Subversion Repositories HelenOS-historic

Rev

Rev 1434 | Rev 1437 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 1434 Rev 1436
1
/*
1
/*
2
 * Copyright (C) 2001-2006 Jakub Jermar
2
 * Copyright (C) 2001-2006 Jakub Jermar
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/**
29
/**
30
 * @file    as.c
30
 * @file    as.c
31
 * @brief   Address space related functions.
31
 * @brief   Address space related functions.
32
 *
32
 *
33
 * This file contains address space manipulation functions.
33
 * This file contains address space manipulation functions.
34
 * Roughly speaking, this is a higher-level client of
34
 * Roughly speaking, this is a higher-level client of
35
 * Virtual Address Translation (VAT) subsystem.
35
 * Virtual Address Translation (VAT) subsystem.
36
 *
36
 *
37
 * Functionality provided by this file allows one to
37
 * Functionality provided by this file allows one to
38
 * create address space and create, resize and share
38
 * create address space and create, resize and share
39
 * address space areas.
39
 * address space areas.
40
 *
40
 *
41
 * @see page.c
41
 * @see page.c
42
 *
42
 *
43
 */
43
 */
44
 
44
 
45
#include <mm/as.h>
45
#include <mm/as.h>
46
#include <arch/mm/as.h>
46
#include <arch/mm/as.h>
47
#include <mm/page.h>
47
#include <mm/page.h>
48
#include <mm/frame.h>
48
#include <mm/frame.h>
49
#include <mm/slab.h>
49
#include <mm/slab.h>
50
#include <mm/tlb.h>
50
#include <mm/tlb.h>
51
#include <arch/mm/page.h>
51
#include <arch/mm/page.h>
52
#include <genarch/mm/page_pt.h>
52
#include <genarch/mm/page_pt.h>
53
#include <genarch/mm/page_ht.h>
53
#include <genarch/mm/page_ht.h>
54
#include <mm/asid.h>
54
#include <mm/asid.h>
55
#include <arch/mm/asid.h>
55
#include <arch/mm/asid.h>
56
#include <synch/spinlock.h>
56
#include <synch/spinlock.h>
57
#include <synch/mutex.h>
57
#include <synch/mutex.h>
58
#include <adt/list.h>
58
#include <adt/list.h>
59
#include <adt/btree.h>
59
#include <adt/btree.h>
60
#include <proc/task.h>
60
#include <proc/task.h>
61
#include <proc/thread.h>
61
#include <proc/thread.h>
62
#include <arch/asm.h>
62
#include <arch/asm.h>
63
#include <panic.h>
63
#include <panic.h>
64
#include <debug.h>
64
#include <debug.h>
65
#include <print.h>
65
#include <print.h>
66
#include <memstr.h>
66
#include <memstr.h>
67
#include <macros.h>
67
#include <macros.h>
68
#include <arch.h>
68
#include <arch.h>
69
#include <errno.h>
69
#include <errno.h>
70
#include <config.h>
70
#include <config.h>
71
#include <align.h>
71
#include <align.h>
72
#include <arch/types.h>
72
#include <arch/types.h>
73
#include <typedefs.h>
73
#include <typedefs.h>
74
#include <syscall/copy.h>
74
#include <syscall/copy.h>
75
#include <arch/interrupt.h>
75
#include <arch/interrupt.h>
76
 
76
 
77
as_operations_t *as_operations = NULL;
77
as_operations_t *as_operations = NULL;
78
 
78
 
79
/** This lock protects inactive_as_with_asid_head list. It must be acquired before as_t mutex. */
79
/** This lock protects inactive_as_with_asid_head list. It must be acquired before as_t mutex. */
80
SPINLOCK_INITIALIZE(inactive_as_with_asid_lock);
80
SPINLOCK_INITIALIZE(inactive_as_with_asid_lock);
81
 
81
 
82
/**
82
/**
83
 * This list contains address spaces that are not active on any
83
 * This list contains address spaces that are not active on any
84
 * processor and that have valid ASID.
84
 * processor and that have valid ASID.
85
 */
85
 */
86
LIST_INITIALIZE(inactive_as_with_asid_head);
86
LIST_INITIALIZE(inactive_as_with_asid_head);
87
 
87
 
88
/** Kernel address space. */
88
/** Kernel address space. */
89
as_t *AS_KERNEL = NULL;
89
as_t *AS_KERNEL = NULL;
90
 
90
 
91
static int area_flags_to_page_flags(int aflags);
91
static int area_flags_to_page_flags(int aflags);
92
static as_area_t *find_area_and_lock(as_t *as, __address va);
92
static as_area_t *find_area_and_lock(as_t *as, __address va);
93
static bool check_area_conflicts(as_t *as, __address va, size_t size, as_area_t *avoid_area);
93
static bool check_area_conflicts(as_t *as, __address va, size_t size, as_area_t *avoid_area);
94
static void sh_info_remove_reference(share_info_t *sh_info);
94
static void sh_info_remove_reference(share_info_t *sh_info);
95
 
95
 
96
/** Initialize address space subsystem. */
96
/** Initialize address space subsystem. */
97
void as_init(void)
97
void as_init(void)
98
{
98
{
99
    as_arch_init();
99
    as_arch_init();
100
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
100
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
101
    if (!AS_KERNEL)
101
    if (!AS_KERNEL)
102
        panic("can't create kernel address space\n");
102
        panic("can't create kernel address space\n");
103
   
103
   
104
}
104
}
105
 
105
 
106
/** Create address space.
106
/** Create address space.
107
 *
107
 *
108
 * @param flags Flags that influence way in wich the address space is created.
108
 * @param flags Flags that influence way in wich the address space is created.
109
 */
109
 */
110
as_t *as_create(int flags)
110
as_t *as_create(int flags)
111
{
111
{
112
    as_t *as;
112
    as_t *as;
113
 
113
 
114
    as = (as_t *) malloc(sizeof(as_t), 0);
114
    as = (as_t *) malloc(sizeof(as_t), 0);
115
    link_initialize(&as->inactive_as_with_asid_link);
115
    link_initialize(&as->inactive_as_with_asid_link);
116
    mutex_initialize(&as->lock);
116
    mutex_initialize(&as->lock);
117
    btree_create(&as->as_area_btree);
117
    btree_create(&as->as_area_btree);
118
   
118
   
119
    if (flags & FLAG_AS_KERNEL)
119
    if (flags & FLAG_AS_KERNEL)
120
        as->asid = ASID_KERNEL;
120
        as->asid = ASID_KERNEL;
121
    else
121
    else
122
        as->asid = ASID_INVALID;
122
        as->asid = ASID_INVALID;
123
   
123
   
124
    as->cpu_refcount = 0;
124
    as->cpu_refcount = 0;
125
    as->page_table = page_table_create(flags);
125
    as->page_table = page_table_create(flags);
126
 
126
 
127
    return as;
127
    return as;
128
}
128
}
129
 
129
 
130
/** Free Adress space */
130
/** Free Adress space */
131
void as_free(as_t *as)
131
void as_free(as_t *as)
132
{
132
{
133
    ASSERT(as->cpu_refcount == 0);
133
    ASSERT(as->cpu_refcount == 0);
134
 
134
 
135
    /* TODO: free as_areas and other resources held by as */
135
    /* TODO: free as_areas and other resources held by as */
136
    /* TODO: free page table */
136
    /* TODO: free page table */
137
    free(as);
137
    free(as);
138
}
138
}
139
 
139
 
140
/** Create address space area of common attributes.
140
/** Create address space area of common attributes.
141
 *
141
 *
142
 * The created address space area is added to the target address space.
142
 * The created address space area is added to the target address space.
143
 *
143
 *
144
 * @param as Target address space.
144
 * @param as Target address space.
145
 * @param flags Flags of the area memory.
145
 * @param flags Flags of the area memory.
146
 * @param size Size of area.
146
 * @param size Size of area.
147
 * @param base Base address of area.
147
 * @param base Base address of area.
148
 * @param attrs Attributes of the area.
148
 * @param attrs Attributes of the area.
149
 * @param backend Address space area backend. NULL if no backend is used.
149
 * @param backend Address space area backend. NULL if no backend is used.
150
 * @param backend_data NULL or a pointer to an array holding two void *.
150
 * @param backend_data NULL or a pointer to an array holding two void *.
151
 *
151
 *
152
 * @return Address space area on success or NULL on failure.
152
 * @return Address space area on success or NULL on failure.
153
 */
153
 */
154
as_area_t *as_area_create(as_t *as, int flags, size_t size, __address base, int attrs,
154
as_area_t *as_area_create(as_t *as, int flags, size_t size, __address base, int attrs,
155
           mem_backend_t *backend, mem_backend_data_t *backend_data)
155
           mem_backend_t *backend, mem_backend_data_t *backend_data)
156
{
156
{
157
    ipl_t ipl;
157
    ipl_t ipl;
158
    as_area_t *a;
158
    as_area_t *a;
159
   
159
   
160
    if (base % PAGE_SIZE)
160
    if (base % PAGE_SIZE)
161
        return NULL;
161
        return NULL;
162
 
162
 
163
    if (!size)
163
    if (!size)
164
        return NULL;
164
        return NULL;
165
 
165
 
166
    /* Writeable executable areas are not supported. */
166
    /* Writeable executable areas are not supported. */
167
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
167
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
168
        return NULL;
168
        return NULL;
169
   
169
   
170
    ipl = interrupts_disable();
170
    ipl = interrupts_disable();
171
    mutex_lock(&as->lock);
171
    mutex_lock(&as->lock);
172
   
172
   
173
    if (!check_area_conflicts(as, base, size, NULL)) {
173
    if (!check_area_conflicts(as, base, size, NULL)) {
174
        mutex_unlock(&as->lock);
174
        mutex_unlock(&as->lock);
175
        interrupts_restore(ipl);
175
        interrupts_restore(ipl);
176
        return NULL;
176
        return NULL;
177
    }
177
    }
178
   
178
   
179
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
179
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
180
 
180
 
181
    mutex_initialize(&a->lock);
181
    mutex_initialize(&a->lock);
182
   
182
   
183
    a->as = as;
183
    a->as = as;
184
    a->flags = flags;
184
    a->flags = flags;
185
    a->attributes = attrs;
185
    a->attributes = attrs;
186
    a->pages = SIZE2FRAMES(size);
186
    a->pages = SIZE2FRAMES(size);
187
    a->base = base;
187
    a->base = base;
188
    a->sh_info = NULL;
188
    a->sh_info = NULL;
189
    a->backend = backend;
189
    a->backend = backend;
190
    if (backend_data)
190
    if (backend_data)
191
        a->backend_data = *backend_data;
191
        a->backend_data = *backend_data;
192
    else
192
    else
193
        memsetb((__address) &a->backend_data, sizeof(a->backend_data), 0);
193
        memsetb((__address) &a->backend_data, sizeof(a->backend_data), 0);
194
 
194
 
195
    btree_create(&a->used_space);
195
    btree_create(&a->used_space);
196
   
196
   
197
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
197
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
198
 
198
 
199
    mutex_unlock(&as->lock);
199
    mutex_unlock(&as->lock);
200
    interrupts_restore(ipl);
200
    interrupts_restore(ipl);
201
 
