Subversion Repositories HelenOS-historic

Rev

Rev 1702 | Rev 1735 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 1702 Rev 1705
1
/*
1
/*
2
 * Copyright (C) 2001-2006 Jakub Jermar
2
 * Copyright (C) 2001-2006 Jakub Jermar
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
 /** @defgroup mm Memory management
-
 
30
  * @ingroup kernel
-
 
31
  * @{
-
 
32
  * @}
-
 
33
  */
-
 
34
 
-
 
35
 /** @addtogroup genericmm generic
29
 /** @addtogroup genericmm
36
  * @ingroup mm
-
 
37
 * @{
30
 * @{
38
 */
31
 */
39
 
32
 
40
/**
33
/**
41
 * @file
34
 * @file
42
 * @brief   Address space related functions.
35
 * @brief   Address space related functions.
43
 *
36
 *
44
 * This file contains address space manipulation functions.
37
 * This file contains address space manipulation functions.
45
 * Roughly speaking, this is a higher-level client of
38
 * Roughly speaking, this is a higher-level client of
46
 * Virtual Address Translation (VAT) subsystem.
39
 * Virtual Address Translation (VAT) subsystem.
47
 *
40
 *
48
 * Functionality provided by this file allows one to
41
 * Functionality provided by this file allows one to
49
 * create address space and create, resize and share
42
 * create address space and create, resize and share
50
 * address space areas.
43
 * address space areas.
51
 *
44
 *
52
 * @see page.c
45
 * @see page.c
53
 *
46
 *
54
 */
47
 */
55
 
48
 
56
#include <mm/as.h>
49
#include <mm/as.h>
57
#include <arch/mm/as.h>
50
#include <arch/mm/as.h>
58
#include <mm/page.h>
51
#include <mm/page.h>
59
#include <mm/frame.h>
52
#include <mm/frame.h>
60
#include <mm/slab.h>
53
#include <mm/slab.h>
61
#include <mm/tlb.h>
54
#include <mm/tlb.h>
62
#include <arch/mm/page.h>
55
#include <arch/mm/page.h>
63
#include <genarch/mm/page_pt.h>
56
#include <genarch/mm/page_pt.h>
64
#include <genarch/mm/page_ht.h>
57
#include <genarch/mm/page_ht.h>
65
#include <mm/asid.h>
58
#include <mm/asid.h>
66
#include <arch/mm/asid.h>
59
#include <arch/mm/asid.h>
67
#include <synch/spinlock.h>
60
#include <synch/spinlock.h>
68
#include <synch/mutex.h>
61
#include <synch/mutex.h>
69
#include <adt/list.h>
62
#include <adt/list.h>
70
#include <adt/btree.h>
63
#include <adt/btree.h>
71
#include <proc/task.h>
64
#include <proc/task.h>
72
#include <proc/thread.h>
65
#include <proc/thread.h>
73
#include <arch/asm.h>
66
#include <arch/asm.h>
74
#include <panic.h>
67
#include <panic.h>
75
#include <debug.h>
68
#include <debug.h>
76
#include <print.h>
69
#include <print.h>
77
#include <memstr.h>
70
#include <memstr.h>
78
#include <macros.h>
71
#include <macros.h>
79
#include <arch.h>
72
#include <arch.h>
80
#include <errno.h>
73
#include <errno.h>
81
#include <config.h>
74
#include <config.h>
82
#include <align.h>
75
#include <align.h>
83
#include <arch/types.h>
76
#include <arch/types.h>
84
#include <typedefs.h>
77
#include <typedefs.h>
85
#include <syscall/copy.h>
78
#include <syscall/copy.h>
86
#include <arch/interrupt.h>
79
#include <arch/interrupt.h>
87
 
80
 
88
as_operations_t *as_operations = NULL;
81
as_operations_t *as_operations = NULL;
89
 
82
 
90
/** This lock protects inactive_as_with_asid_head list. It must be acquired before as_t mutex. */
83
/** This lock protects inactive_as_with_asid_head list. It must be acquired before as_t mutex. */
91
SPINLOCK_INITIALIZE(inactive_as_with_asid_lock);
84
SPINLOCK_INITIALIZE(inactive_as_with_asid_lock);
92
 
85
 
93
/**
86
/**
94
 * This list contains address spaces that are not active on any
87
 * This list contains address spaces that are not active on any
95
 * processor and that have valid ASID.
88
 * processor and that have valid ASID.
96
 */
89
 */
97
LIST_INITIALIZE(inactive_as_with_asid_head);
90
LIST_INITIALIZE(inactive_as_with_asid_head);
98
 
91
 
99
/** Kernel address space. */
92
/** Kernel address space. */
100
as_t *AS_KERNEL = NULL;
93
as_t *AS_KERNEL = NULL;
101
 
94
 
102
static int area_flags_to_page_flags(int aflags);
95
static int area_flags_to_page_flags(int aflags);
103
static as_area_t *find_area_and_lock(as_t *as, __address va);
96
static as_area_t *find_area_and_lock(as_t *as, __address va);
104
static bool check_area_conflicts(as_t *as, __address va, size_t size, as_area_t *avoid_area);
97
static bool check_area_conflicts(as_t *as, __address va, size_t size, as_area_t *avoid_area);
105
static void sh_info_remove_reference(share_info_t *sh_info);
98
static void sh_info_remove_reference(share_info_t *sh_info);
106
 
99
 
107
/** Initialize address space subsystem. */
100
/** Initialize address space subsystem. */
108
void as_init(void)
101
void as_init(void)
109
{
102
{
110
    as_arch_init();
103
    as_arch_init();
111
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
104
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
112
    if (!AS_KERNEL)
105
    if (!AS_KERNEL)
113
        panic("can't create kernel address space\n");
106
        panic("can't create kernel address space\n");
114
   
107
   
115
}
108
}
116
 
109
 
117
/** Create address space.
110
/** Create address space.
118
 *
111
 *
119
 * @param flags Flags that influence way in wich the address space is created.
112
 * @param flags Flags that influence way in wich the address space is created.
120
 */
113
 */
121
as_t *as_create(int flags)
114
as_t *as_create(int flags)
122
{
115
{
123
    as_t *as;
116
    as_t *as;
124
 
117
 
125
    as = (as_t *) malloc(sizeof(as_t), 0);
118
    as = (as_t *) malloc(sizeof(as_t), 0);
126
    link_initialize(&as->inactive_as_with_asid_link);
119
    link_initialize(&as->inactive_as_with_asid_link);
127
    mutex_initialize(&as->lock);
120
    mutex_initialize(&as->lock);
128
    btree_create(&as->as_area_btree);
121
    btree_create(&as->as_area_btree);
129
   
122
   
130
    if (flags & FLAG_AS_KERNEL)
123
    if (flags & FLAG_AS_KERNEL)
131
        as->asid = ASID_KERNEL;
124
        as->asid = ASID_KERNEL;
132
    else
125
    else
133
        as->asid = ASID_INVALID;
126
        as->asid = ASID_INVALID;
134
   
127
   
135
    as->refcount = 0;
128
    as->refcount = 0;
136
    as->cpu_refcount = 0;
129
    as->cpu_refcount = 0;
137
    as->page_table = page_table_create(flags);
130
    as->page_table = page_table_create(flags);
138
 
131
 
139
    return as;
132
    return as;
140
}
133
}
141
 
134
 
142
/** Destroy adress space.
135
/** Destroy adress space.
143
 *
136
 *
144
 * When there are no tasks referencing this address space (i.e. its refcount is zero),
137
 * When there are no tasks referencing this address space (i.e. its refcount is zero),
145
 * the address space can be destroyed.
138
 * the address space can be destroyed.
146
 */
139
 */
147
void as_destroy(as_t *as)
140
void as_destroy(as_t *as)
148
{
141
{
149
    ipl_t ipl;
142
    ipl_t ipl;
150
    bool cond;
143
    bool cond;
151
 
144
 
152
    ASSERT(as->refcount == 0);
145
    ASSERT(as->refcount == 0);
153
   
146
   
154
    /*
147
    /*
155
     * Since there is no reference to this area,
148
     * Since there is no reference to this area,
156
     * it is safe not to lock its mutex.
149
     * it is safe not to lock its mutex.
157
     */
150
     */
158
    ipl = interrupts_disable();
151
    ipl = interrupts_disable();
159
    spinlock_lock(&inactive_as_with_asid_lock);
152
    spinlock_lock(&inactive_as_with_asid_lock);
160
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
153
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
161
        if (as != AS && as->cpu_refcount == 0)
154
        if (as != AS && as->cpu_refcount == 0)
162
            list_remove(&as->inactive_as_with_asid_link);
155
            list_remove(&as->inactive_as_with_asid_link);
163
        asid_put(as->asid);
156
        asid_put(as->asid);
164
    }
157
    }
165
    spinlock_unlock(&inactive_as_with_asid_lock);
158
    spinlock_unlock(&inactive_as_with_asid_lock);
166
 
159
 
167
    /*
160
    /*
168
     * Destroy address space areas of the address space.
161
     * Destroy address space areas of the address space.
169
     * The B+tee must be walked carefully because it is
162
     * The B+tee must be walked carefully because it is
170
     * also being destroyed.
163
     * also being destroyed.
171
     */
164
     */
172
    for (cond = true; cond; ) {
165
    for (cond = true; cond; ) {
173
        btree_node_t *node;
166
        btree_node_t *node;
174
 
167
 
175
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
168
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
176
        node = list_get_instance(as->as_area_btree.leaf_head.next, btree_node_t, leaf_link);
169
        node = list_get_instance(as->as_area_btree.leaf_head.next, btree_node_t, leaf_link);
177
 
170
 
178
        if ((cond = node->keys)) {
171
        if ((cond = node->keys)) {
179
            as_area_destroy(as, node->key[0]);
172
            as_area_destroy(as, node->key[0]);
180
        }
173
        }
181
    }
174
    }
182
 
175
 
183
    btree_destroy(&as->as_area_btree);
176
    btree_destroy(&as->as_area_btree);
184
    page_table_destroy(as->page_table);
177
    page_table_destroy(as->page_table);
185
 
178
 
186
    interrupts_restore(ipl);
179
    interrupts_restore(ipl);
187
   
180
   
188
    free(as);
181
    free(as);
189
}
182
}
190
 
183
 
191
/** Create address space area of common attributes.
184
/** Create address space area of common attributes.
192
 *
185
 *
193
 * The created address space area is added to the target address space.
186
 * The created address space area is added to the target address space.
194
 *
187
 *
195
 * @param as Target address space.
188
 * @param as Target address space.
196
 * @param flags Flags of the area memory.
189
 * @param flags Flags of the area memory.
197
 * @param size Size of area.
190
 * @param size Size of area.
198
 * @param base Base address of area.
191
 * @param base Base address of area.
199
 * @param attrs Attributes of the area.
192
 * @param attrs Attributes of the area.
200
 * @param backend Address space area backend. NULL if no backend is used.
193
 * @param backend Address space area backend. NULL if no backend is used.
201
 * @param backend_data NULL or a pointer to an array holding two void *.
194
 * @param backend_data NULL or a pointer to an array holding two void *.
202
 *
195
 *
203
 * @return Address space area on success or NULL on failure.
196
 * @return Address space area on success or NULL on failure.
204
 */
197
 */
205
as_area_t *as_area_create(as_t *as, int flags, size_t size, __address base, int attrs,
198
as_area_t *as_area_create(as_t *as, int flags, size_t size, __address base, int attrs,
206
           mem_backend_t *backend, mem_backend_data_t *backend_data)
199
           mem_backend_t *backend, mem_backend_data_t *backend_data)
207
{
200
{
208
    ipl_t ipl;
201
    ipl_t ipl;
209
    as_area_t *a;
202
    as_area_t *a;
210
   
203
   
211
    if (base % PAGE_SIZE)
204
    if (base % PAGE_SIZE)
212
        return NULL;
205
        return NULL;
213
 
206
 
214
    if (!size)
207
    if (!size)
215
        return NULL;
208
        return NULL;
216
 
209
 
217
    /* Writeable executable areas are not supported. */
210
    /* Writeable executable areas are not supported. */
218
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
211
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
219
        return NULL;
212
        return NULL;
220
   
