 *
1471
 * If the reference count drops to 0, the sh_info is deallocated.
1471
 * If the reference count drops to 0, the sh_info is deallocated.
1472
 *
1472
 *
1473
 * @param sh_info Pointer to address space area share info.
1473
 * @param sh_info Pointer to address space area share info.
1474
 */
1474
 */
1475
void sh_info_remove_reference(share_info_t *sh_info)
1475
void sh_info_remove_reference(share_info_t *sh_info)
1476
{
1476
{
1477
    bool dealloc = false;
1477
    bool dealloc = false;
1478
 
1478
 
1479
    mutex_lock(&sh_info->lock);
1479
    mutex_lock(&sh_info->lock);
1480
    ASSERT(sh_info->refcount);
1480
    ASSERT(sh_info->refcount);
1481
    if (--sh_info->refcount == 0) {
1481
    if (--sh_info->refcount == 0) {
1482
        dealloc = true;
1482
        dealloc = true;
1483
        link_t *cur;
1483
        link_t *cur;
1484
       
1484
       
1485
        /*
1485
        /*
1486
         * Now walk carefully the pagemap B+tree and free/remove
1486
         * Now walk carefully the pagemap B+tree and free/remove
1487
         * reference from all frames found there.
1487
         * reference from all frames found there.
1488
         */
1488
         */
1489
        for (cur = sh_info->pagemap.leaf_head.next; cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1489
        for (cur = sh_info->pagemap.leaf_head.next; cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1490
            btree_node_t *node;
1490
            btree_node_t *node;
1491
            int i;
1491
            int i;
1492
           
1492
           
1493
            node = list_get_instance(cur, btree_node_t, leaf_link);
1493
            node = list_get_instance(cur, btree_node_t, leaf_link);
1494
            for (i = 0; i < node->keys; i++)
1494
            for (i = 0; i < node->keys; i++)
1495
                frame_free(ADDR2PFN((__address) node->value[i]));
1495
                frame_free(ADDR2PFN((__address) node->value[i]));
1496
        }
1496
        }
1497
       
1497
       
1498
    }
1498
    }
1499
    mutex_unlock(&sh_info->lock);
1499
    mutex_unlock(&sh_info->lock);
1500
   
1500
   
1501
    if (dealloc) {
1501
    if (dealloc) {
1502
        btree_destroy(&sh_info->pagemap);
1502
        btree_destroy(&sh_info->pagemap);
1503
        free(sh_info);
1503
        free(sh_info);
1504
    }
1504
    }
1505
}
1505
}
1506
 
1506
 
1507
/*
1507
/*
1508
 * Address space related syscalls.
1508
 * Address space related syscalls.
1509
 */
1509
 */
1510
 
1510
 
1511
/** Wrapper for as_area_create(). */
1511
/** Wrapper for as_area_create(). */
1512
__native sys_as_area_create(__address address, size_t size, int flags)
1512
__native sys_as_area_create(__address address, size_t size, int flags)
1513
{
1513
{
1514
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address, AS_AREA_ATTR_NONE, &anon_backend, NULL))
1514
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address, AS_AREA_ATTR_NONE, &anon_backend, NULL))
1515
        return (__native) address;
1515
        return (__native) address;
1516
    else
1516
    else
1517
        return (__native) -1;
1517
        return (__native) -1;
1518
}
1518
}
1519
 
1519
 
1520
/** Wrapper for as_area_resize. */
1520
/** Wrapper for as_area_resize. */
1521
__native sys_as_area_resize(__address address, size_t size, int flags)
1521
__native sys_as_area_resize(__address address, size_t size, int flags)
1522
{
1522
{
1523
    return (__native) as_area_resize(AS, address, size, 0);
1523
    return (__native) as_area_resize(AS, address, size, 0);
1524
}
1524
}
1525
 
1525
 
1526
/** Wrapper for as_area_destroy. */
1526
/** Wrapper for as_area_destroy. */
1527
__native sys_as_area_destroy(__address address)
1527
__native sys_as_area_destroy(__address address)
1528
{
1528
{
1529
    return (__native) as_area_destroy(AS, address);
1529
    return (__native) as_area_destroy(AS, address);
1530
}
1530
}
1531
 
1531
 
1532
 /** @}
1532
 /** @}
1533
 */
1533
 */
1534
 
1534
 
1535
 
1535