201
 
202
    return a;
202
    return a;
203
}
203
}
204
 
204
 
205
/** Find address space area and change it.
205
/** Find address space area and change it.
206
 *
206
 *
207
 * @param as Address space.
207
 * @param as Address space.
208
 * @param address Virtual address belonging to the area to be changed. Must be page-aligned.
208
 * @param address Virtual address belonging to the area to be changed. Must be page-aligned.
209
 * @param size New size of the virtual memory block starting at address.
209
 * @param size New size of the virtual memory block starting at address.
210
 * @param flags Flags influencing the remap operation. Currently unused.
210
 * @param flags Flags influencing the remap operation. Currently unused.
211
 *
211
 *
212
 * @return Zero on success or a value from @ref errno.h otherwise.
212
 * @return Zero on success or a value from @ref errno.h otherwise.
213
 */
213
 */
214
int as_area_resize(as_t *as, __address address, size_t size, int flags)
214
int as_area_resize(as_t *as, __address address, size_t size, int flags)
215
{
215
{
216
    as_area_t *area;
216
    as_area_t *area;
217
    ipl_t ipl;
217
    ipl_t ipl;
218
    size_t pages;
218
    size_t pages;
219
   
219
   
220
    ipl = interrupts_disable();
220
    ipl = interrupts_disable();
221
    mutex_lock(&as->lock);
221
    mutex_lock(&as->lock);
222
   
222
   
223
    /*
223
    /*
224
     * Locate the area.
224
     * Locate the area.
225
     */
225
     */
226
    area = find_area_and_lock(as, address);
226
    area = find_area_and_lock(as, address);
227
    if (!area) {
227
    if (!area) {
228
        mutex_unlock(&as->lock);
228
        mutex_unlock(&as->lock);
229
        interrupts_restore(ipl);
229
        interrupts_restore(ipl);
230
        return ENOENT;
230
        return ENOENT;
231
    }
231
    }
232
 
232
 
233
    if (area->backend == &phys_backend) {
233
    if (area->backend == &phys_backend) {
234
        /*
234
        /*
235
         * Remapping of address space areas associated
235
         * Remapping of address space areas associated
236
         * with memory mapped devices is not supported.
236
         * with memory mapped devices is not supported.
237
         */
237
         */
238
        mutex_unlock(&area->lock);
238
        mutex_unlock(&area->lock);
239
        mutex_unlock(&as->lock);
239
        mutex_unlock(&as->lock);
240
        interrupts_restore(ipl);
240
        interrupts_restore(ipl);
241
        return ENOTSUP;
241
        return ENOTSUP;
242
    }
242
    }
243
    if (area->sh_info) {
243
    if (area->sh_info) {
244
        /*
244
        /*
245
         * Remapping of shared address space areas
245
         * Remapping of shared address space areas
246
         * is not supported.
246
         * is not supported.
247
         */
247
         */
248
        mutex_unlock(&area->lock);
248
        mutex_unlock(&area->lock);
249
        mutex_unlock(&as->lock);
249
        mutex_unlock(&as->lock);
250
        interrupts_restore(ipl);
250
        interrupts_restore(ipl);
251
        return ENOTSUP;
251
        return ENOTSUP;
252
    }
252
    }
253
 
253
 
254
    pages = SIZE2FRAMES((address - area->base) + size);
254
    pages = SIZE2FRAMES((address - area->base) + size);
255
    if (!pages) {
255
    if (!pages) {
256
        /*
256
        /*
257
         * Zero size address space areas are not allowed.
257
         * Zero size address space areas are not allowed.
258
         */
258
         */
259
        mutex_unlock(&area->lock);
259
        mutex_unlock(&area->lock);
260
        mutex_unlock(&as->lock);
260
        mutex_unlock(&as->lock);
261
        interrupts_restore(ipl);
261
        interrupts_restore(ipl);
262
        return EPERM;
262
        return EPERM;
263
    }
263
    }
264
   
264
   
265
    if (pages < area->pages) {
265
    if (pages < area->pages) {
266
        bool cond;
266
        bool cond;
267
        __address start_free = area->base + pages*PAGE_SIZE;
267
        __address start_free = area->base + pages*PAGE_SIZE;
268
 
268
 
269
        /*
269
        /*
270
         * Shrinking the area.
270
         * Shrinking the area.
271
         * No need to check for overlaps.
271
         * No need to check for overlaps.
272
         */
272
         */
273
 
273
 
274
        /*
274
        /*
-
 
275
         * Start TLB shootdown sequence.
-
 
276
         */
-
 
277
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
-
 
278
 
-
 
279
        /*
275
         * Remove frames belonging to used space starting from
280
         * Remove frames belonging to used space starting from
276
         * the highest addresses downwards until an overlap with
281
         * the highest addresses downwards until an overlap with
277
         * the resized address space area is found. Note that this
282
         * the resized address space area is found. Note that this
278
         * is also the right way to remove part of the used_space
283
         * is also the right way to remove part of the used_space
279
         * B+tree leaf list.
284
         * B+tree leaf list.
280
         */    
285
         */    
281
        for (cond = true; cond;) {
286
        for (cond = true; cond;) {
282
            btree_node_t *node;
287
            btree_node_t *node;
283
       
288
       
284
            ASSERT(!list_empty(&area->used_space.leaf_head));
289
            ASSERT(!list_empty(&area->used_space.leaf_head));
285
            node = list_get_instance(area->used_space.leaf_head.prev, btree_node_t, leaf_link);
290
            node = list_get_instance(area->used_space.leaf_head.prev, btree_node_t, leaf_link);
286
            if ((cond = (bool) node->keys)) {
291
            if ((cond = (bool) node->keys)) {
287
                __address b = node->key[node->keys - 1];
292
                __address b = node->key[node->keys - 1];
288
                count_t c = (count_t) node->value[node->keys - 1];
293
                count_t c = (count_t) node->value[node->keys - 1];
289
                int i = 0;
294
                int i = 0;
290
           
295
           
291
                if (overlaps(b, c*PAGE_SIZE, area->base, pages*PAGE_SIZE)) {
296
                if (overlaps(b, c*PAGE_SIZE, area->base, pages*PAGE_SIZE)) {
292
                   
297
                   
293
                    if (b + c*PAGE_SIZE <= start_free) {
298
                    if (b + c*PAGE_SIZE <= start_free) {
294
                        /*
299
                        /*
295
                         * The whole interval fits completely
300
                         * The whole interval fits completely
296
                         * in the resized address space area.
301
                         * in the resized address space area.
297
                         */
302
                         */
298
                        break;
303
                        break;
299
                    }
304
                    }
300
       
305
       
301
                    /*
306
                    /*
302
                     * Part of the interval corresponding to b and c
307
                     * Part of the interval corresponding to b and c
303
                     * overlaps with the resized address space area.
308
                     * overlaps with the resized address space area.
304
                     */
309
                     */
305
       
310
       
306
                    cond = false;   /* we are almost done */
311
                    cond = false;   /* we are almost done */
307
                    i = (start_free - b) >> PAGE_WIDTH;
312
                    i = (start_free - b) >> PAGE_WIDTH;
308
                    if (!used_space_remove(area, start_free, c - i))
313
                    if (!used_space_remove(area, start_free, c - i))
309
                        panic("Could not remove used space.");
314
                        panic("Could not remove used space.");
310
                } else {
315
                } else {
311
                    /*
316
                    /*
312
                     * The interval of used space can be completely removed.
317
                     * The interval of used space can be completely removed.
313
                     */
318
                     */
314
                    if (!used_space_remove(area, b, c))
319
                    if (!used_space_remove(area, b, c))
315
                        panic("Could not remove used space.\n");
320
                        panic("Could not remove used space.\n");
316
                }
321
                }
317
           
322
           
318
                for (; i < c; i++) {
323
                for (; i < c; i++) {
319
                    pte_t *pte;
324
                    pte_t *pte;
320
           
325
           
321
                    page_table_lock(as, false);
326
                    page_table_lock(as, false);
322
                    pte = page_mapping_find(as, b + i*PAGE_SIZE);
327
                    pte = page_mapping_find(as, b + i*PAGE_SIZE);
323
                    ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
328
                    ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
324
                    if (area->backend && area->backend->frame_free) {
329
                    if (area->backend && area->backend->frame_free) {
325
                        area->backend->frame_free(area,
330
                        area->backend->frame_free(area,
326
                            b + i*PAGE_SIZE, PTE_GET_FRAME(pte));
331
                            b + i*PAGE_SIZE, PTE_GET_FRAME(pte));
327
                    }
332
                    }
328
                    page_mapping_remove(as, b + i*PAGE_SIZE);
333
                    page_mapping_remove(as, b + i*PAGE_SIZE);
329
                    page_table_unlock(as, false);
334
                    page_table_unlock(as, false);
330
                }
335
                }
331
            }
336
            }
332
        }
337
        }
-
 
338
 
333
        /*
339
        /*
334
         * Invalidate TLB's.
340
         * Finish TLB shootdown sequence.
335
         */
341
         */
336
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
-
 
337
        tlb_invalidate_pages(AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
342
        tlb_invalidate_pages(AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
338
        tlb_shootdown_finalize();
343
        tlb_shootdown_finalize();
339
    } else {
344
    } else {
340
        /*
345
        /*
341
         * Growing the area.
346
         * Growing the area.
342
         * Check for overlaps with other address space areas.
347
         * Check for overlaps with other address space areas.
343
         */
348
         */
344
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE, area)) {
349
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE, area)) {
345
            mutex_unlock(&area->lock);
350
            mutex_unlock(&area->lock);
346
            mutex_unlock(&as->lock);       
351
            mutex_unlock(&as->lock);       
347
            interrupts_restore(ipl);
352
            interrupts_restore(ipl);
348
            return EADDRNOTAVAIL;
353
            return EADDRNOTAVAIL;
349
        }
354
        }
350
    }
355
    }
351
 
356
 
352
    area->pages = pages;
357
    area->pages = pages;
353
   
358
   
354
    mutex_unlock(&area->lock);
359
    mutex_unlock(&area->lock);
355
    mutex_unlock(&as->lock);
360
    mutex_unlock(&as->lock);
356
    interrupts_restore(ipl);
361
    interrupts_restore(ipl);
357
 
362
 
358
    return 0;
363
    return 0;
359
}
364
}
360
 
365
 
361
/** Destroy address space area.
366
/** Destroy address space area.
362
 *
367
 *
363
 * @param as Address space.
368
 * @param as Address space.
364
 * @param address Address withing the area to be deleted.
369
 * @param address Address withing the area to be deleted.
365
 *
370
 *
366
 * @return Zero on success or a value from @ref errno.h on failure.
371
 * @return Zero on success or a value from @ref errno.h on failure.
367
 */
372
 */
368
int as_area_destroy(as_t *as, __address address)
373
int as_area_destroy(as_t *as, __address address)
369
{
374
{
370
    as_area_t *area;
375
    as_area_t *area;
371
    __address base;
376
    __address base;
372
    ipl_t ipl;
377
    ipl_t ipl;
373
    bool cond;
378
    bool cond;
374
 
379
 
375
    ipl = interrupts_disable();
380
    ipl = interrupts_disable();
376
    mutex_lock(&as->lock);
381
    mutex_lock(&as->lock);
377
 
382
 
378
    area = find_area_and_lock(as, address);
383
    area = find_area_and_lock(as, address);
379
    if (!area) {
384
    if (!area) {
380
        mutex_unlock(&as->lock);
385
        mutex_unlock(&as->lock);
381
        interrupts_restore(ipl);
386
        interrupts_restore(ipl);
382
        return ENOENT;
387
        return ENOENT;
383
    }
388
    }
384
 
389
 
385
    base = area->base;
390
    base = area->base;
386
 
391
 
387
    /*
392
    /*
-
 
393
     * Start TLB shootdown sequence.
-
 
394
     */
-
 
395
    tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base, area->pages);
-
 