213
   
221
    ipl = interrupts_disable();
214
    ipl = interrupts_disable();
222
    mutex_lock(&as->lock);
215
    mutex_lock(&as->lock);
223
   
216
   
224
    if (!check_area_conflicts(as, base, size, NULL)) {
217
    if (!check_area_conflicts(as, base, size, NULL)) {
225
        mutex_unlock(&as->lock);
218
        mutex_unlock(&as->lock);
226
        interrupts_restore(ipl);
219
        interrupts_restore(ipl);
227
        return NULL;
220
        return NULL;
228
    }
221
    }
229
   
222
   
230
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
223
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
231
 
224
 
232
    mutex_initialize(&a->lock);
225
    mutex_initialize(&a->lock);
233
   
226
   
234
    a->as = as;
227
    a->as = as;
235
    a->flags = flags;
228
    a->flags = flags;
236
    a->attributes = attrs;
229
    a->attributes = attrs;
237
    a->pages = SIZE2FRAMES(size);
230
    a->pages = SIZE2FRAMES(size);
238
    a->base = base;
231
    a->base = base;
239
    a->sh_info = NULL;
232
    a->sh_info = NULL;
240
    a->backend = backend;
233
    a->backend = backend;
241
    if (backend_data)
234
    if (backend_data)
242
        a->backend_data = *backend_data;
235
        a->backend_data = *backend_data;
243
    else
236
    else
244
        memsetb((__address) &a->backend_data, sizeof(a->backend_data), 0);
237
        memsetb((__address) &a->backend_data, sizeof(a->backend_data), 0);
245
 
238
 
246
    btree_create(&a->used_space);
239
    btree_create(&a->used_space);
247
   
240
   
248
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
241
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
249
 
242
 
250
    mutex_unlock(&as->lock);
243
    mutex_unlock(&as->lock);
251
    interrupts_restore(ipl);
244
    interrupts_restore(ipl);
252
 
245
 
253
    return a;
246
    return a;
254
}
247
}
255
 
248
 
256
/** Find address space area and change it.
249
/** Find address space area and change it.
257
 *
250
 *
258
 * @param as Address space.
251
 * @param as Address space.
259
 * @param address Virtual address belonging to the area to be changed. Must be page-aligned.
252
 * @param address Virtual address belonging to the area to be changed. Must be page-aligned.
260
 * @param size New size of the virtual memory block starting at address.
253
 * @param size New size of the virtual memory block starting at address.
261
 * @param flags Flags influencing the remap operation. Currently unused.
254
 * @param flags Flags influencing the remap operation. Currently unused.
262
 *
255
 *
263
 * @return Zero on success or a value from @ref errno.h otherwise.
256
 * @return Zero on success or a value from @ref errno.h otherwise.
264
 */
257
 */
265
int as_area_resize(as_t *as, __address address, size_t size, int flags)
258
int as_area_resize(as_t *as, __address address, size_t size, int flags)
266
{
259
{
267
    as_area_t *area;
260
    as_area_t *area;
268
    ipl_t ipl;
261
    ipl_t ipl;
269
    size_t pages;
262
    size_t pages;
270
   
263
   
271
    ipl = interrupts_disable();
264
    ipl = interrupts_disable();
272
    mutex_lock(&as->lock);
265
    mutex_lock(&as->lock);
273
   
266
   
274
    /*
267
    /*
275
     * Locate the area.
268
     * Locate the area.
276
     */
269
     */
277
    area = find_area_and_lock(as, address);
270
    area = find_area_and_lock(as, address);
278
    if (!area) {
271
    if (!area) {
279
        mutex_unlock(&as->lock);
272
        mutex_unlock(&as->lock);
280
        interrupts_restore(ipl);
273
        interrupts_restore(ipl);
281
        return ENOENT;
274
        return ENOENT;
282
    }
275
    }
283
 
276
 
284
    if (area->backend == &phys_backend) {
277
    if (area->backend == &phys_backend) {
285
        /*
278
        /*
286
         * Remapping of address space areas associated
279
         * Remapping of address space areas associated
287
         * with memory mapped devices is not supported.
280
         * with memory mapped devices is not supported.
288
         */
281
         */
289
        mutex_unlock(&area->lock);
282
        mutex_unlock(&area->lock);
290
        mutex_unlock(&as->lock);
283
        mutex_unlock(&as->lock);
291
        interrupts_restore(ipl);
284
        interrupts_restore(ipl);
292
        return ENOTSUP;
285
        return ENOTSUP;
293
    }
286
    }
294
    if (area->sh_info) {
287
    if (area->sh_info) {
295
        /*
288
        /*
296
         * Remapping of shared address space areas
289
         * Remapping of shared address space areas
297
         * is not supported.
290
         * is not supported.
298
         */
291
         */
299
        mutex_unlock(&area->lock);
292
        mutex_unlock(&area->lock);
300
        mutex_unlock(&as->lock);
293
        mutex_unlock(&as->lock);
301
        interrupts_restore(ipl);
294
        interrupts_restore(ipl);
302
        return ENOTSUP;
295
        return ENOTSUP;
303
    }
296
    }
304
 
297
 
305
    pages = SIZE2FRAMES((address - area->base) + size);
298
    pages = SIZE2FRAMES((address - area->base) + size);
306
    if (!pages) {
299
    if (!pages) {
307
        /*
300
        /*
308
         * Zero size address space areas are not allowed.
301
         * Zero size address space areas are not allowed.
309
         */
302
         */
310
        mutex_unlock(&area->lock);
303
        mutex_unlock(&area->lock);
311
        mutex_unlock(&as->lock);
304
        mutex_unlock(&as->lock);
312
        interrupts_restore(ipl);
305
        interrupts_restore(ipl);
313
        return EPERM;
306
        return EPERM;
314
    }
307
    }
315
   
308
   
316
    if (pages < area->pages) {
309
    if (pages < area->pages) {
317
        bool cond;
310
        bool cond;
318
        __address start_free = area->base + pages*PAGE_SIZE;
311
        __address start_free = area->base + pages*PAGE_SIZE;
319
 
312
 
320
        /*
313
        /*
321
         * Shrinking the area.
314
         * Shrinking the area.
322
         * No need to check for overlaps.
315
         * No need to check for overlaps.
323
         */
316
         */
324
 
317
 
325
        /*
318
        /*
326
         * Start TLB shootdown sequence.
319
         * Start TLB shootdown sequence.
327
         */
320
         */
328
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
321
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
329
 
322
 
330
        /*
323
        /*
331
         * Remove frames belonging to used space starting from
324
         * Remove frames belonging to used space starting from
332
         * the highest addresses downwards until an overlap with
325
         * the highest addresses downwards until an overlap with
333
         * the resized address space area is found. Note that this
326
         * the resized address space area is found. Note that this
334
         * is also the right way to remove part of the used_space
327
         * is also the right way to remove part of the used_space
335
         * B+tree leaf list.
328
         * B+tree leaf list.
336
         */    
329
         */    
337
        for (cond = true; cond;) {
330
        for (cond = true; cond;) {
338
            btree_node_t *node;
331
            btree_node_t *node;
339
       
332
       
340
            ASSERT(!list_empty(&area->used_space.leaf_head));
333
            ASSERT(!list_empty(&area->used_space.leaf_head));
341
            node = list_get_instance(area->used_space.leaf_head.prev, btree_node_t, leaf_link);
334
            node = list_get_instance(area->used_space.leaf_head.prev, btree_node_t, leaf_link);
342
            if ((cond = (bool) node->keys)) {
335
            if ((cond = (bool) node->keys)) {
343
                __address b = node->key[node->keys - 1];
336
                __address b = node->key[node->keys - 1];
344
                count_t c = (count_t) node->value[node->keys - 1];
337
                count_t c = (count_t) node->value[node->keys - 1];
345
                int i = 0;
338
                int i = 0;
346
           
339
           
347
                if (overlaps(b, c*PAGE_SIZE, area->base, pages*PAGE_SIZE)) {
340
                if (overlaps(b, c*PAGE_SIZE, area->base, pages*PAGE_SIZE)) {
348
                   
341
                   
349
                    if (b + c*PAGE_SIZE <= start_free) {
342
                    if (b + c*PAGE_SIZE <= start_free) {
350
                        /*
343
                        /*
351
                         * The whole interval fits completely
344
                         * The whole interval fits completely
352
                         * in the resized address space area.
345
                         * in the resized address space area.
353
                         */
346
                         */
354
                        break;
347
                        break;
355
                    }
348
                    }
356
       
349
       
357
                    /*
350
                    /*
358
                     * Part of the interval corresponding to b and c
351
                     * Part of the interval corresponding to b and c
359
                     * overlaps with the resized address space area.
352
                     * overlaps with the resized address space area.
360
                     */
353
                     */
361
       
354
       
362
                    cond = false;   /* we are almost done */
355
                    cond = false;   /* we are almost done */
363
                    i = (start_free - b) >> PAGE_WIDTH;
356
                    i = (start_free - b) >> PAGE_WIDTH;
364
                    if (!used_space_remove(area, start_free, c - i))
357
                    if (!used_space_remove(area, start_free, c - i))
365
                        panic("Could not remove used space.");
358
                        panic("Could not remove used space.");
366
                } else {
359
                } else {
367
                    /*
360
                    /*
368
                     * The interval of used space can be completely removed.
361
                     * The interval of used space can be completely removed.
369
                     */
362
                     */
370
                    if (!used_space_remove(area, b, c))
363
                    if (!used_space_remove(area, b, c))
371
                        panic("Could not remove used space.\n");
364
                        panic("Could not remove used space.\n");
372
                }
365
                }
373
           
366
           
374
                for (; i < c; i++) {
367
                for (; i < c; i++) {
375
                    pte_t *pte;
368
                    pte_t *pte;
376
           
369
           
377
                    page_table_lock(as, false);
370
                    page_table_lock(as, false);
378
                    pte = page_mapping_find(as, b + i*PAGE_SIZE);
371
                    pte = page_mapping_find(as, b + i*PAGE_SIZE);
379
                    ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
372
                    ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
380
                    if (area->backend && area->backend->frame_free) {
373
                    if (area->backend && area->backend->frame_free) {
381
                        area->backend->frame_free(area,
374
                        area->backend->frame_free(area,
382
                            b + i*PAGE_SIZE, PTE_GET_FRAME(pte));
375
                            b + i*PAGE_SIZE, PTE_GET_FRAME(pte));
383
                    }
376
                    }
384
                    page_mapping_remove(as, b + i*PAGE_SIZE);
377
                    page_mapping_remove(as, b + i*PAGE_SIZE);
385
                    page_table_unlock(as, false);
378
                    page_table_unlock(as, false);
386
                }
379
                }
387
            }
380
            }
388
        }
381
        }
389
 
382
 
390
        /*
383
        /*
391
         * Finish TLB shootdown sequence.
384
         * Finish TLB shootdown sequence.
392
         */
385
         */
393
        tlb_invalidate_pages(AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
386
        tlb_invalidate_pages(AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
394
        tlb_shootdown_finalize();
387
        tlb_shootdown_finalize();
395
    } else {
388
    } else {
396
        /*
389
        /*
397
         * Growing the area.
390
         * Growing the area.
398
         * Check for overlaps with other address space areas.
391
         * Check for overlaps with other address space areas.
399
         */
392
         */
400
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE, area)) {
393
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE, area)) {
401
            mutex_unlock(&area->lock);
394
            mutex_unlock(&area->lock);
402
            mutex_unlock(&as->lock);       
395
            mutex_unlock(&as->lock);       
403
            interrupts_restore(ipl);
396
            interrupts_restore(ipl);
404
            return EADDRNOTAVAIL;
397
            return EADDRNOTAVAIL;
405
        }
398
        }
406
    }
399
    }
407
 
400
 
408
    area->pages = pages;
401
    area->pages = pages;
409
   
402
   
410
    mutex_unlock(&area->lock);
403
    mutex_unlock(&area->lock);
411
    mutex_unlock(&as->lock);
404
    mutex_unlock(&as->lock);
412
    interrupts_restore(ipl);
405
    interrupts_restore(ipl);
413
 
406
 
414
    return 0;
407
    return 0;
415
}
408
}
416
 
409
 
417
/** Destroy address space area.
410
/** Destroy address space area.
418
 *
411
 *
419
 * @param as Address space.
412
 * @param as Address space.
420
 * @param address Address withing the area to be deleted.
413
 * @param address Address withing the area to be deleted.
421
 *
414
 *
422
 * @return Zero on success or a value from @ref errno.h on failure.
415
 * @return Zero on success or a value from @ref errno.h on failure.
423
 */
416
 */
424
int as_area_destroy(as_t *as, __address address)
417
int as_area_destroy(as_t *as, __address address)
425
{
418
{
426
    as_area_t *area;
419
    as_area_t *area;
427
    __address base;
420
    __address base;
428
    link_t *cur;
421
    link_t *cur;
429
    ipl_t ipl;
422
    ipl_t ipl;
430
 
423
 
431
    ipl = interrupts_disable();
424
    ipl = interrupts_disable();
432
    mutex_lock(&as->lock);
425
    mutex_lock(&as->lock);
433
 
426
 
434
    area = find_area_and_lock(as, address);
427
    area = find_area_and_lock(as, address);
435
    if (!area) {
428
    if (!area) {
436
        mutex_unlock(&as->lock);
429
        mutex_unlock(&as->lock);
437
        interrupts_restore(ipl);
430
        interrupts_restore(ipl);
438
        return ENOENT;
431
        return ENOENT;
439
    }
432
    }
440
 
433
 
441
    base = area->base;
434
    base = area->base;
442
 
435
 
443
    /*
436
    /*
444
     * Start TLB shootdown sequence.
437
     * Start TLB shootdown sequence.
445
     */
438
     */
446
    tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base, area->pages);
439
    tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base, area->pages);
447
 
440
 
448
    /*
441
    /*
449
     * Visit only the pages mapped by used_space B+tree.
442
     * Visit only the pages mapped by used_space B+tree.
450
     */
443
     */
451
    for (cur = area->used_space.leaf_head.next; cur != &area->used_space.leaf_head; cur = cur->next) {
444
    for (cur = area->used_space.leaf_head.next; cur != &area->used_space.leaf_head; cur = cur->next) {
452
        btree_node_t *node;
445
        btree_node_t *node;
453
        int i;
446
        int i;
454
       
447
       
455
        node = list_get_instance(cur, btree_node_t, leaf_link);
448
        node = list_get_instance(cur, btree_node_t, leaf_link);
456
        for (i = 0; i < node->keys; i++) {
449
        for (i = 0; i < node->keys; i++) {
457
            __address b = node->key[i];
450
            __address b = node->key[i];
458
            count_t j;
451
            count_t j;
459
            pte_t *pte;
452
            pte_t *pte;
460
           
453
           
461
            for (j = 0; j < (count_t) node->value[i]; j++) {
454
            for (j = 0; j < (count_t) node->value[i]; j++) {
462
                page_table_lock(as, false);
455
                page_table_lock(as, false);
463
                pte = page_mapping_find(as, b + j*PAGE_SIZE);
456
                pte = page_mapping_find(as, b + j*PAGE_SIZE);
464
                ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
457
                ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
465
                if (area->backend && area->backend->frame_free) {
458
                if (area->backend && area->backend->frame_free) {
466
                    area->backend->frame_free(area,
459
                    area->backend->frame_free(area,
467
                        b + j*PAGE_SIZE, PTE_GET_FRAME(pte));
460
                        b + j*PAGE_SIZE, PTE_GET_FRAME(pte));
468
                }
461
                }
469
                page_mapping_remove(as, b + j*PAGE_SIZE);
462
                page_mapping_remove(as, b + j*PAGE_SIZE);
470
                page_table_unlock(as, false);
463
                page_table_unlock(as, false);
471
            }
464
            }
472
        }
465
        }
473
    }
466
    }
474
 
467
 
475
    /*
468
    /*
476
     * Finish TLB shootdown sequence.
469
     * Finish TLB shootdown sequence.
477
     */
470
     */
478
    tlb_invalidate_pages(AS->asid, area->base, area->pages);
471
    tlb_invalidate_pages(AS->asid, area->base, area->pages);
479
    tlb_shootdown_finalize();
472
    tlb_shootdown_finalize();
480
   
473
   
481
    btree_destroy(&area->used_space);
474
    btree_destroy(&area->used_space);
482
 
475
 
483
    area->attributes |= AS_AREA_ATTR_PARTIAL;
476
    area->attributes |= AS_AREA_ATTR_PARTIAL;
484
   
477
   
485
    if (area->sh_info)
478
    if (area->sh_info)
486
        sh_info_remove_reference(area->sh_info);
479
        sh_info_remove_reference(area->sh_info);
487
       
480
       
488
    mutex_unlock(&area->lock);
481
    mutex_unlock(&area->lock);
489
 
482
 
490
    /*
483
    /*
491
     * Remove the empty area from address space.
484
     * Remove the empty area from address space.
492
     */
485
     */
493
    btree_remove(&AS->as_area_btree, base, NULL);
486
    btree_remove(&AS->as_area_btree, base, NULL);
494
   
487
   
495
    free(area);
488
    free(area);
496
   
489
   
497
    mutex_unlock(&AS->lock);
490
    mutex_unlock(&AS->lock);
498
    interrupts_restore(ipl);
491
    interrupts_restore(ipl);
499
    return 0;
492
    return 0;
500
}
493
}
501
 
494
 
502
/** Share address space area with another or the same address space.
495
/** Share address space area with another or the same address space.
503
 *
496
 *
504
 * Address space area mapping is shared with a new address space area.
497
 * Address space area mapping is shared with a new address space area.
505
 * If the source address space area has not been shared so far,
498
 * If the source address space area has not been shared so far,
506
 * a new sh_info is created. The new address space area simply gets the
499
 * a new sh_info is created. The new address space area simply gets the
507
 * sh_info of the source area. The process of duplicating the
500
 * sh_info of the source area. The process of duplicating the
508
 * mapping is done through the backend share function.
501
 * mapping is done through the backend share function.
509
 *
502
 *
510
 * @param src_as Pointer to source address space.
503
 * @param src_as Pointer to source address space.
511
 * @param src_base Base address of the source address space area.
504
 * @param src_base Base address of the source address space area.
512
 * @param acc_size Expected size of the source area.
505
 * @param acc_size Expected size of the source area.
513
 * @param dst_as Pointer to destination address space.
506
 * @param dst_as Pointer to destination address space.
514
 * @param dst_base Target base address.
507
 * @param dst_base Target base address.
515
 * @param dst_flags_mask Destination address space area flags mask.
508
 * @param dst_flags_mask Destination address space area flags mask.
516
 *
509
 *
517
 * @return Zero on success or ENOENT if there is no such task or
510
 * @return Zero on success or ENOENT if there is no such task or
518
 *     if there is no such address space area,
511
 *     if there is no such address space area,
519
 *     EPERM if there was a problem in accepting the area or
512
 *     EPERM if there was a problem in accepting the area or
520
 *     ENOMEM if there was a problem in allocating destination
513
 *     ENOMEM if there was a problem in allocating destination
521
 *     address space area. ENOTSUP is returned if an attempt
514
 *     address space area. ENOTSUP is returned if an attempt
522
 *     to share non-anonymous address space area is detected.
515
 *     to share non-anonymous address space area is detected.
523
 */
516
 */
524
int as_area_share(as_t *src_as, __address src_base, size_t acc_size,
517
int as_area_share(as_t *src_as, __address src_base, size_t acc_size,
525
          as_t *dst_as, __address dst_base, int dst_flags_mask)
518
          as_t *dst_as, __address dst_base, int dst_flags_mask)
526
{
519
{
527
    ipl_t ipl;
520
    ipl_t ipl;
528
    int src_flags;
521
    int src_flags;
529
    size_t src_size;
522
    size_t src_size;
530
    as_area_t *src_area, *dst_area;
523
    as_area_t *src_area, *dst_area;
531
    share_info_t *sh_info;
524
    share_info_t *sh_info;
532
    mem_backend_t *src_backend;
525
    mem_backend_t *src_backend;
533
    mem_backend_data_t src_backend_data;
526
    mem_backend_data_t src_backend_data;
534
   
527
   
535
    ipl = interrupts_disable();
528
    ipl = interrupts_disable();
536
    mutex_lock(&src_as->lock);
529
    mutex_lock(&src_as->lock);
537
    src_area = find_area_and_lock(src_as, src_base);
530
    src_area = find_area_and_lock(src_as, src_base);
538
    if (!src_area) {
531
    if (!src_area) {
539
        /*
532
        /*
540
         * Could not find the source address space area.
533
         * Could not find the source address space area.
541
         */
534
         */
542
        mutex_unlock(&src_as->lock);
535
        mutex_unlock(&src_as->lock);
543
        interrupts_restore(ipl);
536
        interrupts_restore(ipl);
544
        return ENOENT;
537
        return ENOENT;
545
    }
538
    }
546
   
539
   
547
    if (!src_area->backend || !src_area->backend->share) {
540
    if (!src_area->backend || !src_area->backend->share) {
548
        /*
541
        /*
549
         * There is now backend or the backend does not
542
         * There is now backend or the backend does not
550
         * know how to share the area.
543
         * know how to share the area.
551
         */
544
         */
552
        mutex_unlock(&src_area->lock);
545
        mutex_unlock(&src_area->lock);
553
        mutex_unlock(&src_as->lock);
546
        mutex_unlock(&src_as->lock);
554
        interrupts_restore(ipl);
547
        interrupts_restore(ipl);
555
        return ENOTSUP;
548
        return ENOTSUP;
556
    }
549
    }
557
   
550
   
558
    src_size = src_area->pages * PAGE_SIZE;
551
    src_size = src_area->pages * PAGE_SIZE;
559
    src_flags = src_area->flags;
552
    src_flags = src_area->flags;
560
    src_backend = src_area->backend;
553
    src_backend = src_area->backend;
561
    src_backend_data = src_area->backend_data;
554
    src_backend_data = src_area->backend_data;
562
 
555
 
563
    /* Share the cacheable flag from the original mapping */
556
    /* Share the cacheable flag from the original mapping */
564
    if (src_flags & AS_AREA_CACHEABLE)
557
    if (src_flags & AS_AREA_CACHEABLE)
565
        dst_flags_mask |= AS_AREA_CACHEABLE;
558
        dst_flags_mask |= AS_AREA_CACHEABLE;
566
 
559
 
567
    if (src_size != acc_size || (src_flags & dst_flags_mask) != dst_flags_mask) {
560
    if (src_size != acc_size || (src_flags & dst_flags_mask) != dst_flags_mask) {
568
        mutex_unlock(&src_area->lock);
561
        mutex_unlock(&src_area->lock);
569
        mutex_unlock(&src_as->lock);
562
        mutex_unlock(&src_as->lock);
570
        interrupts_restore(ipl);
563
        interrupts_restore(ipl);
571
        return EPERM;
564
        return EPERM;
572
    }
565
    }
573
 
566
 
574
    /*
567
    /*
575
     * Now we are committed to sharing the area.
568
     * Now we are committed to sharing the area.
576
     * First prepare the area for sharing.
569
     * First prepare the area for sharing.
577
     * Then it will be safe to unlock it.
570
     * Then it will be safe to unlock it.
578
     */
571
     */
579
    sh_info = src_area->sh_info;
572
    sh_info = src_area->sh_info;
580
    if (!sh_info) {
573
    if (!sh_info) {
581
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
574
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
582
        mutex_initialize(&sh_info->lock);
575
        mutex_initialize(&sh_info->lock);
583
        sh_info->refcount = 2;
576
        sh_info->refcount = 2;
584
        btree_create(&sh_info->pagemap);
577
        btree_create(&sh_info->pagemap);
585
        src_area->sh_info = sh_info;
578
        src_area->sh_info = sh_info;
586
    } else {
579
    } else {
587
        mutex_lock(&sh_info->lock);
580
        mutex_lock(&sh_info->lock);
588
        sh_info->refcount++;
581
        sh_info->refcount++;
589
        mutex_unlock(&sh_info->lock);
582
        mutex_unlock(&sh_info->lock);
590
    }
583
    }
591
 