396
 
-
 
397
    /*
388
     * Visit only the pages mapped by used_space B+tree.
398
     * Visit only the pages mapped by used_space B+tree.
389
     * Note that we must be very careful when walking the tree
399
     * Note that we must be very careful when walking the tree
390
     * leaf list and removing used space as the leaf list changes
400
     * leaf list and removing used space as the leaf list changes
391
     * unpredictibly after each remove. The solution is to actually
401
     * unpredictibly after each remove. The solution is to actually
392
     * not walk the tree at all, but to remove items from the head
402
     * not walk the tree at all, but to remove items from the head
393
     * of the leaf list until there are some keys left.
403
     * of the leaf list until there are some keys left.
394
     */
404
     */
395
    for (cond = true; cond;) {
405
    for (cond = true; cond;) {
396
        btree_node_t *node;
406
        btree_node_t *node;
397
       
407
       
398
        ASSERT(!list_empty(&area->used_space.leaf_head));
408
        ASSERT(!list_empty(&area->used_space.leaf_head));
399
        node = list_get_instance(area->used_space.leaf_head.next, btree_node_t, leaf_link);
409
        node = list_get_instance(area->used_space.leaf_head.next, btree_node_t, leaf_link);
400
        if ((cond = (bool) node->keys)) {
410
        if ((cond = (bool) node->keys)) {
401
            __address b = node->key[0];
411
            __address b = node->key[0];
402
            count_t i;
412
            count_t i;
403
            pte_t *pte;
413
            pte_t *pte;
404
           
414
           
405
            for (i = 0; i < (count_t) node->value[0]; i++) {
415
            for (i = 0; i < (count_t) node->value[0]; i++) {
406
                page_table_lock(as, false);
416
                page_table_lock(as, false);
407
                pte = page_mapping_find(as, b + i*PAGE_SIZE);
417
                pte = page_mapping_find(as, b + i*PAGE_SIZE);
408
                ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
418
                ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
409
                if (area->backend && area->backend->frame_free) {
419
                if (area->backend && area->backend->frame_free) {
410
                    area->backend->frame_free(area,
420
                    area->backend->frame_free(area,
411
                        b + i*PAGE_SIZE, PTE_GET_FRAME(pte));
421
                        b + i*PAGE_SIZE, PTE_GET_FRAME(pte));
412
                }
422
                }
413
                page_mapping_remove(as, b + i*PAGE_SIZE);
423
                page_mapping_remove(as, b + i*PAGE_SIZE);
414
                page_table_unlock(as, false);
424
                page_table_unlock(as, false);
415
            }
425
            }
416
            if (!used_space_remove(area, b, i))
426
            if (!used_space_remove(area, b, i))
417
                panic("Could not remove used space.\n");
427
                panic("Could not remove used space.\n");
418
        }
428
        }
419
    }
429
    }
420
    btree_destroy(&area->used_space);
-
 
421
 
430
 
422
    /*
431
    /*
423
     * Invalidate TLB's.
432
     * Finish TLB shootdown sequence.
424
     */
433
     */
425
    tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base, area->pages);
-
 
426
    tlb_invalidate_pages(AS->asid, area->base, area->pages);
434
    tlb_invalidate_pages(AS->asid, area->base, area->pages);
427
    tlb_shootdown_finalize();
435
    tlb_shootdown_finalize();
-
 
436
   
-
 
437
    btree_destroy(&area->used_space);
428
 
438
 
429
    area->attributes |= AS_AREA_ATTR_PARTIAL;
439
    area->attributes |= AS_AREA_ATTR_PARTIAL;
430
   
440
   
431
    if (area->sh_info)
441
    if (area->sh_info)
432
        sh_info_remove_reference(area->sh_info);
442
        sh_info_remove_reference(area->sh_info);
433
       
443
       
434
    mutex_unlock(&area->lock);
444
    mutex_unlock(&area->lock);
435
 
445
 
436
    /*
446
    /*
437
     * Remove the empty area from address space.
447
     * Remove the empty area from address space.
438
     */
448
     */
439
    btree_remove(&AS->as_area_btree, base, NULL);
449
    btree_remove(&AS->as_area_btree, base, NULL);
440
   
450
   
441
    free(area);
451
    free(area);
442
   
452
   
443
    mutex_unlock(&AS->lock);
453
    mutex_unlock(&AS->lock);
444
    interrupts_restore(ipl);
454
    interrupts_restore(ipl);
445
    return 0;
455
    return 0;
446
}
456
}
447
 
457
 
448
/** Share address space area with another or the same address space.
458
/** Share address space area with another or the same address space.
449
 *
459
 *
450
 * Address space area mapping is shared with a new address space area.
460
 * Address space area mapping is shared with a new address space area.
451
 * If the source address space area has not been shared so far,
461
 * If the source address space area has not been shared so far,
452
 * a new sh_info is created. The new address space area simply gets the
462
 * a new sh_info is created. The new address space area simply gets the
453
 * sh_info of the source area. The process of duplicating the
463
 * sh_info of the source area. The process of duplicating the
454
 * mapping is done through the backend share function.
464
 * mapping is done through the backend share function.
455
 *
465
 *
456
 * @param src_as Pointer to source address space.
466
 * @param src_as Pointer to source address space.
457
 * @param src_base Base address of the source address space area.
467
 * @param src_base Base address of the source address space area.
458
 * @param acc_size Expected size of the source area.
468
 * @param acc_size Expected size of the source area.
459
 * @param dst_as Pointer to destination address space.
469
 * @param dst_as Pointer to destination address space.
460
 * @param dst_base Target base address.
470
 * @param dst_base Target base address.
461
 * @param dst_flags_mask Destination address space area flags mask.
471
 * @param dst_flags_mask Destination address space area flags mask.
462
 *
472
 *
463
 * @return Zero on success or ENOENT if there is no such task or
473
 * @return Zero on success or ENOENT if there is no such task or
464
 *     if there is no such address space area,
474
 *     if there is no such address space area,
465
 *     EPERM if there was a problem in accepting the area or
475
 *     EPERM if there was a problem in accepting the area or
466
 *     ENOMEM if there was a problem in allocating destination
476
 *     ENOMEM if there was a problem in allocating destination
467
 *     address space area. ENOTSUP is returned if an attempt
477
 *     address space area. ENOTSUP is returned if an attempt
468
 *     to share non-anonymous address space area is detected.
478
 *     to share non-anonymous address space area is detected.
469
 */
479
 */
470
int as_area_share(as_t *src_as, __address src_base, size_t acc_size,
480
int as_area_share(as_t *src_as, __address src_base, size_t acc_size,
471
          as_t *dst_as, __address dst_base, int dst_flags_mask)
481
          as_t *dst_as, __address dst_base, int dst_flags_mask)
472
{
482
{
473
    ipl_t ipl;
483
    ipl_t ipl;
474
    int src_flags;
484
    int src_flags;
475
    size_t src_size;
485
    size_t src_size;
476
    as_area_t *src_area, *dst_area;
486
    as_area_t *src_area, *dst_area;
477
    share_info_t *sh_info;
487
    share_info_t *sh_info;
478
    mem_backend_t *src_backend;
488
    mem_backend_t *src_backend;
479
    mem_backend_data_t src_backend_data;
489
    mem_backend_data_t src_backend_data;
480
   
490
   
481
    ipl = interrupts_disable();
491
    ipl = interrupts_disable();
482
    mutex_lock(&src_as->lock);
492
    mutex_lock(&src_as->lock);
483
    src_area = find_area_and_lock(src_as, src_base);
493
    src_area = find_area_and_lock(src_as, src_base);
484
    if (!src_area) {
494
    if (!src_area) {
485
        /*
495
        /*
486
         * Could not find the source address space area.
496
         * Could not find the source address space area.
487
         */
497
         */
488
        mutex_unlock(&src_as->lock);
498
        mutex_unlock(&src_as->lock);
489
        interrupts_restore(ipl);
499
        interrupts_restore(ipl);
490
        return ENOENT;
500
        return ENOENT;
491
    }
501
    }
492
   
502
   
493
    if (!src_area->backend || !src_area->backend->share) {
503
    if (!src_area->backend || !src_area->backend->share) {
494
        /*
504
        /*
495
         * There is now backend or the backend does not
505
         * There is now backend or the backend does not
496
         * know how to share the area.
506
         * know how to share the area.
497
         */
507
         */
498
        mutex_unlock(&src_area->lock);
508
        mutex_unlock(&src_area->lock);
499
        mutex_unlock(&src_as->lock);
509
        mutex_unlock(&src_as->lock);
500
        interrupts_restore(ipl);
510
        interrupts_restore(ipl);
501
        return ENOTSUP;
511
        return ENOTSUP;
502
    }
512
    }
503
   
513
   
504
    src_size = src_area->pages * PAGE_SIZE;
514
    src_size = src_area->pages * PAGE_SIZE;
505
    src_flags = src_area->flags;
515
    src_flags = src_area->flags;
506
    src_backend = src_area->backend;
516
    src_backend = src_area->backend;
507
    src_backend_data = src_area->backend_data;
517
    src_backend_data = src_area->backend_data;
508
   
518
   
509
    if (src_size != acc_size) {
519
    if (src_size != acc_size) {
510
        mutex_unlock(&src_area->lock);
520
        mutex_unlock(&src_area->lock);
511
        mutex_unlock(&src_as->lock);
521
        mutex_unlock(&src_as->lock);
512
        interrupts_restore(ipl);
522
        interrupts_restore(ipl);
513
        return EPERM;
523
        return EPERM;
514
    }
524
    }
515
 
525
 
516
    /*
526
    /*
517
     * Now we are committed to sharing the area.
527
     * Now we are committed to sharing the area.
518
     * First prepare the area for sharing.
528
     * First prepare the area for sharing.
519
     * Then it will be safe to unlock it.
529
     * Then it will be safe to unlock it.
520
     */
530
     */
521
    sh_info = src_area->sh_info;
531
    sh_info = src_area->sh_info;
522
    if (!sh_info) {
532
    if (!sh_info) {
523
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
533
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
524
        mutex_initialize(&sh_info->lock);
534
        mutex_initialize(&sh_info->lock);
525
        sh_info->refcount = 2;
535
        sh_info->refcount = 2;
526
        btree_create(&sh_info->pagemap);
536
        btree_create(&sh_info->pagemap);
527
        src_area->sh_info = sh_info;
537
        src_area->sh_info = sh_info;
528
    } else {
538
    } else {
529
        mutex_lock(&sh_info->lock);
539
        mutex_lock(&sh_info->lock);
530
        sh_info->refcount++;
540
        sh_info->refcount++;
531
        mutex_unlock(&sh_info->lock);
541
        mutex_unlock(&sh_info->lock);
532
    }
542
    }
533
 
543
 
534
    src_area->backend->share(src_area);
544
    src_area->backend->share(src_area);
535
 
545
 
536
    mutex_unlock(&src_area->lock);
546
    mutex_unlock(&src_area->lock);
537
    mutex_unlock(&src_as->lock);
547
    mutex_unlock(&src_as->lock);
538
 
548
 
539
    /*
549
    /*
540
     * Create copy of the source address space area.
550
     * Create copy of the source address space area.
541
     * The destination area is created with AS_AREA_ATTR_PARTIAL
551
     * The destination area is created with AS_AREA_ATTR_PARTIAL
542
     * attribute set which prevents race condition with
552
     * attribute set which prevents race condition with
543
     * preliminary as_page_fault() calls.
553
     * preliminary as_page_fault() calls.
544
     * The flags of the source area are masked against dst_flags_mask
554
     * The flags of the source area are masked against dst_flags_mask
545
     * to support sharing in less privileged mode.
555
     * to support sharing in less privileged mode.
546
     */
556
     */
547
    dst_area = as_area_create(dst_as, src_flags & dst_flags_mask, src_size, dst_base,
557
    dst_area = as_area_create(dst_as, src_flags & dst_flags_mask, src_size, dst_base,
548
                  AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
558
                  AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
549
    if (!dst_area) {
559
    if (!dst_area) {
550
        /*
560
        /*
551
         * Destination address space area could not be created.
561
         * Destination address space area could not be created.
552
         */
562
         */
553
        sh_info_remove_reference(sh_info);
563
        sh_info_remove_reference(sh_info);
554
       