584
 
592
    src_area->backend->share(src_area);
585
    src_area->backend->share(src_area);
593
 
586
 
594
    mutex_unlock(&src_area->lock);
587
    mutex_unlock(&src_area->lock);
595
    mutex_unlock(&src_as->lock);
588
    mutex_unlock(&src_as->lock);
596
 
589
 
597
    /*
590
    /*
598
     * Create copy of the source address space area.
591
     * Create copy of the source address space area.
599
     * The destination area is created with AS_AREA_ATTR_PARTIAL
592
     * The destination area is created with AS_AREA_ATTR_PARTIAL
600
     * attribute set which prevents race condition with
593
     * attribute set which prevents race condition with
601
     * preliminary as_page_fault() calls.
594
     * preliminary as_page_fault() calls.
602
     * The flags of the source area are masked against dst_flags_mask
595
     * The flags of the source area are masked against dst_flags_mask
603
     * to support sharing in less privileged mode.
596
     * to support sharing in less privileged mode.
604
     */
597
     */
605
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
598
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
606
                  AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
599
                  AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
607
    if (!dst_area) {
600
    if (!dst_area) {
608
        /*
601
        /*
609
         * Destination address space area could not be created.
602
         * Destination address space area could not be created.
610
         */
603
         */
611
        sh_info_remove_reference(sh_info);
604
        sh_info_remove_reference(sh_info);
612
       
605
       
613
        interrupts_restore(ipl);
606
        interrupts_restore(ipl);
614
        return ENOMEM;
607
        return ENOMEM;
615
    }
608
    }
616
   
609
   
617
    /*
610
    /*
618
     * Now the destination address space area has been
611
     * Now the destination address space area has been
619
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
612
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
620
     * attribute and set the sh_info.
613
     * attribute and set the sh_info.
621
     */
614
     */
622
    mutex_lock(&dst_area->lock);
615
    mutex_lock(&dst_area->lock);
623
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
616
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
624
    dst_area->sh_info = sh_info;
617
    dst_area->sh_info = sh_info;
625
    mutex_unlock(&dst_area->lock);
618
    mutex_unlock(&dst_area->lock);
626
   
619
   
627
    interrupts_restore(ipl);
620
    interrupts_restore(ipl);
628
   
621
   
629
    return 0;
622
    return 0;
630
}
623
}
631
 
624
 
632
/** Check access mode for address space area.
625
/** Check access mode for address space area.
633
 *
626
 *
634
 * The address space area must be locked prior to this call.
627
 * The address space area must be locked prior to this call.
635
 *
628
 *
636
 * @param area Address space area.
629
 * @param area Address space area.
637
 * @param access Access mode.
630
 * @param access Access mode.
638
 *
631
 *
639
 * @return False if access violates area's permissions, true otherwise.
632
 * @return False if access violates area's permissions, true otherwise.
640
 */
633
 */
641
bool as_area_check_access(as_area_t *area, pf_access_t access)
634
bool as_area_check_access(as_area_t *area, pf_access_t access)
642
{
635
{
643
    int flagmap[] = {
636
    int flagmap[] = {
644
        [PF_ACCESS_READ] = AS_AREA_READ,
637
        [PF_ACCESS_READ] = AS_AREA_READ,
645
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
638
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
646
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
639
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
647
    };
640
    };
648
 
641
 
649
    if (!(area->flags & flagmap[access]))
642
    if (!(area->flags & flagmap[access]))
650
        return false;
643
        return false;
651
   
644
   
652
    return true;
645
    return true;
653
}
646
}
654
 
647
 
655
/** Handle page fault within the current address space.
648
/** Handle page fault within the current address space.
656
 *
649
 *
657
 * This is the high-level page fault handler. It decides
650
 * This is the high-level page fault handler. It decides
658
 * whether the page fault can be resolved by any backend
651
 * whether the page fault can be resolved by any backend
659
 * and if so, it invokes the backend to resolve the page
652
 * and if so, it invokes the backend to resolve the page
660
 * fault.
653
 * fault.
661
 *
654
 *
662
 * Interrupts are assumed disabled.
655
 * Interrupts are assumed disabled.
663
 *
656
 *
664
 * @param page Faulting page.
657
 * @param page Faulting page.
665
 * @param access Access mode that caused the fault (i.e. read/write/exec).
658
 * @param access Access mode that caused the fault (i.e. read/write/exec).
666
 * @param istate Pointer to interrupted state.
659
 * @param istate Pointer to interrupted state.
667
 *
660
 *
668
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
661
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
669
 *     fault was caused by copy_to_uspace() or copy_from_uspace().
662
 *     fault was caused by copy_to_uspace() or copy_from_uspace().
670
 */
663
 */
671
int as_page_fault(__address page, pf_access_t access, istate_t *istate)
664
int as_page_fault(__address page, pf_access_t access, istate_t *istate)
672
{
665
{
673
    pte_t *pte;
666
    pte_t *pte;
674
    as_area_t *area;
667
    as_area_t *area;
675
   
668
   
676
    if (!THREAD)
669
    if (!THREAD)
677
        return AS_PF_FAULT;
670
        return AS_PF_FAULT;
678
       
671
       
679
    ASSERT(AS);
672
    ASSERT(AS);
680
 
673
 
681
    mutex_lock(&AS->lock);
674
    mutex_lock(&AS->lock);
682
    area = find_area_and_lock(AS, page);   
675
    area = find_area_and_lock(AS, page);   
683
    if (!area) {
676
    if (!area) {
684
        /*
677
        /*
685
         * No area contained mapping for 'page'.
678
         * No area contained mapping for 'page'.
686
         * Signal page fault to low-level handler.
679
         * Signal page fault to low-level handler.
687
         */
680
         */
688
        mutex_unlock(&AS->lock);
681
        mutex_unlock(&AS->lock);
689
        goto page_fault;
682
        goto page_fault;
690
    }
683
    }
691
 
684
 
692
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
685
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
693
        /*
686
        /*
694
         * The address space area is not fully initialized.
687
         * The address space area is not fully initialized.
695
         * Avoid possible race by returning error.
688
         * Avoid possible race by returning error.
696
         */
689
         */
697
        mutex_unlock(&area->lock);
690
        mutex_unlock(&area->lock);
698
        mutex_unlock(&AS->lock);
691
        mutex_unlock(&AS->lock);
699
        goto page_fault;       
692
        goto page_fault;       
700
    }
693
    }
701
 
694
 
702
    if (!area->backend || !area->backend->page_fault) {
695
    if (!area->backend || !area->backend->page_fault) {
703
        /*
696
        /*
704
         * The address space area is not backed by any backend
697
         * The address space area is not backed by any backend
705
         * or the backend cannot handle page faults.
698
         * or the backend cannot handle page faults.
706
         */
699
         */
707
        mutex_unlock(&area->lock);
700
        mutex_unlock(&area->lock);
708
        mutex_unlock(&AS->lock);
701
        mutex_unlock(&AS->lock);
709
        goto page_fault;       
702
        goto page_fault;       
710
    }
703
    }
711
 
704
 
712
    page_table_lock(AS, false);
705
    page_table_lock(AS, false);
713
   
706
   
714
    /*
707
    /*
715
     * To avoid race condition between two page faults
708
     * To avoid race condition between two page faults
716
     * on the same address, we need to make sure
709
     * on the same address, we need to make sure
717
     * the mapping has not been already inserted.
710
     * the mapping has not been already inserted.
718
     */
711
     */
719
    if ((pte = page_mapping_find(AS, page))) {
712
    if ((pte = page_mapping_find(AS, page))) {
720
        if (PTE_PRESENT(pte)) {
713
        if (PTE_PRESENT(pte)) {
721
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
714
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
722
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
715
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
723
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
716
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
724
                page_table_unlock(AS, false);
717
                page_table_unlock(AS, false);
725
                mutex_unlock(&area->lock);
718
                mutex_unlock(&area->lock);
726
                mutex_unlock(&AS->lock);
719
                mutex_unlock(&AS->lock);
727
                return AS_PF_OK;
720
                return AS_PF_OK;
728
            }
721
            }
729
        }
722
        }
730
    }
723
    }
731
   
724
   
732
    /*
725
    /*
733
     * Resort to the backend page fault handler.
726
     * Resort to the backend page fault handler.
734
     */
727
     */
735
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
728
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
736
        page_table_unlock(AS, false);
729
        page_table_unlock(AS, false);
737
        mutex_unlock(&area->lock);
730
        mutex_unlock(&area->lock);
738
        mutex_unlock(&AS->lock);
731
        mutex_unlock(&AS->lock);
739
        goto page_fault;
732
        goto page_fault;
740
    }
733
    }
741
   
734
   
742
    page_table_unlock(AS, false);
735
    page_table_unlock(AS, false);
743
    mutex_unlock(&area->lock);
736
    mutex_unlock(&area->lock);
744
    mutex_unlock(&AS->lock);
737
    mutex_unlock(&AS->lock);
745
    return AS_PF_OK;
738
    return AS_PF_OK;
746
 
739
 
747
page_fault:
740
page_fault:
748
    if (THREAD->in_copy_from_uspace) {
741
    if (THREAD->in_copy_from_uspace) {
749
        THREAD->in_copy_from_uspace = false;
742
        THREAD->in_copy_from_uspace = false;
750
        istate_set_retaddr(istate, (__address) &memcpy_from_uspace_failover_address);
743
        istate_set_retaddr(istate, (__address) &memcpy_from_uspace_failover_address);
751
    } else if (THREAD->in_copy_to_uspace) {
744
    } else if (THREAD->in_copy_to_uspace) {
752
        THREAD->in_copy_to_uspace = false;
745
        THREAD->in_copy_to_uspace = false;
753
        istate_set_retaddr(istate, (__address) &memcpy_to_uspace_failover_address);
746
        istate_set_retaddr(istate, (__address) &memcpy_to_uspace_failover_address);
754
    } else {
747
    } else {
755
        return AS_PF_FAULT;
748
        return AS_PF_FAULT;
756
    }
749
    }
757
 
750
 
758
    return AS_PF_DEFER;
751
    return AS_PF_DEFER;
759
}
752
}
760
 
753
 
761
/** Switch address spaces.
754
/** Switch address spaces.
762
 *
755
 *
763
 * Note that this function cannot sleep as it is essentially a part of
756
 * Note that this function cannot sleep as it is essentially a part of
764
 * scheduling. Sleeping here would lead to deadlock on wakeup.
757
 * scheduling. Sleeping here would lead to deadlock on wakeup.
765
 *
758
 *
766
 * @param old Old address space or NULL.
759
 * @param old Old address space or NULL.
767
 * @param new New address space.
760
 * @param new New address space.
768
 */
761
 */
769
void as_switch(as_t *old, as_t *new)
762
void as_switch(as_t *old, as_t *new)
770
{
763
{
771
    ipl_t ipl;
764
    ipl_t ipl;
772
    bool needs_asid = false;
765
    bool needs_asid = false;
773
   
766
   
774
    ipl = interrupts_disable();
767
    ipl = interrupts_disable();
775
    spinlock_lock(&inactive_as_with_asid_lock);
768
    spinlock_lock(&inactive_as_with_asid_lock);
776
 
769
 
777
    /*
770
    /*
778
     * First, take care of the old address space.
771
     * First, take care of the old address space.
779
     */
772
     */
780
    if (old) {
773
    if (old) {
781
        mutex_lock_active(&old->lock);
774
        mutex_lock_active(&old->lock);
782
        ASSERT(old->cpu_refcount);
775
        ASSERT(old->cpu_refcount);
783
        if((--old->cpu_refcount == 0) && (old != AS_KERNEL)) {
776
        if((--old->cpu_refcount == 0) && (old != AS_KERNEL)) {
784
            /*
777
            /*
785
             * The old address space is no longer active on
778
             * The old address space is no longer active on
786
             * any processor. It can be appended to the
779
             * any processor. It can be appended to the
787
             * list of inactive address spaces with assigned
780
             * list of inactive address spaces with assigned
788
             * ASID.
781
             * ASID.
789
             */
782
             */
790
             ASSERT(old->asid != ASID_INVALID);
783
             ASSERT(old->asid != ASID_INVALID);
791
             list_append(&old->inactive_as_with_asid_link, &inactive_as_with_asid_head);
784
             list_append(&old->inactive_as_with_asid_link, &inactive_as_with_asid_head);
792
        }
785
        }
793
        mutex_unlock(&old->lock);
786
        mutex_unlock(&old->lock);
794
    }
787
    }
795
 
788
 
796
    /*
789
    /*
797
     * Second, prepare the new address space.
790
     * Second, prepare the new address space.
798
     */
791
     */
799
    mutex_lock_active(&new->lock);
792
    mutex_lock_active(&new->lock);
800
    if ((new->cpu_refcount++ == 0) && (new != AS_KERNEL)) {
793
    if ((new->cpu_refcount++ == 0) && (new != AS_KERNEL)) {
801
        if (new->asid != ASID_INVALID)
794
        if (new->asid != ASID_INVALID)
802
            list_remove(&new->inactive_as_with_asid_link);
795
            list_remove(&new->inactive_as_with_asid_link);
803
        else
796
        else
804
            needs_asid = true;  /* defer call to asid_get() until new->lock is released */
797
            needs_asid = true;  /* defer call to asid_get() until new->lock is released */
805
    }
798
    }
806
    SET_PTL0_ADDRESS(new->page_table);
799
    SET_PTL0_ADDRESS(new->page_table);
807
    mutex_unlock(&new->lock);
800
    mutex_unlock(&new->lock);
808
 
801
 
809
    if (needs_asid) {
802
    if (needs_asid) {
810
        /*
803
        /*
811
         * Allocation of new ASID was deferred
804
         * Allocation of new ASID was deferred
812
         * until now in order to avoid deadlock.
805
         * until now in order to avoid deadlock.
813
         */
806
         */
814
        asid_t asid;
807
        asid_t asid;
815
       
808
       
816
        asid = asid_get();
809
        asid = asid_get();
817
        mutex_lock_active(&new->lock);
810
        mutex_lock_active(&new->lock);
818
        new->asid = asid;
811
        new->asid = asid;
819
        mutex_unlock(&new->lock);
812
        mutex_unlock(&new->lock);
820
    }
813
    }
821
    spinlock_unlock(&inactive_as_with_asid_lock);
814
    spinlock_unlock(&inactive_as_with_asid_lock);
822
    interrupts_restore(ipl);
815
    interrupts_restore(ipl);
823
   
816
   
824
    /*
817
    /*
825
     * Perform architecture-specific steps.
818
     * Perform architecture-specific steps.
826
     * (e.g. write ASID to hardware register etc.)
819
     * (e.g. write ASID to hardware register etc.)
827
     */
820
     */
828
    as_install_arch(new);
821
    as_install_arch(new);
829
   
822
   
830
    AS = new;
823
    AS = new;
831
}
824
}
832
 
825
 
833
/** Convert address space area flags to page flags.
826
/** Convert address space area flags to page flags.
834
 *
827
 *
835
 * @param aflags Flags of some address space area.
828
 * @param aflags Flags of some address space area.
836
 *
829
 *
837
 * @return Flags to be passed to page_mapping_insert().
830
 * @return Flags to be passed to page_mapping_insert().
838
 */
831
 */
839
int area_flags_to_page_flags(int aflags)
832
int area_flags_to_page_flags(int aflags)
840
{
833
{
841
    int flags;
834
    int flags;
842
 
835
 
843
    flags = PAGE_USER | PAGE_PRESENT;
836
    flags = PAGE_USER | PAGE_PRESENT;
844
   
837
   
845
    if (aflags & AS_AREA_READ)
838
    if (aflags & AS_AREA_READ)
846
        flags |= PAGE_READ;
839
        flags |= PAGE_READ;
847
       
840
       
848
    if (aflags & AS_AREA_WRITE)
841
    if (aflags & AS_AREA_WRITE)
849
        flags |= PAGE_WRITE;
842
        flags |= PAGE_WRITE;
850
   
843
   
851
    if (aflags & AS_AREA_EXEC)
844
    if (aflags & AS_AREA_EXEC)
852
        flags |= PAGE_EXEC;
845
        flags |= PAGE_EXEC;
853
   
846
   
854
    if (aflags & AS_AREA_CACHEABLE)
847
    if (aflags & AS_AREA_CACHEABLE)
855
        flags |= PAGE_CACHEABLE;
848
        flags |= PAGE_CACHEABLE;
856
       
849
       
857
    return flags;
850
    return flags;
858
}
851
}
859
 
852
 
860
/** Compute flags for virtual address translation subsytem.
853
/** Compute flags for virtual address translation subsytem.
861
 *
854
 *
862
 * The address space area must be locked.
855
 * The address space area must be locked.
863
 * Interrupts must be disabled.
856
 * Interrupts must be disabled.
864
 *
857
 *
865
 * @param a Address space area.
858
 * @param a Address space area.
866
 *
859
 *
867
 * @return Flags to be used in page_mapping_insert().
860
 * @return Flags to be used in page_mapping_insert().
868
 */
861
 */
869
int as_area_get_flags(as_area_t *a)
862
int as_area_get_flags(as_area_t *a)
870
{
863
{
871
    return area_flags_to_page_flags(a->flags);
864
    return area_flags_to_page_flags(a->flags);
872
}
865
}
873
 
866
 
874
/** Create page table.
867
/** Create page table.
875
 *
868
 *
876
 * Depending on architecture, create either address space
869
 * Depending on architecture, create either address space
877
 * private or global page table.
870
 * private or global page table.
878
 *
871
 *
879
 * @param flags Flags saying whether the page table is for kernel address space.
872
 * @param flags Flags saying whether the page table is for kernel address space.
880
 *
873
 *
881
 * @return First entry of the page table.
874
 * @return First entry of the page table.
882
 */
875
 */
883
pte_t *page_table_create(int flags)
876
pte_t *page_table_create(int flags)
884
{
877
{
885
        ASSERT(as_operations);
878
        ASSERT(as_operations);
886
        ASSERT(as_operations->page_table_create);
879
        ASSERT(as_operations->page_table_create);
887
 
880
 
888
        return as_operations->page_table_create(flags);
881
        return as_operations->page_table_create(flags);
889
}
882
}
890
 
883
 
891
/** Destroy page table.
884
/** Destroy page table.
892
 *
885
 *
893
 * Destroy page table in architecture specific way.
886
 * Destroy page table in architecture specific way.
894
 *
887
 *
895
 * @param page_table Physical address of PTL0.
888
 * @param page_table Physical address of PTL0.
896
 */
889
 */
897
void page_table_destroy(pte_t *page_table)
890
void page_table_destroy(pte_t *page_table)
898
{
891
{
899
        ASSERT(as_operations);
892
        ASSERT(as_operations);
900
        ASSERT(as_operations->page_table_destroy);
893
        ASSERT(as_operations->page_table_destroy);
901
 
894
 
902
        as_operations->page_table_destroy(page_table);
895
        as_operations->page_table_destroy(page_table);
903
}
896
}
904
 
897
 
905
/** Lock page table.
898
/** Lock page table.
906
 *
899
 *
907
 * This function should be called before any page_mapping_insert(),
900
 * This function should be called before any page_mapping_insert(),
908
 * page_mapping_remove() and page_mapping_find().
901
 * page_mapping_remove() and page_mapping_find().
909
 *
902
 *
910
 * Locking order is such that address space areas must be locked
903
 * Locking order is such that address space areas must be locked
911
 * prior to this call. Address space can be locked prior to this
904
 * prior to this call. Address space can be locked prior to this
912
 * call in which case the lock argument is false.
905
 * call in which case the lock argument is false.
913
 *
906
 *
914
 * @param as Address space.
907
 * @param as Address space.
915
 * @param lock If false, do not attempt to lock as->lock.
908
 * @param lock If false, do not attempt to lock as->lock.
916
 */
909
 */
917
void page_table_lock(as_t *as, bool lock)
910
void page_table_lock(as_t *as, bool lock)
918
{
911
{
919
    ASSERT(as_operations);
912
    ASSERT(as_operations);
920
    ASSERT(as_operations->page_table_lock);
913
    ASSERT(as_operations->page_table_lock);
921
 
914
 
922
    as_operations->page_table_lock(as, lock);
915
    as_operations->page_table_lock(as, lock);
923
}
916
}
924
 
917
 
925
/** Unlock page table.
918
/** Unlock page table.
926
 *
919
 *
927
 * @param as Address space.
920
 * @param as Address space.
928
 * @param unlock If false, do not attempt to unlock as->lock.
921
 * @param unlock If false, do not attempt to unlock as->lock.
929
 */
922
 */
930
void page_table_unlock(as_t *as, bool unlock)
923
void page_table_unlock(as_t *as, bool unlock)
931
{
924
{
932
    ASSERT(as_operations);
925
    ASSERT(as_operations);
933
    ASSERT(as_operations->page_table_unlock);
926
    ASSERT(as_operations->page_table_unlock);
934
 
927
 
935
    as_operations->page_table_unlock(as, unlock);
928
    as_operations->page_table_unlock(as, unlock);
936
}
929
}
937
 
930
 
938
 
931
 
939
/** Find address space area and lock it.
932
/** Find address space area and lock it.
940
 *
933
 *
941
 * The address space must be locked and interrupts must be disabled.
934
 * The address space must be locked and interrupts must be disabled.
942
 *
935
 *
943
 * @param as Address space.
936
 * @param as Address space.
944
 * @param va Virtual address.
937
 * @param va Virtual address.
945
 *
938
 *
946
 * @return Locked address space area containing va on success or NULL on failure.
939
 * @return Locked address space area containing va on success or NULL on failure.
947
 */
940
 */
948
as_area_t *find_area_and_lock(as_t *as, __address va)
941
as_area_t *find_area_and_lock(as_t *as, __address va)
949
{
942
{
950
    as_area_t *a;
943
    as_area_t *a;
951
    btree_node_t *leaf, *lnode;
944
    btree_node_t *leaf, *lnode;
952
    int i;
945
    int i;
953
   
946
   
954
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
947
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
955
    if (a) {
948
    if (a) {
956
        /* va is the base address of an address space area */
949
        /* va is the base address of an address space area */
957
        mutex_lock(&a->lock);
950
        mutex_lock(&a->lock);
958
        return a;
951
        return a;
959
    }
952
    }
960
   
953
   
961
    /*
954
    /*
962
     * Search the leaf node and the righmost record of its left neighbour
955
     * Search the leaf node and the righmost record of its left neighbour
963
     * to find out whether this is a miss or va belongs to an address
956
     * to find out whether this is a miss or va belongs to an address
964
     * space area found there.
957
     * space area found there.
965
     */
958
     */
966
   
959
   
967
    /* First, search the leaf node itself. */
960
    /* First, search the leaf node itself. */
968
    for (i = 0; i < leaf->keys; i++) {
961
    for (i = 0; i < leaf->keys; i++) {
969
        a = (as_area_t *) leaf->value[i];
962
        a = (as_area_t *) leaf->value[i];
970
        mutex_lock(&a->lock);
963
        mutex_lock(&a->lock);
971
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
964
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
972
            return a;
965
            return a;
973
        }
966
        }
974
        mutex_unlock(&a->lock);
967
        mutex_unlock(&a->lock);
975
    }
968
    }
976
 
969
 
977
    /*
970
    /*
978
     * Second, locate the left neighbour and test its last record.
971
     * Second, locate the left neighbour and test its last record.
979
     * Because of its position in the B+tree, it must have base < va.
972
     * Because of its position in the B+tree, it must have base < va.
980
     */
973
     */
981
    if ((lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
974
    if ((lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
982
        a = (as_area_t *) lnode->value[lnode->keys - 1];
975
        a = (as_area_t *) lnode->value[lnode->keys - 1];
983
        mutex_lock(&a->lock);
976
        mutex_lock(&a->lock);
984
        if (va < a->base + a->pages * PAGE_SIZE) {
977
        if (va < a->base + a->pages * PAGE_SIZE) {
985
            return a;
978
            return a;
986
        }
979
        }
987
        mutex_unlock(&a->lock);
980
        mutex_unlock(&a->lock);
988
    }
981
    }
989
 