564
       
555
        interrupts_restore(ipl);
565
        interrupts_restore(ipl);
556
        return ENOMEM;
566
        return ENOMEM;
557
    }
567
    }
558
   
568
   
559
    /*
569
    /*
560
     * Now the destination address space area has been
570
     * Now the destination address space area has been
561
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
571
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
562
     * attribute and set the sh_info.
572
     * attribute and set the sh_info.
563
     */
573
     */
564
    mutex_lock(&dst_area->lock);
574
    mutex_lock(&dst_area->lock);
565
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
575
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
566
    dst_area->sh_info = sh_info;
576
    dst_area->sh_info = sh_info;
567
    mutex_unlock(&dst_area->lock);
577
    mutex_unlock(&dst_area->lock);
568
   
578
   
569
    interrupts_restore(ipl);
579
    interrupts_restore(ipl);
570
   
580
   
571
    return 0;
581
    return 0;
572
}
582
}
573
 
583
 
574
/** Check access mode for address space area.
584
/** Check access mode for address space area.
575
 *
585
 *
576
 * The address space area must be locked prior to this call.
586
 * The address space area must be locked prior to this call.
577
 *
587
 *
578
 * @param area Address space area.
588
 * @param area Address space area.
579
 * @param access Access mode.
589
 * @param access Access mode.
580
 *
590
 *
581
 * @return False if access violates area's permissions, true otherwise.
591
 * @return False if access violates area's permissions, true otherwise.
582
 */
592
 */
583
bool as_area_check_access(as_area_t *area, pf_access_t access)
593
bool as_area_check_access(as_area_t *area, pf_access_t access)
584
{
594
{
585
    int flagmap[] = {
595
    int flagmap[] = {
586
        [PF_ACCESS_READ] = AS_AREA_READ,
596
        [PF_ACCESS_READ] = AS_AREA_READ,
587
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
597
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
588
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
598
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
589
    };
599
    };
590
 
600
 
591
    if (!(area->flags & flagmap[access]))
601
    if (!(area->flags & flagmap[access]))
592
        return false;
602
        return false;
593
   
603
   
594
    return true;
604
    return true;
595
}
605
}
596
 
606
 
597
/** Handle page fault within the current address space.
607
/** Handle page fault within the current address space.
598
 *
608
 *
599
 * This is the high-level page fault handler. It decides
609
 * This is the high-level page fault handler. It decides
600
 * whether the page fault can be resolved by any backend
610
 * whether the page fault can be resolved by any backend
601
 * and if so, it invokes the backend to resolve the page
611
 * and if so, it invokes the backend to resolve the page
602
 * fault.
612
 * fault.
603
 *
613
 *
604
 * Interrupts are assumed disabled.
614
 * Interrupts are assumed disabled.
605
 *
615
 *
606
 * @param page Faulting page.
616
 * @param page Faulting page.
607
 * @param access Access mode that caused the fault (i.e. read/write/exec).
617
 * @param access Access mode that caused the fault (i.e. read/write/exec).
608
 * @param istate Pointer to interrupted state.
618
 * @param istate Pointer to interrupted state.
609
 *
619
 *
610
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
620
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
611
 *     fault was caused by copy_to_uspace() or copy_from_uspace().
621
 *     fault was caused by copy_to_uspace() or copy_from_uspace().
612
 */
622
 */
613
int as_page_fault(__address page, pf_access_t access, istate_t *istate)
623
int as_page_fault(__address page, pf_access_t access, istate_t *istate)
614
{
624
{
615
    pte_t *pte;
625
    pte_t *pte;
616
    as_area_t *area;
626
    as_area_t *area;
617
   
627
   
618
    if (!THREAD)
628
    if (!THREAD)
619
        return AS_PF_FAULT;
629
        return AS_PF_FAULT;
620
       
630
       
621
    ASSERT(AS);
631
    ASSERT(AS);
622
 
632
 
623
    mutex_lock(&AS->lock);
633
    mutex_lock(&AS->lock);
624
    area = find_area_and_lock(AS, page);   
634
    area = find_area_and_lock(AS, page);   
625
    if (!area) {
635
    if (!area) {
626
        /*
636
        /*
627
         * No area contained mapping for 'page'.
637
         * No area contained mapping for 'page'.
628
         * Signal page fault to low-level handler.
638
         * Signal page fault to low-level handler.
629
         */
639
         */
630
        mutex_unlock(&AS->lock);
640
        mutex_unlock(&AS->lock);
631
        goto page_fault;
641
        goto page_fault;
632
    }
642
    }
633
 
643
 
634
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
644
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
635
        /*
645
        /*
636
         * The address space area is not fully initialized.
646
         * The address space area is not fully initialized.
637
         * Avoid possible race by returning error.
647
         * Avoid possible race by returning error.
638
         */
648
         */
639
        mutex_unlock(&area->lock);
649
        mutex_unlock(&area->lock);
640
        mutex_unlock(&AS->lock);
650
        mutex_unlock(&AS->lock);
641
        goto page_fault;       
651
        goto page_fault;       
642
    }
652
    }
643
 
653
 
644
    if (!area->backend || !area->backend->page_fault) {
654
    if (!area->backend || !area->backend->page_fault) {
645
        /*
655
        /*
646
         * The address space area is not backed by any backend
656
         * The address space area is not backed by any backend
647
         * or the backend cannot handle page faults.
657
         * or the backend cannot handle page faults.
648
         */
658
         */
649
        mutex_unlock(&area->lock);
659
        mutex_unlock(&area->lock);
650
        mutex_unlock(&AS->lock);
660
        mutex_unlock(&AS->lock);
651
        goto page_fault;       
661
        goto page_fault;       
652
    }
662
    }
653
 
663
 
654
    page_table_lock(AS, false);
664
    page_table_lock(AS, false);
655
   
665
   
656
    /*
666
    /*
657
     * To avoid race condition between two page faults
667
     * To avoid race condition between two page faults
658
     * on the same address, we need to make sure
668
     * on the same address, we need to make sure
659
     * the mapping has not been already inserted.
669
     * the mapping has not been already inserted.
660
     */
670
     */
661
    if ((pte = page_mapping_find(AS, page))) {
671
    if ((pte = page_mapping_find(AS, page))) {
662
        if (PTE_PRESENT(pte)) {
672
        if (PTE_PRESENT(pte)) {
663
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
673
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
664
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
674
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
665
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
675
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
666
                page_table_unlock(AS, false);
676
                page_table_unlock(AS, false);
667
                mutex_unlock(&area->lock);
677
                mutex_unlock(&area->lock);
668
                mutex_unlock(&AS->lock);
678
                mutex_unlock(&AS->lock);
669
                return AS_PF_OK;
679
                return AS_PF_OK;
670
            }
680
            }
671
        }
681
        }
672
    }
682
    }
673
   
683
   
674
    /*
684
    /*
675
     * Resort to the backend page fault handler.
685
     * Resort to the backend page fault handler.
676
     */
686
     */
677
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
687
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
678
        page_table_unlock(AS, false);
688
        page_table_unlock(AS, false);
679
        mutex_unlock(&area->lock);
689
        mutex_unlock(&area->lock);
680
        mutex_unlock(&AS->lock);
690
        mutex_unlock(&AS->lock);
681
        goto page_fault;
691
        goto page_fault;
682
    }
692
    }
683
   
693
   
684
    page_table_unlock(AS, false);
694
    page_table_unlock(AS, false);
685
    mutex_unlock(&area->lock);
695
    mutex_unlock(&area->lock);
686
    mutex_unlock(&AS->lock);
696
    mutex_unlock(&AS->lock);
687
    return AS_PF_OK;
697
    return AS_PF_OK;
688
 
698
 
689
page_fault:
699
page_fault:
690
    if (THREAD->in_copy_from_uspace) {
700
    if (THREAD->in_copy_from_uspace) {
691
        THREAD->in_copy_from_uspace = false;
701
        THREAD->in_copy_from_uspace = false;
692
        istate_set_retaddr(istate, (__address) &memcpy_from_uspace_failover_address);
702
        istate_set_retaddr(istate, (__address) &memcpy_from_uspace_failover_address);
693
    } else if (THREAD->in_copy_to_uspace) {
703
    } else if (THREAD->in_copy_to_uspace) {
694
        THREAD->in_copy_to_uspace = false;
704
        THREAD->in_copy_to_uspace = false;
695
        istate_set_retaddr(istate, (__address) &memcpy_to_uspace_failover_address);
705
        istate_set_retaddr(istate, (__address) &memcpy_to_uspace_failover_address);
696
    } else {
706
    } else {
697
        return AS_PF_FAULT;
707
        return AS_PF_FAULT;
698
    }
708
    }
699
 
709
 
700
    return AS_PF_DEFER;
710
    return AS_PF_DEFER;
701
}
711
}
702
 
712
 
703
/** Switch address spaces.
713
/** Switch address spaces.
704
 *
714
 *
705
 * Note that this function cannot sleep as it is essentially a part of
715
 * Note that this function cannot sleep as it is essentially a part of
706
 * scheduling. Sleeping here would lead to deadlock on wakeup.
716
 * scheduling. Sleeping here would lead to deadlock on wakeup.
707
 *
717
 *
708
 * @param old Old address space or NULL.
718
 * @param old Old address space or NULL.
709
 * @param new New address space.
719
 * @param new New address space.
710
 */
720
 */
711
void as_switch(as_t *old, as_t *new)
721
void as_switch(as_t *old, as_t *new)
712
{
722
{
713
    ipl_t ipl;
723
    ipl_t ipl;
714
    bool needs_asid = false;
724
    bool needs_asid = false;
715
   
725
   
716
    ipl = interrupts_disable();
726
    ipl = interrupts_disable();
717
    spinlock_lock(&inactive_as_with_asid_lock);
727
    spinlock_lock(&inactive_as_with_asid_lock);
718
 
728
 
719
    /*
729
    /*
720
     * First, take care of the old address space.
730
     * First, take care of the old address space.
721
     */
731
     */
722
    if (old) {
732
    if (old) {
723
        mutex_lock_active(&old->lock);
733
        mutex_lock_active(&old->lock);
724
        ASSERT(old->cpu_refcount);
734
        ASSERT(old->cpu_refcount);
725
        if((--old->cpu_refcount == 0) && (old != AS_KERNEL)) {
735
        if((--old->cpu_refcount == 0) && (old != AS_KERNEL)) {
726
            /*
736
            /*
727
             * The old address space is no longer active on
737
             * The old address space is no longer active on
728
             * any processor. It can be appended to the
738
             * any processor. It can be appended to the
729
             * list of inactive address spaces with assigned
739
             * list of inactive address spaces with assigned
730
             * ASID.
740
             * ASID.
731
             */
741
             */
732
             ASSERT(old->asid != ASID_INVALID);
742
             ASSERT(old->asid != ASID_INVALID);
733
             list_append(&old->inactive_as_with_asid_link, &inactive_as_with_asid_head);
743
             list_append(&old->inactive_as_with_asid_link, &inactive_as_with_asid_head);
734
        }
744
        }
735
        mutex_unlock(&old->lock);
745
        mutex_unlock(&old->lock);
736
    }
746
    }
737
 