982
 
990
    return NULL;
983
    return NULL;
991
}
984
}
992
 
985
 
993
/** Check area conflicts with other areas.
986
/** Check area conflicts with other areas.
994
 *
987
 *
995
 * The address space must be locked and interrupts must be disabled.
988
 * The address space must be locked and interrupts must be disabled.
996
 *
989
 *
997
 * @param as Address space.
990
 * @param as Address space.
998
 * @param va Starting virtual address of the area being tested.
991
 * @param va Starting virtual address of the area being tested.
999
 * @param size Size of the area being tested.
992
 * @param size Size of the area being tested.
1000
 * @param avoid_area Do not touch this area.
993
 * @param avoid_area Do not touch this area.
1001
 *
994
 *
1002
 * @return True if there is no conflict, false otherwise.
995
 * @return True if there is no conflict, false otherwise.
1003
 */
996
 */
1004
bool check_area_conflicts(as_t *as, __address va, size_t size, as_area_t *avoid_area)
997
bool check_area_conflicts(as_t *as, __address va, size_t size, as_area_t *avoid_area)
1005
{
998
{
1006
    as_area_t *a;
999
    as_area_t *a;
1007
    btree_node_t *leaf, *node;
1000
    btree_node_t *leaf, *node;
1008
    int i;
1001
    int i;
1009
   
1002
   
1010
    /*
1003
    /*
1011
     * We don't want any area to have conflicts with NULL page.
1004
     * We don't want any area to have conflicts with NULL page.
1012
     */
1005
     */
1013
    if (overlaps(va, size, NULL, PAGE_SIZE))
1006
    if (overlaps(va, size, NULL, PAGE_SIZE))
1014
        return false;
1007
        return false;
1015
   
1008
   
1016
    /*
1009
    /*
1017
     * The leaf node is found in O(log n), where n is proportional to
1010
     * The leaf node is found in O(log n), where n is proportional to
1018
     * the number of address space areas belonging to as.
1011
     * the number of address space areas belonging to as.
1019
     * The check for conflicts is then attempted on the rightmost
1012
     * The check for conflicts is then attempted on the rightmost
1020
     * record in the left neighbour, the leftmost record in the right
1013
     * record in the left neighbour, the leftmost record in the right
1021
     * neighbour and all records in the leaf node itself.
1014
     * neighbour and all records in the leaf node itself.
1022
     */
1015
     */
1023
   
1016
   
1024
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1017
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1025
        if (a != avoid_area)
1018
        if (a != avoid_area)
1026
            return false;
1019
            return false;
1027
    }
1020
    }
1028
   
1021
   
1029
    /* First, check the two border cases. */
1022
    /* First, check the two border cases. */
1030
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1023
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1031
        a = (as_area_t *) node->value[node->keys - 1];
1024
        a = (as_area_t *) node->value[node->keys - 1];
1032
        mutex_lock(&a->lock);
1025
        mutex_lock(&a->lock);
1033
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1026
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1034
            mutex_unlock(&a->lock);
1027
            mutex_unlock(&a->lock);
1035
            return false;
1028
            return false;
1036
        }
1029
        }
1037
        mutex_unlock(&a->lock);
1030
        mutex_unlock(&a->lock);
1038
    }
1031
    }
1039
    if ((node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf))) {
1032
    if ((node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf))) {
1040
        a = (as_area_t *) node->value[0];
1033
        a = (as_area_t *) node->value[0];
1041
        mutex_lock(&a->lock);
1034
        mutex_lock(&a->lock);
1042
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1035
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1043
            mutex_unlock(&a->lock);
1036
            mutex_unlock(&a->lock);
1044
            return false;
1037
            return false;
1045
        }
1038
        }
1046
        mutex_unlock(&a->lock);
1039
        mutex_unlock(&a->lock);
1047
    }
1040
    }
1048
   
1041
   
1049
    /* Second, check the leaf node. */
1042
    /* Second, check the leaf node. */
1050
    for (i = 0; i < leaf->keys; i++) {
1043
    for (i = 0; i < leaf->keys; i++) {
1051
        a = (as_area_t *) leaf->value[i];
1044
        a = (as_area_t *) leaf->value[i];
1052
   
1045
   
1053
        if (a == avoid_area)
1046
        if (a == avoid_area)
1054
            continue;
1047
            continue;
1055
   
1048
   
1056
        mutex_lock(&a->lock);
1049
        mutex_lock(&a->lock);
1057
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1050
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1058
            mutex_unlock(&a->lock);
1051
            mutex_unlock(&a->lock);
1059
            return false;
1052
            return false;
1060
        }
1053
        }
1061
        mutex_unlock(&a->lock);
1054
        mutex_unlock(&a->lock);
1062
    }
1055
    }
1063
 
1056
 
1064
    /*
1057
    /*
1065
     * So far, the area does not conflict with other areas.
1058
     * So far, the area does not conflict with other areas.
1066
     * Check if it doesn't conflict with kernel address space.
1059
     * Check if it doesn't conflict with kernel address space.
1067
     */  
1060
     */  
1068
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1061
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1069
        return !overlaps(va, size,
1062
        return !overlaps(va, size,
1070
            KERNEL_ADDRESS_SPACE_START, KERNEL_ADDRESS_SPACE_END-KERNEL_ADDRESS_SPACE_START);
1063
            KERNEL_ADDRESS_SPACE_START, KERNEL_ADDRESS_SPACE_END-KERNEL_ADDRESS_SPACE_START);
1071
    }
1064
    }
1072
 
1065
 
1073
    return true;
1066
    return true;
1074
}
1067
}
1075
 
1068
 
1076
/** Return size of the address space area with given base.  */
1069
/** Return size of the address space area with given base.  */
1077
size_t as_get_size(__address base)
1070
size_t as_get_size(__address base)
1078
{
1071
{
1079
    ipl_t ipl;
1072
    ipl_t ipl;
1080
    as_area_t *src_area;
1073
    as_area_t *src_area;
1081
    size_t size;
1074
    size_t size;
1082
 
1075
 
1083
    ipl = interrupts_disable();
1076
    ipl = interrupts_disable();
1084
    src_area = find_area_and_lock(AS, base);
1077
    src_area = find_area_and_lock(AS, base);
1085
    if (src_area){
1078
    if (src_area){
1086
        size = src_area->pages * PAGE_SIZE;
1079
        size = src_area->pages * PAGE_SIZE;
1087
        mutex_unlock(&src_area->lock);
1080
        mutex_unlock(&src_area->lock);
1088
    } else {
1081
    } else {
1089
        size = 0;
1082
        size = 0;
1090
    }
1083
    }
1091
    interrupts_restore(ipl);
1084
    interrupts_restore(ipl);
1092
    return size;
1085
    return size;
1093
}
1086
}
1094
 
1087
 
1095
/** Mark portion of address space area as used.
1088
/** Mark portion of address space area as used.
1096
 *
1089
 *
1097
 * The address space area must be already locked.
1090
 * The address space area must be already locked.
1098
 *
1091
 *
1099
 * @param a Address space area.
1092
 * @param a Address space area.
1100
 * @param page First page to be marked.
1093
 * @param page First page to be marked.
1101
 * @param count Number of page to be marked.
1094
 * @param count Number of page to be marked.
1102
 *
1095
 *
1103
 * @return 0 on failure and 1 on success.
1096
 * @return 0 on failure and 1 on success.
1104
 */
1097
 */
1105
int used_space_insert(as_area_t *a, __address page, count_t count)
1098
int used_space_insert(as_area_t *a, __address page, count_t count)
1106
{
1099
{
1107
    btree_node_t *leaf, *node;
1100
    btree_node_t *leaf, *node;
1108
    count_t pages;
1101
    count_t pages;
1109
    int i;
1102
    int i;
1110
 
1103
 
1111
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1104
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1112
    ASSERT(count);
1105
    ASSERT(count);
1113
 
1106
 
1114
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1107
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1115
    if (pages) {
1108
    if (pages) {
1116
        /*
1109
        /*
1117
         * We hit the beginning of some used space.
1110
         * We hit the beginning of some used space.
1118
         */
1111
         */
1119
        return 0;
1112
        return 0;
1120
    }
1113
    }
1121
 
1114
 
1122
    if (!leaf->keys) {
1115
    if (!leaf->keys) {
1123
        btree_insert(&a->used_space, page, (void *) count, leaf);
1116
        btree_insert(&a->used_space, page, (void *) count, leaf);
1124
        return 1;
1117
        return 1;
1125
    }
1118
    }
1126
 
1119
 
1127
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1120
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1128
    if (node) {
1121
    if (node) {
1129
        __address left_pg = node->key[node->keys - 1], right_pg = leaf->key[0];
1122
        __address left_pg = node->key[node->keys - 1], right_pg = leaf->key[0];
1130
        count_t left_cnt = (count_t) node->value[node->keys - 1], right_cnt = (count_t) leaf->value[0];
1123
        count_t left_cnt = (count_t) node->value[node->keys - 1], right_cnt = (count_t) leaf->value[0];
1131
       
1124
       
1132
        /*
1125
        /*
1133
         * Examine the possibility that the interval fits
1126
         * Examine the possibility that the interval fits
1134
         * somewhere between the rightmost interval of
1127
         * somewhere between the rightmost interval of
1135
         * the left neigbour and the first interval of the leaf.
1128
         * the left neigbour and the first interval of the leaf.
1136
         */
1129
         */
1137
         
1130
         
1138
        if (page >= right_pg) {
1131
        if (page >= right_pg) {
1139
            /* Do nothing. */
1132
            /* Do nothing. */
1140
        } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1133
        } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1141
            /* The interval intersects with the left interval. */
1134
            /* The interval intersects with the left interval. */
1142
            return 0;
1135
            return 0;
1143
        } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1136
        } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1144
            /* The interval intersects with the right interval. */
1137
            /* The interval intersects with the right interval. */
1145
            return 0;          
1138
            return 0;          
1146
        } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1139
        } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1147
            /* The interval can be added by merging the two already present intervals. */
1140
            /* The interval can be added by merging the two already present intervals. */
1148
            node->value[node->keys - 1] += count + right_cnt;
1141
            node->value[node->keys - 1] += count + right_cnt;
1149
            btree_remove(&a->used_space, right_pg, leaf);
1142
            btree_remove(&a->used_space, right_pg, leaf);
1150
            return 1;
1143
            return 1;
1151
        } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1144
        } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1152
            /* The interval can be added by simply growing the left interval. */
1145
            /* The interval can be added by simply growing the left interval. */
1153
            node->value[node->keys - 1] += count;
1146
            node->value[node->keys - 1] += count;
1154
            return 1;
1147
            return 1;
1155
        } else if (page + count*PAGE_SIZE == right_pg) {
1148
        } else if (page + count*PAGE_SIZE == right_pg) {
1156
            /*
1149
            /*
1157
             * The interval can be addded by simply moving base of the right
1150
             * The interval can be addded by simply moving base of the right
1158
             * interval down and increasing its size accordingly.
1151
             * interval down and increasing its size accordingly.
1159
             */
1152
             */
1160
            leaf->value[0] += count;
1153
            leaf->value[0] += count;
1161
            leaf->key[0] = page;
1154
            leaf->key[0] = page;
1162
            return 1;
1155
            return 1;
1163
        } else {
1156
        } else {
1164
            /*
1157
            /*
1165
             * The interval is between both neigbouring intervals,
1158
             * The interval is between both neigbouring intervals,
1166
             * but cannot be merged with any of them.
1159
             * but cannot be merged with any of them.
1167
             */
1160
             */
1168
            btree_insert(&a->used_space, page, (void *) count, leaf);
1161
            btree_insert(&a->used_space, page, (void *) count, leaf);
1169
            return 1;
1162
            return 1;
1170
        }
1163
        }
1171
    } else if (page < leaf->key[0]) {
1164
    } else if (page < leaf->key[0]) {
1172
        __address right_pg = leaf->key[0];
1165
        __address right_pg = leaf->key[0];
1173
        count_t right_cnt = (count_t) leaf->value[0];
1166
        count_t right_cnt = (count_t) leaf->value[0];
1174
   
1167
   
1175
        /*
1168
        /*
1176
         * Investigate the border case in which the left neighbour does not
1169
         * Investigate the border case in which the left neighbour does not
1177
         * exist but the interval fits from the left.
1170
         * exist but the interval fits from the left.
1178
         */
1171
         */
1179
         
1172
         
1180
        if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1173
        if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1181
            /* The interval intersects with the right interval. */
1174
            /* The interval intersects with the right interval. */
1182
            return 0;
1175
            return 0;
1183
        } else if (page + count*PAGE_SIZE == right_pg) {
1176
        } else if (page + count*PAGE_SIZE == right_pg) {
1184
            /*
1177
            /*
1185
             * The interval can be added by moving the base of the right interval down
1178
             * The interval can be added by moving the base of the right interval down
1186
             * and increasing its size accordingly.
1179
             * and increasing its size accordingly.
1187
             */
1180
             */
1188
            leaf->key[0] = page;
1181
            leaf->key[0] = page;
1189
            leaf->value[0] += count;
1182
            leaf->value[0] += count;
1190
            return 1;
1183
            return 1;
1191
        } else {
1184
        } else {
1192
            /*
1185
            /*
1193
             * The interval doesn't adjoin with the right interval.
1186
             * The interval doesn't adjoin with the right interval.
1194
             * It must be added individually.
1187
             * It must be added individually.
1195
             */
1188
             */
1196
            btree_insert(&a->used_space, page, (void *) count, leaf);
1189
            btree_insert(&a->used_space, page, (void *) count, leaf);
1197
            return 1;
1190
            return 1;
1198
        }
1191
        }
1199
    }
1192
    }
1200
 
1193
 
1201
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1194
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1202
    if (node) {
1195
    if (node) {
1203
        __address left_pg = leaf->key[leaf->keys - 1], right_pg = node->key[0];
1196
        __address left_pg = leaf->key[leaf->keys - 1], right_pg = node->key[0];
1204
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1], right_cnt = (count_t) node->value[0];
1197
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1], right_cnt = (count_t) node->value[0];
1205
       
1198
       
1206
        /*
1199
        /*
1207
         * Examine the possibility that the interval fits
1200
         * Examine the possibility that the interval fits
1208
         * somewhere between the leftmost interval of
1201
         * somewhere between the leftmost interval of
1209
         * the right neigbour and the last interval of the leaf.
1202
         * the right neigbour and the last interval of the leaf.
1210
         */
1203
         */
1211
 
1204
 
1212
        if (page < left_pg) {
1205
        if (page < left_pg) {
1213
            /* Do nothing. */
1206
            /* Do nothing. */
1214
        } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1207
        } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1215
            /* The interval intersects with the left interval. */
1208
            /* The interval intersects with the left interval. */
1216
            return 0;
1209
            return 0;
1217
        } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1210
        } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1218
            /* The interval intersects with the right interval. */
1211
            /* The interval intersects with the right interval. */
1219
            return 0;          
1212
            return 0;          
1220
        } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1213
        } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1221
            /* The interval can be added by merging the two already present intervals. */
1214
            /* The interval can be added by merging the two already present intervals. */
1222
            leaf->value[leaf->keys - 1] += count + right_cnt;
1215
            leaf->value[leaf->keys - 1] += count + right_cnt;
1223
            btree_remove(&a->used_space, right_pg, node);
1216
            btree_remove(&a->used_space, right_pg, node);
1224
            return 1;
1217
            return 1;
1225
        } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1218
        } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1226
            /* The interval can be added by simply growing the left interval. */
1219
            /* The interval can be added by simply growing the left interval. */
1227
            leaf->value[leaf->keys - 1] +=  count;
1220
            leaf->value[leaf->keys - 1] +=  count;
1228
            return 1;
1221
            return 1;
1229
        } else if (page + count*PAGE_SIZE == right_pg) {
1222
        } else if (page + count*PAGE_SIZE == right_pg) {
1230
            /*
1223
            /*
1231
             * The interval can be addded by simply moving base of the right
1224
             * The interval can be addded by simply moving base of the right
1232
             * interval down and increasing its size accordingly.
1225
             * interval down and increasing its size accordingly.
1233
             */
1226
             */
1234
            node->value[0] += count;
1227
            node->value[0] += count;
1235
            node->key[0] = page;
1228
            node->key[0] = page;
1236
            return 1;
1229
            return 1;
1237
        } else {
1230
        } else {
1238
            /*
1231
            /*
1239
             * The interval is between both neigbouring intervals,
1232
             * The interval is between both neigbouring intervals,
1240
             * but cannot be merged with any of them.
1233
             * but cannot be merged with any of them.
1241
             */
1234
             */
1242
            btree_insert(&a->used_space, page, (void *) count, leaf);
1235
            btree_insert(&a->used_space, page, (void *) count, leaf);
1243
            return 1;
1236
            return 1;
1244
        }
1237
        }
1245
    } else if (page >= leaf->key[leaf->keys - 1]) {
1238
    } else if (page >= leaf->key[leaf->keys - 1]) {
1246
        __address left_pg = leaf->key[leaf->keys - 1];
1239
        __address left_pg = leaf->key[leaf->keys - 1];
1247
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1240
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1248
   
1241
   
1249
        /*
1242
        /*
1250
         * Investigate the border case in which the right neighbour does not
1243
         * Investigate the border case in which the right neighbour does not
1251
         * exist but the interval fits from the right.
1244
         * exist but the interval fits from the right.
1252
         */
1245
         */
1253
         
1246
         
1254
        if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1247
        if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1255
            /* The interval intersects with the left interval. */
1248
            /* The interval intersects with the left interval. */
1256
            return 0;
1249
            return 0;
1257
        } else if (left_pg + left_cnt*PAGE_SIZE == page) {
1250
        } else if (left_pg + left_cnt*PAGE_SIZE == page) {
1258
            /* The interval can be added by growing the left interval. */
1251
            /* The interval can be added by growing the left interval. */
1259
            leaf->value[leaf->keys - 1] += count;
1252
            leaf->value[leaf->keys - 1] += count;
1260
            return 1;
1253
            return 1;
1261
        } else {
1254
        } else {
1262
            /*
1255
            /*
1263
             * The interval doesn't adjoin with the left interval.
1256
             * The interval doesn't adjoin with the left interval.
1264
             * It must be added individually.
1257
             * It must be added individually.
1265
             */
1258
             */
1266
            btree_insert(&a->used_space, page, (void *) count, leaf);
1259
            btree_insert(&a->used_space, page, (void *) count, leaf);
1267
            return 1;
1260
            return 1;
1268
        }
1261
        }
1269
    }
1262
    }
1270
   
1263
   
1271
    /*
1264
    /*
1272
     * Note that if the algorithm made it thus far, the interval can fit only
1265
     * Note that if the algorithm made it thus far, the interval can fit only
1273
     * between two other intervals of the leaf. The two border cases were already
1266
     * between two other intervals of the leaf. The two border cases were already
1274
     * resolved.
1267
     * resolved.
1275
     */
1268
     */
1276
    for (i = 1; i < leaf->keys; i++) {
1269
    for (i = 1; i < leaf->keys; i++) {
1277
        if (page < leaf->key[i]) {
1270
        if (page < leaf->key[i]) {
1278
            __address left_pg = leaf->key[i - 1], right_pg = leaf->key[i];
1271
            __address left_pg = leaf->key[i - 1], right_pg = leaf->key[i];
1279
            count_t left_cnt = (count_t) leaf->value[i - 1], right_cnt = (count_t) leaf->value[i];
1272
            count_t left_cnt = (count_t) leaf->value[i - 1], right_cnt = (count_t) leaf->value[i];
1280
 
1273
 
1281
            /*
1274
            /*
1282
             * The interval fits between left_pg and right_pg.
1275
             * The interval fits between left_pg and right_pg.
1283
             */
1276
             */
1284
 
1277
 
1285
            if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1278
            if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1286
                /* The interval intersects with the left interval. */
1279
                /* The interval intersects with the left interval. */
1287
                return 0;
1280
                return 0;
1288
            } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1281
            } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1289
                /* The interval intersects with the right interval. */
1282
                /* The interval intersects with the right interval. */
1290
                return 0;          
1283
                return 0;          
1291
            } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1284
            } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1292
                /* The interval can be added by merging the two already present intervals. */
1285
                /* The interval can be added by merging the two already present intervals. */
1293
                leaf->value[i - 1] += count + right_cnt;
1286
                leaf->value[i - 1] += count + right_cnt;
1294
                btree_remove(&a->used_space, right_pg, leaf);
1287
                btree_remove(&a->used_space, right_pg, leaf);
1295
                return 1;
1288
                return 1;
1296
            } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1289
            } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1297
                /* The interval can be added by simply growing the left interval. */
1290
                /* The interval can be added by simply growing the left interval. */
1298
                leaf->value[i - 1] += count;
1291
                leaf->value[i - 1] += count;
1299
                return 1;
1292
                return 1;
1300
            } else if (page + count*PAGE_SIZE == right_pg) {
1293
            } else if (page + count*PAGE_SIZE == right_pg) {
1301
                /*
1294
                /*
1302
                     * The interval can be addded by simply moving base of the right
1295
                     * The interval can be addded by simply moving base of the right
1303
                 * interval down and increasing its size accordingly.
1296
                 * interval down and increasing its size accordingly.
1304
                 */
1297
                 */
1305
                leaf->value[i] += count;
1298
                leaf->value[i] += count;
1306
                leaf->key[i] = page;
1299
                leaf->key[i] = page;
1307
                return 1;
1300
                return 1;
1308
            } else {
1301
            } else {
1309
                /*
1302
                /*
1310
                 * The interval is between both neigbouring intervals,
1303
                 * The interval is between both neigbouring intervals,
1311
                 * but cannot be merged with any of them.
1304
                 * but cannot be merged with any of them.
1312
                 */
1305
                 */
1313
                btree_insert(&a->used_space, page, (void *) count, leaf);
1306
                btree_insert(&a->used_space, page, (void *) count, leaf);
1314
                return 1;
1307
                return 1;
1315
            }
1308
            }
1316
        }
1309
        }
1317
    }
1310
    }
1318
 
1311
 
1319
    panic("Inconsistency detected while adding %d pages of used space at %P.\n", count, page);
1312
    panic("Inconsistency detected while adding %d pages of used space at %P.\n", count, page);
1320
}
1313
}
1321
 
1314
 
1322
/** Mark portion of address space area as unused.
1315
/** Mark portion of address space area as unused.
1323
 *
1316
 *
1324
 * The address space area must be already locked.
1317
 * The address space area must be already locked.
1325
 *
1318
 *
1326
 * @param a Address space area.
1319
 * @param a Address space area.
1327
 * @param page First page to be marked.
1320
 * @param page First page to be marked.
1328
 * @param count Number of page to be marked.
1321
 * @param count Number of page to be marked.
1329
 *
1322
 *
1330
 * @return 0 on failure and 1 on success.
1323
 * @return 0 on failure and 1 on success.
1331
 */
1324
 */
1332
int used_space_remove(as_area_t *a, __address page, count_t count)
1325
int used_space_remove(as_area_t *a, __address page, count_t count)
1333
{
1326
{
1334
    btree_node_t *leaf, *node;
1327
    btree_node_t *leaf, *node;
1335
    count_t pages;
1328
    count_t pages;
1336
    int i;
1329
    int i;
1337
 
1330
 
1338
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1331
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1339
    ASSERT(count);
1332
    ASSERT(count);
1340
 