747
 
738
    /*
748
    /*
739
     * Second, prepare the new address space.
749
     * Second, prepare the new address space.
740
     */
750
     */
741
    mutex_lock_active(&new->lock);
751
    mutex_lock_active(&new->lock);
742
    if ((new->cpu_refcount++ == 0) && (new != AS_KERNEL)) {
752
    if ((new->cpu_refcount++ == 0) && (new != AS_KERNEL)) {
743
        if (new->asid != ASID_INVALID)
753
        if (new->asid != ASID_INVALID)
744
            list_remove(&new->inactive_as_with_asid_link);
754
            list_remove(&new->inactive_as_with_asid_link);
745
        else
755
        else
746
            needs_asid = true;  /* defer call to asid_get() until new->lock is released */
756
            needs_asid = true;  /* defer call to asid_get() until new->lock is released */
747
    }
757
    }
748
    SET_PTL0_ADDRESS(new->page_table);
758
    SET_PTL0_ADDRESS(new->page_table);
749
    mutex_unlock(&new->lock);
759
    mutex_unlock(&new->lock);
750
 
760
 
751
    if (needs_asid) {
761
    if (needs_asid) {
752
        /*
762
        /*
753
         * Allocation of new ASID was deferred
763
         * Allocation of new ASID was deferred
754
         * until now in order to avoid deadlock.
764
         * until now in order to avoid deadlock.
755
         */
765
         */
756
        asid_t asid;
766
        asid_t asid;
757
       
767
       
758
        asid = asid_get();
768
        asid = asid_get();
759
        mutex_lock_active(&new->lock);
769
        mutex_lock_active(&new->lock);
760
        new->asid = asid;
770
        new->asid = asid;
761
        mutex_unlock(&new->lock);
771
        mutex_unlock(&new->lock);
762
    }
772
    }
763
    spinlock_unlock(&inactive_as_with_asid_lock);
773
    spinlock_unlock(&inactive_as_with_asid_lock);
764
    interrupts_restore(ipl);
774
    interrupts_restore(ipl);
765
   
775
   
766
    /*
776
    /*
767
     * Perform architecture-specific steps.
777
     * Perform architecture-specific steps.
768
     * (e.g. write ASID to hardware register etc.)
778
     * (e.g. write ASID to hardware register etc.)
769
     */
779
     */
770
    as_install_arch(new);
780
    as_install_arch(new);
771
   
781
   
772
    AS = new;
782
    AS = new;
773
}
783
}
774
 
784
 
775
/** Convert address space area flags to page flags.
785
/** Convert address space area flags to page flags.
776
 *
786
 *
777
 * @param aflags Flags of some address space area.
787
 * @param aflags Flags of some address space area.
778
 *
788
 *
779
 * @return Flags to be passed to page_mapping_insert().
789
 * @return Flags to be passed to page_mapping_insert().
780
 */
790
 */
781
int area_flags_to_page_flags(int aflags)
791
int area_flags_to_page_flags(int aflags)
782
{
792
{
783
    int flags;
793
    int flags;
784
 
794
 
785
    flags = PAGE_USER | PAGE_PRESENT;
795
    flags = PAGE_USER | PAGE_PRESENT;
786
   
796
   
787
    if (aflags & AS_AREA_READ)
797
    if (aflags & AS_AREA_READ)
788
        flags |= PAGE_READ;
798
        flags |= PAGE_READ;
789
       
799
       
790
    if (aflags & AS_AREA_WRITE)
800
    if (aflags & AS_AREA_WRITE)
791
        flags |= PAGE_WRITE;
801
        flags |= PAGE_WRITE;
792
   
802
   
793
    if (aflags & AS_AREA_EXEC)
803
    if (aflags & AS_AREA_EXEC)
794
        flags |= PAGE_EXEC;
804
        flags |= PAGE_EXEC;
795
   
805
   
796
    if (aflags & AS_AREA_CACHEABLE)
806
    if (aflags & AS_AREA_CACHEABLE)
797
        flags |= PAGE_CACHEABLE;
807
        flags |= PAGE_CACHEABLE;
798
       
808
       
799
    return flags;
809
    return flags;
800
}
810
}
801
 
811
 
802
/** Compute flags for virtual address translation subsytem.
812
/** Compute flags for virtual address translation subsytem.
803
 *
813
 *
804
 * The address space area must be locked.
814
 * The address space area must be locked.
805
 * Interrupts must be disabled.
815
 * Interrupts must be disabled.
806
 *
816
 *
807
 * @param a Address space area.
817
 * @param a Address space area.
808
 *
818
 *
809
 * @return Flags to be used in page_mapping_insert().
819
 * @return Flags to be used in page_mapping_insert().
810
 */
820
 */
811
int as_area_get_flags(as_area_t *a)
821
int as_area_get_flags(as_area_t *a)
812
{
822
{
813
    return area_flags_to_page_flags(a->flags);
823
    return area_flags_to_page_flags(a->flags);
814
}
824
}
815
 
825
 
816
/** Create page table.
826
/** Create page table.
817
 *
827
 *
818
 * Depending on architecture, create either address space
828
 * Depending on architecture, create either address space
819
 * private or global page table.
829
 * private or global page table.
820
 *
830
 *
821
 * @param flags Flags saying whether the page table is for kernel address space.
831
 * @param flags Flags saying whether the page table is for kernel address space.
822
 *
832
 *
823
 * @return First entry of the page table.
833
 * @return First entry of the page table.
824
 */
834
 */
825
pte_t *page_table_create(int flags)
835
pte_t *page_table_create(int flags)
826
{
836
{
827
        ASSERT(as_operations);
837
        ASSERT(as_operations);
828
        ASSERT(as_operations->page_table_create);
838
        ASSERT(as_operations->page_table_create);
829
 
839
 
830
        return as_operations->page_table_create(flags);
840
        return as_operations->page_table_create(flags);
831
}
841
}
832
 
842
 
833
/** Lock page table.
843
/** Lock page table.
834
 *
844
 *
835
 * This function should be called before any page_mapping_insert(),
845
 * This function should be called before any page_mapping_insert(),
836
 * page_mapping_remove() and page_mapping_find().
846
 * page_mapping_remove() and page_mapping_find().
837
 *
847
 *
838
 * Locking order is such that address space areas must be locked
848
 * Locking order is such that address space areas must be locked
839
 * prior to this call. Address space can be locked prior to this
849
 * prior to this call. Address space can be locked prior to this
840
 * call in which case the lock argument is false.
850
 * call in which case the lock argument is false.
841
 *
851
 *
842
 * @param as Address space.
852
 * @param as Address space.
843
 * @param lock If false, do not attempt to lock as->lock.
853
 * @param lock If false, do not attempt to lock as->lock.
844
 */
854
 */
845
void page_table_lock(as_t *as, bool lock)
855
void page_table_lock(as_t *as, bool lock)
846
{
856
{
847
    ASSERT(as_operations);
857
    ASSERT(as_operations);
848
    ASSERT(as_operations->page_table_lock);
858
    ASSERT(as_operations->page_table_lock);
849
 
859
 
850
    as_operations->page_table_lock(as, lock);
860
    as_operations->page_table_lock(as, lock);
851
}
861
}
852
 
862
 
853
/** Unlock page table.
863
/** Unlock page table.
854
 *
864
 *
855
 * @param as Address space.
865
 * @param as Address space.
856
 * @param unlock If false, do not attempt to unlock as->lock.
866
 * @param unlock If false, do not attempt to unlock as->lock.
857
 */
867
 */
858
void page_table_unlock(as_t *as, bool unlock)
868
void page_table_unlock(as_t *as, bool unlock)
859
{
869
{
860
    ASSERT(as_operations);
870
    ASSERT(as_operations);
861
    ASSERT(as_operations->page_table_unlock);
871
    ASSERT(as_operations->page_table_unlock);
862
 
872
 
863
    as_operations->page_table_unlock(as, unlock);
873
    as_operations->page_table_unlock(as, unlock);
864
}
874
}
865
 
875
 
866
 
876
 
867
/** Find address space area and lock it.
877
/** Find address space area and lock it.
868
 *
878
 *
869
 * The address space must be locked and interrupts must be disabled.
879
 * The address space must be locked and interrupts must be disabled.
870
 *
880
 *
871
 * @param as Address space.
881
 * @param as Address space.
872
 * @param va Virtual address.
882
 * @param va Virtual address.
873
 *
883
 *
874
 * @return Locked address space area containing va on success or NULL on failure.
884
 * @return Locked address space area containing va on success or NULL on failure.
875
 */
885
 */
876
as_area_t *find_area_and_lock(as_t *as, __address va)
886
as_area_t *find_area_and_lock(as_t *as, __address va)
877
{
887
{
878
    as_area_t *a;
888
    as_area_t *a;
879
    btree_node_t *leaf, *lnode;
889
    btree_node_t *leaf, *lnode;
880
    int i;
890
    int i;
881
   
891
   
882
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
892
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
883
    if (a) {
893
    if (a) {
884
        /* va is the base address of an address space area */
894
        /* va is the base address of an address space area */
885
        mutex_lock(&a->lock);
895
        mutex_lock(&a->lock);
886
        return a;
896
        return a;
887
    }
897
    }
888
   
898
   
889
    /*
899
    /*
890
     * Search the leaf node and the righmost record of its left neighbour
900
     * Search the leaf node and the righmost record of its left neighbour
891
     * to find out whether this is a miss or va belongs to an address
901
     * to find out whether this is a miss or va belongs to an address
892
     * space area found there.
902
     * space area found there.
893
     */
903
     */
894
   
904
   
895
    /* First, search the leaf node itself. */
905
    /* First, search the leaf node itself. */
896
    for (i = 0; i < leaf->keys; i++) {
906
    for (i = 0; i < leaf->keys; i++) {
897
        a = (as_area_t *) leaf->value[i];
907
        a = (as_area_t *) leaf->value[i];
898
        mutex_lock(&a->lock);
908
        mutex_lock(&a->lock);
899
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
909
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
900
            return a;
910
            return a;
901
        }
911
        }
902
        mutex_unlock(&a->lock);
912
        mutex_unlock(&a->lock);
903
    }
913
    }
904
 
914
 
905
    /*
915
    /*
906
     * Second, locate the left neighbour and test its last record.
916
     * Second, locate the left neighbour and test its last record.
907
     * Because of its position in the B+tree, it must have base < va.
917
     * Because of its position in the B+tree, it must have base < va.
908
     */
918
     */
909
    if ((lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
919
    if ((lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
910
        a = (as_area_t *) lnode->value[lnode->keys - 1];
920
        a = (as_area_t *) lnode->value[lnode->keys - 1];
911
        mutex_lock(&a->lock);
921
        mutex_lock(&a->lock);
912
        if (va < a->base + a->pages * PAGE_SIZE) {
922
        if (va < a->base + a->pages * PAGE_SIZE) {
913
            return a;
923
            return a;
914
        }
924
        }
915
        mutex_unlock(&a->lock);
925
        mutex_unlock(&a->lock);
916
    }
926
    }
917
 
927
 
918
    return NULL;
928
    return NULL;
919
}
929
}
920
 
930
 
921
/** Check area conflicts with other areas.
931
/** Check area conflicts with other areas.
922
 *
932
 *
923
 * The address space must be locked and interrupts must be disabled.
933
 * The address space must be locked and interrupts must be disabled.
924
 *
934
 *
925
 * @param as Address space.
935
 * @param as Address space.
926
 * @param va Starting virtual address of the area being tested.
936
 * @param va Starting virtual address of the area being tested.
927
 * @param size Size of the area being tested.
937
 * @param size Size of the area being tested.
928
 * @param avoid_area Do not touch this area.
938
 * @param avoid_area Do not touch this area.
929
 *
939
 *
930
 * @return True if there is no conflict, false otherwise.
940
 * @return True if there is no conflict, false otherwise.
931
 */
941
 */
932
bool check_area_conflicts(as_t *as, __address va, size_t size, as_area_t *avoid_area)
942
bool check_area_conflicts(as_t *as, __address va, size_t size, as_area_t *avoid_area)
933
{
943
{
934
    as_area_t *a;
944
    as_area_t *a;
935
    btree_node_t *leaf, *node;
945
    btree_node_t *leaf, *node;
936
    int i;
946
    int i;
937
   