1333
 
1341
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1334
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1342
    if (pages) {
1335
    if (pages) {
1343
        /*
1336
        /*
1344
         * We are lucky, page is the beginning of some interval.
1337
         * We are lucky, page is the beginning of some interval.
1345
         */
1338
         */
1346
        if (count > pages) {
1339
        if (count > pages) {
1347
            return 0;
1340
            return 0;
1348
        } else if (count == pages) {
1341
        } else if (count == pages) {
1349
            btree_remove(&a->used_space, page, leaf);
1342
            btree_remove(&a->used_space, page, leaf);
1350
            return 1;
1343
            return 1;
1351
        } else {
1344
        } else {
1352
            /*
1345
            /*
1353
             * Find the respective interval.
1346
             * Find the respective interval.
1354
             * Decrease its size and relocate its start address.
1347
             * Decrease its size and relocate its start address.
1355
             */
1348
             */
1356
            for (i = 0; i < leaf->keys; i++) {
1349
            for (i = 0; i < leaf->keys; i++) {
1357
                if (leaf->key[i] == page) {
1350
                if (leaf->key[i] == page) {
1358
                    leaf->key[i] += count*PAGE_SIZE;
1351
                    leaf->key[i] += count*PAGE_SIZE;
1359
                    leaf->value[i] -= count;
1352
                    leaf->value[i] -= count;
1360
                    return 1;
1353
                    return 1;
1361
                }
1354
                }
1362
            }
1355
            }
1363
            goto error;
1356
            goto error;
1364
        }
1357
        }
1365
    }
1358
    }
1366
 
1359
 
1367
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1360
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1368
    if (node && page < leaf->key[0]) {
1361
    if (node && page < leaf->key[0]) {
1369
        __address left_pg = node->key[node->keys - 1];
1362
        __address left_pg = node->key[node->keys - 1];
1370
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1363
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1371
 
1364
 
1372
        if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1365
        if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1373
            if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1366
            if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1374
                /*
1367
                /*
1375
                 * The interval is contained in the rightmost interval
1368
                 * The interval is contained in the rightmost interval
1376
                 * of the left neighbour and can be removed by
1369
                 * of the left neighbour and can be removed by
1377
                 * updating the size of the bigger interval.
1370
                 * updating the size of the bigger interval.
1378
                 */
1371
                 */
1379
                node->value[node->keys - 1] -= count;
1372
                node->value[node->keys - 1] -= count;
1380
                return 1;
1373
                return 1;
1381
            } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1374
            } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1382
                count_t new_cnt;
1375
                count_t new_cnt;
1383
               
1376
               
1384
                /*
1377
                /*
1385
                 * The interval is contained in the rightmost interval
1378
                 * The interval is contained in the rightmost interval
1386
                 * of the left neighbour but its removal requires
1379
                 * of the left neighbour but its removal requires
1387
                 * both updating the size of the original interval and
1380
                 * both updating the size of the original interval and
1388
                 * also inserting a new interval.
1381
                 * also inserting a new interval.
1389
                 */
1382
                 */
1390
                new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1383
                new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1391
                node->value[node->keys - 1] -= count + new_cnt;
1384
                node->value[node->keys - 1] -= count + new_cnt;
1392
                btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1385
                btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1393
                return 1;
1386
                return 1;
1394
            }
1387
            }
1395
        }
1388
        }
1396
        return 0;
1389
        return 0;
1397
    } else if (page < leaf->key[0]) {
1390
    } else if (page < leaf->key[0]) {
1398
        return 0;
1391
        return 0;
1399
    }
1392
    }
1400
   
1393
   
1401
    if (page > leaf->key[leaf->keys - 1]) {
1394
    if (page > leaf->key[leaf->keys - 1]) {
1402
        __address left_pg = leaf->key[leaf->keys - 1];
1395
        __address left_pg = leaf->key[leaf->keys - 1];
1403
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1396
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1404
 
1397
 
1405
        if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1398
        if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1406
            if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1399
            if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1407
                /*
1400
                /*
1408
                 * The interval is contained in the rightmost interval
1401
                 * The interval is contained in the rightmost interval
1409
                 * of the leaf and can be removed by updating the size
1402
                 * of the leaf and can be removed by updating the size
1410
                 * of the bigger interval.
1403
                 * of the bigger interval.
1411
                 */
1404
                 */
1412
                leaf->value[leaf->keys - 1] -= count;
1405
                leaf->value[leaf->keys - 1] -= count;
1413
                return 1;
1406
                return 1;
1414
            } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1407
            } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1415
                count_t new_cnt;
1408
                count_t new_cnt;
1416
               
1409
               
1417
                /*
1410
                /*
1418
                 * The interval is contained in the rightmost interval
1411
                 * The interval is contained in the rightmost interval
1419
                 * of the leaf but its removal requires both updating
1412
                 * of the leaf but its removal requires both updating
1420
                 * the size of the original interval and
1413
                 * the size of the original interval and
1421
                 * also inserting a new interval.
1414
                 * also inserting a new interval.
1422
                 */
1415
                 */
1423
                new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1416
                new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1424
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1417
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1425
                btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1418
                btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1426
                return 1;
1419
                return 1;
1427
            }
1420
            }
1428
        }
1421
        }
1429
        return 0;
1422
        return 0;
1430
    }  
1423
    }  
1431
   
1424
   
1432
    /*
1425
    /*
1433
     * The border cases have been already resolved.
1426
     * The border cases have been already resolved.
1434
     * Now the interval can be only between intervals of the leaf.
1427
     * Now the interval can be only between intervals of the leaf.
1435
     */
1428
     */
1436
    for (i = 1; i < leaf->keys - 1; i++) {
1429
    for (i = 1; i < leaf->keys - 1; i++) {
1437
        if (page < leaf->key[i]) {
1430
        if (page < leaf->key[i]) {
1438
            __address left_pg = leaf->key[i - 1];
1431
            __address left_pg = leaf->key[i - 1];
1439
            count_t left_cnt = (count_t) leaf->value[i - 1];
1432
            count_t left_cnt = (count_t) leaf->value[i - 1];
1440
 
1433
 
1441
            /*
1434
            /*
1442
             * Now the interval is between intervals corresponding to (i - 1) and i.
1435
             * Now the interval is between intervals corresponding to (i - 1) and i.
1443
             */
1436
             */
1444
            if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1437
            if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1445
                if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1438
                if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1446
                    /*
1439
                    /*
1447
                    * The interval is contained in the interval (i - 1)
1440
                    * The interval is contained in the interval (i - 1)
1448
                     * of the leaf and can be removed by updating the size
1441
                     * of the leaf and can be removed by updating the size
1449
                     * of the bigger interval.
1442
                     * of the bigger interval.
1450
                     */
1443
                     */
1451
                    leaf->value[i - 1] -= count;
1444
                    leaf->value[i - 1] -= count;
1452
                    return 1;
1445
                    return 1;
1453
                } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1446
                } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1454
                    count_t new_cnt;
1447
                    count_t new_cnt;
1455
               
1448
               
1456
                    /*
1449
                    /*
1457
                     * The interval is contained in the interval (i - 1)
1450
                     * The interval is contained in the interval (i - 1)
1458
                     * of the leaf but its removal requires both updating
1451
                     * of the leaf but its removal requires both updating
1459
                     * the size of the original interval and
1452
                     * the size of the original interval and
1460
                     * also inserting a new interval.
1453
                     * also inserting a new interval.
1461
                     */
1454
                     */
1462
                    new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1455
                    new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1463
                    leaf->value[i - 1] -= count + new_cnt;
1456
                    leaf->value[i - 1] -= count + new_cnt;
1464
                    btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1457
                    btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1465
                    return 1;
1458
                    return 1;
1466
                }
1459
                }
1467
            }
1460
            }
1468
            return 0;
1461
            return 0;
1469
        }
1462
        }
1470
    }
1463
    }
1471
 
1464
 
1472
error:
1465
error:
1473
    panic("Inconsistency detected while removing %d pages of used space from %P.\n", count, page);
1466
    panic("Inconsistency detected while removing %d pages of used space from %P.\n", count, page);
1474
}
1467
}
1475
 
1468
 
1476
/** Remove reference to address space area share info.
1469
/** Remove reference to address space area share info.
1477
 *
1470
 *
1478
 * If the reference count drops to 0, the sh_info is deallocated.
1471
 * If the reference count drops to 0, the sh_info is deallocated.
1479
 *
1472
 *
1480
 * @param sh_info Pointer to address space area share info.
1473
 * @param sh_info Pointer to address space area share info.
1481
 */
1474
 */
1482
void sh_info_remove_reference(share_info_t *sh_info)
1475
void sh_info_remove_reference(share_info_t *sh_info)
1483
{
1476
{
1484
    bool dealloc = false;
1477
    bool dealloc = false;
1485
 
1478
 
1486
    mutex_lock(&sh_info->lock);
1479
    mutex_lock(&sh_info->lock);
1487
    ASSERT(sh_info->refcount);
1480
    ASSERT(sh_info->refcount);
1488
    if (--sh_info->refcount == 0) {
1481
    if (--sh_info->refcount == 0) {
1489
        dealloc = true;
1482
        dealloc = true;
1490
        link_t *cur;
1483
        link_t *cur;
1491
       
1484
       
1492
        /*
1485
        /*
1493
         * Now walk carefully the pagemap B+tree and free/remove
1486
         * Now walk carefully the pagemap B+tree and free/remove
1494
         * reference from all frames found there.
1487
         * reference from all frames found there.
1495
         */
1488
         */
1496
        for (cur = sh_info->pagemap.leaf_head.next; cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1489
        for (cur = sh_info->pagemap.leaf_head.next; cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1497
            btree_node_t *node;
1490
            btree_node_t *node;
1498
            int i;
1491
            int i;
1499
           
1492
           
1500
            node = list_get_instance(cur, btree_node_t, leaf_link);
1493
            node = list_get_instance(cur, btree_node_t, leaf_link);
1501
            for (i = 0; i < node->keys; i++)
1494
            for (i = 0; i < node->keys; i++)
1502
                frame_free(ADDR2PFN((__address) node->value[i]));
1495
                frame_free(ADDR2PFN((__address) node->value[i]));
1503
        }
1496
        }
1504
       
1497
       
1505
    }
1498
    }
1506
    mutex_unlock(&sh_info->lock);
1499
    mutex_unlock(&sh_info->lock);
1507
   
1500
   
1508
    if (dealloc) {
1501
    if (dealloc) {
1509
        btree_destroy(&sh_info->pagemap);
1502
        btree_destroy(&sh_info->pagemap);
1510
        free(sh_info);
1503
        free(sh_info);
1511
    }
1504
    }
1512
}
1505
}
1513
 
1506
 
1514
/*
1507
/*
1515
 * Address space related syscalls.
1508
 * Address space related syscalls.
1516
 */
1509
 */
1517
 
1510
 
1518
/** Wrapper for as_area_create(). */
1511
/** Wrapper for as_area_create(). */
1519
__native sys_as_area_create(__address address, size_t size, int flags)
1512
__native sys_as_area_create(__address address, size_t size, int flags)
1520
{
1513
{
1521
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address, AS_AREA_ATTR_NONE, &anon_backend, NULL))
1514
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address, AS_AREA_ATTR_NONE, &anon_backend, NULL))
1522
        return (__native) address;
1515
        return (__native) address;
1523
    else
1516
    else
1524
        return (__native) -1;
1517
        return (__native) -1;
1525
}
1518
}
1526
 
1519
 
1527
/** Wrapper for as_area_resize. */
1520
/** Wrapper for as_area_resize. */
1528
__native sys_as_area_resize(__address address, size_t size, int flags)
1521
__native sys_as_area_resize(__address address, size_t size, int flags)
1529
{
1522
{
1530
    return (__native) as_area_resize(AS, address, size, 0);
1523
    return (__native) as_area_resize(AS, address, size, 0);
1531
}
1524
}
1532
 
1525
 
1533
/** Wrapper for as_area_destroy. */
1526
/** Wrapper for as_area_destroy. */
1534
__native sys_as_area_destroy(__address address)
1527
__native sys_as_area_destroy(__address address)
1535
{
1528
{
1536
    return (__native) as_area_destroy(AS, address);
1529
    return (__native) as_area_destroy(AS, address);
1537
}
1530
}
1538
 
1531
 
1539
 /** @}
1532
 /** @}
1540
 */
1533
 */
1541
 
1534
 
1542
 
1535