947
   
938
    /*
948
    /*
939
     * We don't want any area to have conflicts with NULL page.
949
     * We don't want any area to have conflicts with NULL page.
940
     */
950
     */
941
    if (overlaps(va, size, NULL, PAGE_SIZE))
951
    if (overlaps(va, size, NULL, PAGE_SIZE))
942
        return false;
952
        return false;
943
   
953
   
944
    /*
954
    /*
945
     * The leaf node is found in O(log n), where n is proportional to
955
     * The leaf node is found in O(log n), where n is proportional to
946
     * the number of address space areas belonging to as.
956
     * the number of address space areas belonging to as.
947
     * The check for conflicts is then attempted on the rightmost
957
     * The check for conflicts is then attempted on the rightmost
948
     * record in the left neighbour, the leftmost record in the right
958
     * record in the left neighbour, the leftmost record in the right
949
     * neighbour and all records in the leaf node itself.
959
     * neighbour and all records in the leaf node itself.
950
     */
960
     */
951
   
961
   
952
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
962
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
953
        if (a != avoid_area)
963
        if (a != avoid_area)
954
            return false;
964
            return false;
955
    }
965
    }
956
   
966
   
957
    /* First, check the two border cases. */
967
    /* First, check the two border cases. */
958
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
968
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
959
        a = (as_area_t *) node->value[node->keys - 1];
969
        a = (as_area_t *) node->value[node->keys - 1];
960
        mutex_lock(&a->lock);
970
        mutex_lock(&a->lock);
961
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
971
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
962
            mutex_unlock(&a->lock);
972
            mutex_unlock(&a->lock);
963
            return false;
973
            return false;
964
        }
974
        }
965
        mutex_unlock(&a->lock);
975
        mutex_unlock(&a->lock);
966
    }
976
    }
967
    if ((node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf))) {
977
    if ((node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf))) {
968
        a = (as_area_t *) node->value[0];
978
        a = (as_area_t *) node->value[0];
969
        mutex_lock(&a->lock);
979
        mutex_lock(&a->lock);
970
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
980
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
971
            mutex_unlock(&a->lock);
981
            mutex_unlock(&a->lock);
972
            return false;
982
            return false;
973
        }
983
        }
974
        mutex_unlock(&a->lock);
984
        mutex_unlock(&a->lock);
975
    }
985
    }
976
   
986
   
977
    /* Second, check the leaf node. */
987
    /* Second, check the leaf node. */
978
    for (i = 0; i < leaf->keys; i++) {
988
    for (i = 0; i < leaf->keys; i++) {
979
        a = (as_area_t *) leaf->value[i];
989
        a = (as_area_t *) leaf->value[i];
980
   
990
   
981
        if (a == avoid_area)
991
        if (a == avoid_area)
982
            continue;
992
            continue;
983
   
993
   
984
        mutex_lock(&a->lock);
994
        mutex_lock(&a->lock);
985
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
995
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
986
            mutex_unlock(&a->lock);
996
            mutex_unlock(&a->lock);
987
            return false;
997
            return false;
988
        }
998
        }
989
        mutex_unlock(&a->lock);
999
        mutex_unlock(&a->lock);
990
    }
1000
    }
991
 
1001
 
992
    /*
1002
    /*
993
     * So far, the area does not conflict with other areas.
1003
     * So far, the area does not conflict with other areas.
994
     * Check if it doesn't conflict with kernel address space.
1004
     * Check if it doesn't conflict with kernel address space.
995
     */  
1005
     */  
996
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1006
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
997
        return !overlaps(va, size,
1007
        return !overlaps(va, size,
998
            KERNEL_ADDRESS_SPACE_START, KERNEL_ADDRESS_SPACE_END-KERNEL_ADDRESS_SPACE_START);
1008
            KERNEL_ADDRESS_SPACE_START, KERNEL_ADDRESS_SPACE_END-KERNEL_ADDRESS_SPACE_START);
999
    }
1009
    }
1000
 
1010
 
1001
    return true;
1011
    return true;
1002
}
1012
}
1003
 
1013
 
1004
/** Return size of the address space area with given base.  */
1014
/** Return size of the address space area with given base.  */
1005
size_t as_get_size(__address base)
1015
size_t as_get_size(__address base)
1006
{
1016
{
1007
    ipl_t ipl;
1017
    ipl_t ipl;
1008
    as_area_t *src_area;
1018
    as_area_t *src_area;
1009
    size_t size;
1019
    size_t size;
1010
 
1020
 
1011
    ipl = interrupts_disable();
1021
    ipl = interrupts_disable();
1012
    src_area = find_area_and_lock(AS, base);
1022
    src_area = find_area_and_lock(AS, base);
1013
    if (src_area){
1023
    if (src_area){
1014
        size = src_area->pages * PAGE_SIZE;
1024
        size = src_area->pages * PAGE_SIZE;
1015
        mutex_unlock(&src_area->lock);
1025
        mutex_unlock(&src_area->lock);
1016
    } else {
1026
    } else {
1017
        size = 0;
1027
        size = 0;
1018
    }
1028
    }
1019
    interrupts_restore(ipl);
1029
    interrupts_restore(ipl);
1020
    return size;
1030
    return size;
1021
}
1031
}
1022
 
1032
 
1023
/** Mark portion of address space area as used.
1033
/** Mark portion of address space area as used.
1024
 *
1034
 *
1025
 * The address space area must be already locked.
1035
 * The address space area must be already locked.
1026
 *
1036
 *
1027
 * @param a Address space area.
1037
 * @param a Address space area.
1028
 * @param page First page to be marked.
1038
 * @param page First page to be marked.
1029
 * @param count Number of page to be marked.
1039
 * @param count Number of page to be marked.
1030
 *
1040
 *
1031
 * @return 0 on failure and 1 on success.
1041
 * @return 0 on failure and 1 on success.
1032
 */
1042
 */
1033
int used_space_insert(as_area_t *a, __address page, count_t count)
1043
int used_space_insert(as_area_t *a, __address page, count_t count)
1034
{
1044
{
1035
    btree_node_t *leaf, *node;
1045
    btree_node_t *leaf, *node;
1036
    count_t pages;
1046
    count_t pages;
1037
    int i;
1047
    int i;
1038
 
1048
 
1039
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1049
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1040
    ASSERT(count);
1050
    ASSERT(count);
1041
 
1051
 
1042
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1052
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1043
    if (pages) {
1053
    if (pages) {
1044
        /*
1054
        /*
1045
         * We hit the beginning of some used space.
1055
         * We hit the beginning of some used space.
1046
         */
1056
         */
1047
        return 0;
1057
        return 0;
1048
    }
1058
    }
1049
 
1059
 
1050
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1060
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1051
    if (node) {
1061
    if (node) {
1052
        __address left_pg = node->key[node->keys - 1], right_pg = leaf->key[0];
1062
        __address left_pg = node->key[node->keys - 1], right_pg = leaf->key[0];
1053
        count_t left_cnt = (count_t) node->value[node->keys - 1], right_cnt = (count_t) leaf->value[0];
1063
        count_t left_cnt = (count_t) node->value[node->keys - 1], right_cnt = (count_t) leaf->value[0];
1054
       
1064
       
1055
        /*
1065
        /*
1056
         * Examine the possibility that the interval fits
1066
         * Examine the possibility that the interval fits
1057
         * somewhere between the rightmost interval of
1067
         * somewhere between the rightmost interval of
1058
         * the left neigbour and the first interval of the leaf.
1068
         * the left neigbour and the first interval of the leaf.
1059
         */
1069
         */
1060
         
1070
         
1061
        if (page >= right_pg) {
1071
        if (page >= right_pg) {
1062
            /* Do nothing. */
1072
            /* Do nothing. */
1063
        } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1073
        } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1064
            /* The interval intersects with the left interval. */
1074
            /* The interval intersects with the left interval. */
1065
            return 0;
1075
            return 0;
1066
        } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1076
        } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1067
            /* The interval intersects with the right interval. */
1077
            /* The interval intersects with the right interval. */
1068
            return 0;          
1078
            return 0;          
1069
        } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1079
        } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1070
            /* The interval can be added by merging the two already present intervals. */
1080
            /* The interval can be added by merging the two already present intervals. */
1071
            node->value[node->keys - 1] += count + right_cnt;
1081
            node->value[node->keys - 1] += count + right_cnt;
1072
            btree_remove(&a->used_space, right_pg, leaf);
1082
            btree_remove(&a->used_space, right_pg, leaf);
1073
            return 1;
1083
            return 1;
1074
        } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1084
        } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1075
            /* The interval can be added by simply growing the left interval. */
1085
            /* The interval can be added by simply growing the left interval. */
1076
            node->value[node->keys - 1] += count;
1086
            node->value[node->keys - 1] += count;
1077
            return 1;
1087
            return 1;
1078
        } else if (page + count*PAGE_SIZE == right_pg) {
1088
        } else if (page + count*PAGE_SIZE == right_pg) {
1079
            /*
1089
            /*
1080
             * The interval can be addded by simply moving base of the right
1090
             * The interval can be addded by simply moving base of the right
1081
             * interval down and increasing its size accordingly.
1091
             * interval down and increasing its size accordingly.
1082
             */
1092
             */
1083
            leaf->value[0] += count;
1093
            leaf->value[0] += count;
1084
            leaf->key[0] = page;
1094
            leaf->key[0] = page;
1085
            return 1;
1095
            return 1;
1086
        } else {
1096
        } else {
1087
            /*
1097
            /*
1088
             * The interval is between both neigbouring intervals,
1098
             * The interval is between both neigbouring intervals,
1089
             * but cannot be merged with any of them.
1099
             * but cannot be merged with any of them.
1090
             */
1100
             */
1091
            btree_insert(&a->used_space, page, (void *) count, leaf);
1101
            btree_insert(&a->used_space, page, (void *) count, leaf);
1092
            return 1;
1102
            return 1;
1093
        }
1103
        }
1094
    } else if (page < leaf->key[0]) {
1104
    } else if (page < leaf->key[0]) {
1095
        __address right_pg = leaf->key[0];
1105
        __address right_pg = leaf->key[0];
1096
        count_t right_cnt = (count_t) leaf->value[0];
1106
        count_t right_cnt = (count_t) leaf->value[0];
1097
   
1107
   
1098
        /*
1108
        /*
1099
         * Investigate the border case in which the left neighbour does not
1109
         * Investigate the border case in which the left neighbour does not
1100
         * exist but the interval fits from the left.
1110
         * exist but the interval fits from the left.
1101
         */
1111
         */
1102
         
1112
         
1103
        if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1113
        if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1104
            /* The interval intersects with the right interval. */
1114
            /* The interval intersects with the right interval. */
1105
            return 0;
1115
            return 0;
1106
        } else if (page + count*PAGE_SIZE == right_pg) {
1116
        } else if (page + count*PAGE_SIZE == right_pg) {
1107
            /*
1117
            /*
1108
             * The interval can be added by moving the base of the right interval down
1118
             * The interval can be added by moving the base of the right interval down
1109
             * and increasing its size accordingly.
1119
             * and increasing its size accordingly.
1110
             */
1120
             */
1111
            leaf->key[0] = page;
1121
            leaf->key[0] = page;
1112
            leaf->value[0] += count;
1122
            leaf->value[0] += count;
1113
            return 1;
1123
            return 1;
1114
        } else {
1124
        } else {
1115
            /*
1125
            /*
1116
             * The interval doesn't adjoin with the right interval.
1126
             * The interval doesn't adjoin with the right interval.
1117
             * It must be added individually.
1127
             * It must be added individually.
1118
             */
1128
             */
1119
            btree_insert(&a->used_space, page, (void *) count, leaf);
1129
            btree_insert(&a->used_space, page, (void *) count, leaf);
1120
            return 1;
1130
            return 1;
1121
        }
1131
        }
1122
    }
1132
    }
1123
 
1133
 
1124
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1134
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1125
    if (node) {
1135
    if (node) {
1126
        __address left_pg = leaf->key[leaf->keys - 1], right_pg = node->key[0];
1136
        __address left_pg = leaf->key[leaf->keys - 1], right_pg = node->key[0];
1127
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1], right_cnt = (count_t) node->value[0];
1137
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1], right_cnt = (count_t) node->value[0];
1128
       
1138
       
1129
        /*
1139
        /*
1130
         * Examine the possibility that the interval fits
1140
         * Examine the possibility that the interval fits
1131
         * somewhere between the leftmost interval of
1141
         * somewhere between the leftmost interval of
1132
         * the right neigbour and the last interval of the leaf.
1142
         * the right neigbour and the last interval of the leaf.
1133
         */
1143
         */
1134
 
1144
 
1135
        if (page < left_pg) {
1145
        if (page < left_pg) {
1136
            /* Do nothing. */
1146
            /* Do nothing. */
1137
        } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1147
        } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1138
            /* The interval intersects with the left interval. */
1148
            /* The interval intersects with the left interval. */
1139
            return 0;
1149
            return 0;
1140
        } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1150
        } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1141
            /* The interval intersects with the right interval. */
1151
            /* The interval intersects with the right interval. */
1142
            return 0;          
1152
            return 0;          
1143
        } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1153
        } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1144
            /* The interval can be added by merging the two already present intervals. */
1154
            /* The interval can be added by merging the two already present intervals. */
1145
            leaf->value[leaf->keys - 1] += count + right_cnt;
1155
            leaf->value[leaf->keys - 1] += count + right_cnt;
1146
            btree_remove(&a->used_space, right_pg, node);
1156
            btree_remove(&a->used_space, right_pg, node);
1147
            return 1;
1157
            return 1;
1148
        } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1158
        } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1149
            /* The interval can be added by simply growing the left interval. */
1159
            /* The interval can be added by simply growing the left interval. */
1150
            leaf->value[leaf->keys - 1] +=  count;
1160
            leaf->value[leaf->keys - 1] +=  count;
1151
            return 1;
1161
            return 1;
1152
        } else if (page + count*PAGE_SIZE == right_pg) {
1162
        } else if (page + count*PAGE_SIZE == right_pg) {
1153
            /*
1163
            /*
1154
             * The interval can be addded by simply moving base of the right
1164
             * The interval can be addded by simply moving base of the right
1155
             * interval down and increasing its size accordingly.
1165
             * interval down and increasing its size accordingly.
1156
             */
1166
             */
1157
            node->value[0] += count;
1167
            node->value[0] += count;
1158
            node->key[0] = page;
1168
            node->key[0] = page;
1159
            return 1;
1169
            return 1;
1160
        } else {
1170
        } else {
1161
            /*
1171
            /*
1162
             * The interval is between both neigbouring intervals,
1172
             * The interval is between both neigbouring intervals,
1163
             * but cannot be merged with any of them.
1173
             * but cannot be merged with any of them.
1164
             */
1174
             */
1165
            btree_insert(&a->used_space, page, (void *) count, leaf);
1175
            btree_insert(&a->used_space, page, (void *) count, leaf);
1166
            return 1;
1176
            return 1;
1167
        }
1177
        }
1168
    } else if (page >= leaf->key[leaf->keys - 1]) {
1178
    } else if (page >= leaf->key[leaf->keys - 1]) {
1169
        __address left_pg = leaf->key[leaf->keys - 1];
1179
        __address left_pg = leaf->key[leaf->keys - 1];
1170
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1180
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1171
   
1181
   
1172
        /*
1182
        /*
1173
         * Investigate the border case in which the right neighbour does not
1183
         * Investigate the border case in which the right neighbour does not
1174
         * exist but the interval fits from the right.
1184
         * exist but the interval fits from the right.
1175
         */
1185
         */
1176
         
1186
         
1177
        if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1187
        if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1178
            /* The interval intersects with the left interval. */
1188
            /* The interval intersects with the left interval. */
1179
            return 0;
1189
            return 0;
1180
        } else if (left_pg + left_cnt*PAGE_SIZE == page) {
1190
        } else if (left_pg + left_cnt*PAGE_SIZE == page) {
1181
            /* The interval can be added by growing the left interval. */
1191
            /* The interval can be added by growing the left interval. */
1182
            leaf->value[leaf->keys - 1] += count;
1192
            leaf->value[leaf->keys - 1] += count;
1183
            return 1;
1193
            return 1;
1184
        } else {
1194
        } else {
1185
            /*
1195
            /*
1186
             * The interval doesn't adjoin with the left interval.
1196
             * The interval doesn't adjoin with the left interval.
1187
             * It must be added individually.
1197
             * It must be added individually.
1188
             */
1198
             */
1189
            btree_insert(&a->used_space, page, (void *) count, leaf);
1199
            btree_insert(&a->used_space, page, (void *) count, leaf);
1190
            return 1;
1200
            return 1;
1191
        }
1201
        }
1192
    }
1202
    }
1193
   
1203
   
1194
    /*
1204
    /*
1195
     * Note that if the algorithm made it thus far, the interval can fit only
1205
     * Note that if the algorithm made it thus far, the interval can fit only
1196
     * between two other intervals of the leaf. The two border cases were already
1206
     * between two other intervals of the leaf. The two border cases were already
1197
     * resolved.
1207
     * resolved.
1198
     */
1208
     */
1199
    for (i = 1; i < leaf->keys; i++) {
1209
    for (i = 1; i < leaf->keys; i++) {
1200
        if (page < leaf->key[i]) {
1210
        if (page < leaf->key[i]) {
1201
            __address left_pg = leaf->key[i - 1], right_pg = leaf->key[i];
1211
            __address left_pg = leaf->key[i - 1], right_pg = leaf->key[i];
1202
            count_t left_cnt = (count_t) leaf->value[i - 1], right_cnt = (count_t) leaf->value[i];
1212
            count_t left_cnt = (count_t) leaf->value[i - 1], right_cnt = (count_t) leaf->value[i];
1203
 
1213
 
1204
            /*
1214
            /*
1205
             * The interval fits between left_pg and right_pg.
1215
             * The interval fits between left_pg and right_pg.
1206
             */
1216
             */
1207
 
1217
 
1208
            if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1218
            if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1209
                /* The interval intersects with the left interval. */
1219
                /* The interval intersects with the left interval. */
1210
                return 0;
1220
                return 0;
1211
            } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1221
            } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1212
                /* The interval intersects with the right interval. */
1222
                /* The interval intersects with the right interval. */
1213
                return 0;          
1223
                return 0;          
1214
            } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1224
            } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1215
                /* The interval can be added by merging the two already present intervals. */
1225
                /* The interval can be added by merging the two already present intervals. */
1216
                leaf->value[i - 1] += count + right_cnt;
1226
                leaf->value[i - 1] += count + right_cnt;
1217
                btree_remove(&a->used_space, right_pg, leaf);
1227
                btree_remove(&a->used_space, right_pg, leaf);
1218
                return 1;
1228
                return 1;
1219
            } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1229
            } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1220
                /* The interval can be added by simply growing the left interval. */
1230
                /* The interval can be added by simply growing the left interval. */
1221
                leaf->value[i - 1] += count;
1231
                leaf->value[i - 1] += count;
1222
                return 1;
1232
                return 1;
1223
            } else if (page + count*PAGE_SIZE == right_pg) {
1233
            } else if (page + count*PAGE_SIZE == right_pg) {
1224
                /*
1234
                /*
1225
                     * The interval can be addded by simply moving base of the right
1235
                     * The interval can be addded by simply moving base of the right
1226
                 * interval down and increasing its size accordingly.
1236
                 * interval down and increasing its size accordingly.
1227
                 */
1237
                 */
1228
                leaf->value[i] += count;
1238
                leaf->value[i] += count;
1229
                leaf->key[i] = page;
1239
                leaf->key[i] = page;
1230
                return 1;
1240
                return 1;
1231
            } else {
1241
            } else {
1232
                /*
1242
                /*
1233
                 * The interval is between both neigbouring intervals,
1243
                 * The interval is between both neigbouring intervals,
1234
                 * but cannot be merged with any of them.
1244
                 * but cannot be merged with any of them.
1235
                 */
1245
                 */
1236
                btree_insert(&a->used_space, page, (void *) count, leaf);
1246
                btree_insert(&a->used_space, page, (void *) count, leaf);
1237
                return 1;
1247
                return 1;
1238
            }
1248
            }
1239
        }
1249
        }
1240
    }
1250
    }
1241
 
1251
 
1242
    panic("Inconsistency detected while adding %d pages of used space at %P.\n", count, page);
1252
    panic("Inconsistency detected while adding %d pages of used space at %P.\n", count, page);
1243
}
1253
}
1244
 
1254
 
1245
/** Mark portion of address space area as unused.
1255
/** Mark portion of address space area as unused.
1246
 *
1256
 *
1247
 * The address space area must be already locked.
1257
 * The address space area must be already locked.
1248
 *
1258
 *
1249
 * @param a Address space area.
1259
 * @param a Address space area.
1250
 * @param page First page to be marked.
1260
 * @param page First page to be marked.
1251
 * @param count Number of page to be marked.
1261
 * @param count Number of page to be marked.
1252
 *
1262
 *
1253
 * @return 0 on failure and 1 on success.
1263
 * @return 0 on failure and 1 on success.
1254
 */
1264
 */
1255
int used_space_remove(as_area_t *a, __address page, count_t count)
1265
int used_space_remove(as_area_t *a, __address page, count_t count)
1256
{
1266
{
1257
    btree_node_t *leaf, *node;
1267
    btree_node_t *leaf, *node;
1258
    count_t pages;
1268
    count_t pages;
1259
    int i;
1269
    int i;
1260
 
1270
 
1261
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1271
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1262
    ASSERT(count);
1272
    ASSERT(count);
1263
 
1273
 
1264
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1274
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1265
    if (pages) {
1275
    if (pages) {
1266
        /*
1276
        /*
1267
         * We are lucky, page is the beginning of some interval.
1277
         * We are lucky, page is the beginning of some interval.
1268
         */
1278
         */
1269
        if (count > pages) {
1279
        if (count > pages) {
1270
            return 0;
1280
            return 0;
1271
        } else if (count == pages) {
1281
        } else if (count == pages) {
1272
            btree_remove(&a->used_space, page, leaf);
1282
            btree_remove(&a->used_space, page, leaf);
1273
            return 1;
1283
            return 1;
1274
        } else {
1284
        } else {
1275
            /*
1285
            /*
1276
             * Find the respective interval.
1286
             * Find the respective interval.
1277
             * Decrease its size and relocate its start address.
1287
             * Decrease its size and relocate its start address.
1278
             */
1288
             */
1279
            for (i = 0; i < leaf->keys; i++) {
1289
            for (i = 0; i < leaf->keys; i++) {
1280
                if (leaf->key[i] == page) {
1290
                if (leaf->key[i] == page) {
1281
                    leaf->key[i] += count*PAGE_SIZE;
1291
                    leaf->key[i] += count*PAGE_SIZE;
1282
                    leaf->value[i] -= count;
1292
                    leaf->value[i] -= count;
1283
                    return 1;
1293
                    return 1;
1284
                }
1294
                }
1285
            }
1295
            }
1286
            goto error;
1296
            goto error;
1287
        }
1297
        }
1288
    }
1298
    }
1289
 
1299
 
1290
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1300
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1291
    if (node && page < leaf->key[0]) {
1301
    if (node && page < leaf->key[0]) {
1292
        __address left_pg = node->key[node->keys - 1];
1302
        __address left_pg = node->key[node->keys - 1];
1293
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1303
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1294
 
1304
 
1295
        if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1305
        if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1296
            if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1306
            if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1297
                /*
1307
                /*
1298
                 * The interval is contained in the rightmost interval
1308
                 * The interval is contained in the rightmost interval
1299
                 * of the left neighbour and can be removed by
1309
                 * of the left neighbour and can be removed by
1300
                 * updating the size of the bigger interval.
1310
                 * updating the size of the bigger interval.
1301
                 */
1311
                 */
1302
                node->value[node->keys - 1] -= count;
1312
                node->value[node->keys - 1] -= count;
1303
                return 1;
1313
                return 1;
1304
            } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1314
            } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1305
                count_t new_cnt;
1315
                count_t new_cnt;
1306
               
1316
               
1307
                /*
1317
                /*
1308
                 * The interval is contained in the rightmost interval
1318
                 * The interval is contained in the rightmost interval
1309
                 * of the left neighbour but its removal requires
1319
                 * of the left neighbour but its removal requires
1310
                 * both updating the size of the original interval and
1320
                 * both updating the size of the original interval and
1311
                 * also inserting a new interval.
1321
                 * also inserting a new interval.
1312
                 */
1322
                 */
1313
                new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1323
                new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1314
                node->value[node->keys - 1] -= count + new_cnt;
1324
                node->value[node->keys - 1] -= count + new_cnt;
1315
                btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1325
                btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1316
                return 1;
1326
                return 1;
1317
            }
1327
            }
1318
        }
1328
        }
1319
        return 0;
1329
        return 0;
1320
    } else if (page < leaf->key[0]) {
1330
    } else if (page < leaf->key[0]) {
1321
        return 0;
1331
        return 0;
1322
    }
1332
    }
1323
   
1333
   
1324
    if (page > leaf->key[leaf->keys - 1]) {
1334
    if (page > leaf->key[leaf->keys - 1]) {
1325
        __address left_pg = leaf->key[leaf->keys - 1];
1335
        __address left_pg = leaf->key[leaf->keys - 1];
1326
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1336
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1327
 
1337
 
1328
        if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1338
        if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1329
            if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1339
            if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1330
                /*
1340
                /*
1331
                 * The interval is contained in the rightmost interval
1341
                 * The interval is contained in the rightmost interval
1332
                 * of the leaf and can be removed by updating the size
1342
                 * of the leaf and can be removed by updating the size
1333
                 * of the bigger interval.
1343
                 * of the bigger interval.
1334
                 */
1344
                 */
1335
                leaf->value[leaf->keys - 1] -= count;
1345
                leaf->value[leaf->keys - 1] -= count;
1336
                return 1;
1346
                return 1;
1337
            } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1347
            } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1338
                count_t new_cnt;
1348
                count_t new_cnt;
1339
               
1349
               
1340
                /*
1350
                /*
1341
                 * The interval is contained in the rightmost interval
1351
                 * The interval is contained in the rightmost interval
1342
                 * of the leaf but its removal requires both updating
1352
                 * of the leaf but its removal requires both updating
1343
                 * the size of the original interval and
1353
                 * the size of the original interval and
1344
                 * also inserting a new interval.
1354
                 * also inserting a new interval.
1345
                 */
1355
                 */
1346
                new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1356
                new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1347
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1357
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1348
                btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1358
                btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1349
                return 1;
1359
                return 1;
1350
            }
1360
            }
1351
        }
1361
        }
1352
        return 0;
1362
        return 0;
1353
    }  
1363
    }  
1354
   
1364
   
1355
    /*
1365
    /*
1356
     * The border cases have been already resolved.
1366
     * The border cases have been already resolved.
1357
     * Now the interval can be only between intervals of the leaf.
1367
     * Now the interval can be only between intervals of the leaf.
1358
     */
1368
     */
1359
    for (i = 1; i < leaf->keys - 1; i++) {
1369
    for (i = 1; i < leaf->keys - 1; i++) {
1360
        if (page < leaf->key[i]) {
1370
        if (page < leaf->key[i]) {
1361
            __address left_pg = leaf->key[i - 1];
1371
            __address left_pg = leaf->key[i - 1];
1362
            count_t left_cnt = (count_t) leaf->value[i - 1];
1372
            count_t left_cnt = (count_t) leaf->value[i - 1];
1363
 
1373
 
1364
            /*
1374
            /*
1365
             * Now the interval is between intervals corresponding to (i - 1) and i.
1375
             * Now the interval is between intervals corresponding to (i - 1) and i.
1366
             */
1376
             */
1367
            if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1377
            if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1368
                if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1378
                if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1369
                    /*
1379
                    /*
1370
                    * The interval is contained in the interval (i - 1)
1380
                    * The interval is contained in the interval (i - 1)
1371
                     * of the leaf and can be removed by updating the size
1381
                     * of the leaf and can be removed by updating the size
1372
                     * of the bigger interval.
1382
                     * of the bigger interval.
1373
                     */
1383
                     */
1374
                    leaf->value[i - 1] -= count;
1384
                    leaf->value[i - 1] -= count;
1375
                    return 1;
1385
                    return 1;
1376
                } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1386
                } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1377
                    count_t new_cnt;
1387
                    count_t new_cnt;
1378
               
1388
               
1379
                    /*
1389
                    /*
1380
                     * The interval is contained in the interval (i - 1)
1390
                     * The interval is contained in the interval (i - 1)
1381
                     * of the leaf but its removal requires both updating
1391
                     * of the leaf but its removal requires both updating
1382
                     * the size of the original interval and
1392
                     * the size of the original interval and
1383
                     * also inserting a new interval.
1393
                     * also inserting a new interval.
1384
                     */
1394
                     */
1385
                    new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1395
                    new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1386
                    leaf->value[i - 1] -= count + new_cnt;
1396
                    leaf->value[i - 1] -= count + new_cnt;
1387
                    btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1397
                    btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1388
                    return 1;
1398
                    return 1;
1389
                }
1399
                }
1390
            }
1400
            }
1391
            return 0;
1401
            return 0;
1392
        }
1402
        }
1393
    }
1403
    }
1394
 
1404
 
1395
error:
1405
error:
1396
    panic("Inconsistency detected while removing %d pages of used space from %P.\n", count, page);
1406
    panic("Inconsistency detected while removing %d pages of used space from %P.\n", count, page);
1397
}
1407
}
1398
 
1408
 
1399
/** Remove reference to address space area share info.
1409
/** Remove reference to address space area share info.
1400
 *
1410
 *
1401
 * If the reference count drops to 0, the sh_info is deallocated.
1411
 * If the reference count drops to 0, the sh_info is deallocated.
1402
 *
1412
 *
1403
 * @param sh_info Pointer to address space area share info.
1413
 * @param sh_info Pointer to address space area share info.
1404
 */
1414
 */
1405
void sh_info_remove_reference(share_info_t *sh_info)
1415
void sh_info_remove_reference(share_info_t *sh_info)
1406
{
1416
{
1407
    bool dealloc = false;
1417
    bool dealloc = false;
1408
 
1418
 
1409
    mutex_lock(&sh_info->lock);
1419
    mutex_lock(&sh_info->lock);
1410
    ASSERT(sh_info->refcount);
1420
    ASSERT(sh_info->refcount);
1411
    if (--sh_info->refcount == 0) {
1421
    if (--sh_info->refcount == 0) {
1412
        dealloc = true;
1422
        dealloc = true;
1413
        bool cond;
1423
        bool cond;
1414
       
1424
       
1415
        /*
1425
        /*
1416
         * Now walk carefully the pagemap B+tree and free/remove
1426
         * Now walk carefully the pagemap B+tree and free/remove
1417
         * reference from all frames found there.
1427
         * reference from all frames found there.
1418
         */
1428
         */
1419
        for (cond = true; cond;) {
1429
        for (cond = true; cond;) {
1420
            btree_node_t *node;
1430
            btree_node_t *node;
1421
           
1431
           
1422
            ASSERT(!list_empty(&sh_info->pagemap.leaf_head));
1432
            ASSERT(!list_empty(&sh_info->pagemap.leaf_head));
1423
            node = list_get_instance(sh_info->pagemap.leaf_head.next, btree_node_t, leaf_link);
1433
            node = list_get_instance(sh_info->pagemap.leaf_head.next, btree_node_t, leaf_link);
1424
            if ((cond = node->keys)) {
1434
            if ((cond = node->keys)) {
1425
                frame_free(ADDR2PFN((__address) node->value[0]));
1435
                frame_free(ADDR2PFN((__address) node->value[0]));
1426
                btree_remove(&sh_info->pagemap, node->key[0], node);
1436
                btree_remove(&sh_info->pagemap, node->key[0], node);
1427
            }
1437
            }
1428
        }
1438
        }
1429
       
1439
       
1430
    }
1440
    }
1431
    mutex_unlock(&sh_info->lock);
1441
    mutex_unlock(&sh_info->lock);
1432
   
1442
   
1433
    if (dealloc) {
1443
    if (dealloc) {
1434
        btree_destroy(&sh_info->pagemap);
1444
        btree_destroy(&sh_info->pagemap);
1435
        free(sh_info);
1445
        free(sh_info);
1436
    }
1446
    }
1437
}
1447
}
1438
 
1448
 
1439
/*
1449
/*
1440
 * Address space related syscalls.
1450
 * Address space related syscalls.
1441
 */
1451
 */
1442
 
1452
 
1443
/** Wrapper for as_area_create(). */
1453
/** Wrapper for as_area_create(). */
1444
__native sys_as_area_create(__address address, size_t size, int flags)
1454
__native sys_as_area_create(__address address, size_t size, int flags)
1445
{
1455
{
1446
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address, AS_AREA_ATTR_NONE, &anon_backend, NULL))
1456
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address, AS_AREA_ATTR_NONE, &anon_backend, NULL))
1447
        return (__native) address;
1457
        return (__native) address;
1448
    else
1458
    else
1449
        return (__native) -1;
1459
        return (__native) -1;
1450
}
1460
}
1451
 
1461
 
1452
/** Wrapper for as_area_resize. */
1462
/** Wrapper for as_area_resize. */
1453
__native sys_as_area_resize(__address address, size_t size, int flags)
1463
__native sys_as_area_resize(__address address, size_t size, int flags)
1454
{
1464
{
1455
    return (__native) as_area_resize(AS, address, size, 0);
1465
    return (__native) as_area_resize(AS, address, size, 0);
1456
}
1466
}
1457
 
1467
 
1458
/** Wrapper for as_area_destroy. */
1468
/** Wrapper for as_area_destroy. */
1459
__native sys_as_area_destroy(__address address)
1469
__native sys_as_area_destroy(__address address)
1460
{
1470
{
1461
    return (__native) as_area_destroy(AS, address);
1471
    return (__native) as_area_destroy(AS, address);
1462
}
1472
}
1463
 
1473