Subversion Repositories HelenOS-historic

Rev

Rev 1417 | Rev 1424 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 1417 Rev 1423
1
/*
1
/*
2
 * Copyright (C) 2001-2006 Jakub Jermar
2
 * Copyright (C) 2001-2006 Jakub Jermar
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/**
29
/**
30
 * @file    as.c
30
 * @file    as.c
31
 * @brief   Address space related functions.
31
 * @brief   Address space related functions.
32
 *
32
 *
33
 * This file contains address space manipulation functions.
33
 * This file contains address space manipulation functions.
34
 * Roughly speaking, this is a higher-level client of
34
 * Roughly speaking, this is a higher-level client of
35
 * Virtual Address Translation (VAT) subsystem.
35
 * Virtual Address Translation (VAT) subsystem.
36
 *
36
 *
37
 * Functionality provided by this file allows one to
37
 * Functionality provided by this file allows one to
38
 * create address space and create, resize and share
38
 * create address space and create, resize and share
39
 * address space areas.
39
 * address space areas.
40
 *
40
 *
41
 * @see page.c
41
 * @see page.c
42
 *
42
 *
43
 */
43
 */
44
 
44
 
45
#include <mm/as.h>
45
#include <mm/as.h>
46
#include <arch/mm/as.h>
46
#include <arch/mm/as.h>
47
#include <mm/page.h>
47
#include <mm/page.h>
48
#include <mm/frame.h>
48
#include <mm/frame.h>
49
#include <mm/slab.h>
49
#include <mm/slab.h>
50
#include <mm/tlb.h>
50
#include <mm/tlb.h>
51
#include <arch/mm/page.h>
51
#include <arch/mm/page.h>
52
#include <genarch/mm/page_pt.h>
52
#include <genarch/mm/page_pt.h>
53
#include <genarch/mm/page_ht.h>
53
#include <genarch/mm/page_ht.h>
54
#include <mm/asid.h>
54
#include <mm/asid.h>
55
#include <arch/mm/asid.h>
55
#include <arch/mm/asid.h>
56
#include <synch/spinlock.h>
56
#include <synch/spinlock.h>
57
#include <synch/mutex.h>
57
#include <synch/mutex.h>
58
#include <adt/list.h>
58
#include <adt/list.h>
59
#include <adt/btree.h>
59
#include <adt/btree.h>
60
#include <proc/task.h>
60
#include <proc/task.h>
61
#include <proc/thread.h>
61
#include <proc/thread.h>
62
#include <arch/asm.h>
62
#include <arch/asm.h>
63
#include <panic.h>
63
#include <panic.h>
64
#include <debug.h>
64
#include <debug.h>
65
#include <print.h>
65
#include <print.h>
66
#include <memstr.h>
66
#include <memstr.h>
67
#include <macros.h>
67
#include <macros.h>
68
#include <arch.h>
68
#include <arch.h>
69
#include <errno.h>
69
#include <errno.h>
70
#include <config.h>
70
#include <config.h>
71
#include <align.h>
71
#include <align.h>
72
#include <arch/types.h>
72
#include <arch/types.h>
73
#include <typedefs.h>
73
#include <typedefs.h>
74
#include <syscall/copy.h>
74
#include <syscall/copy.h>
75
#include <arch/interrupt.h>
75
#include <arch/interrupt.h>
76
 
76
 
77
/** This structure contains information associated with the shared address space area. */
77
/** This structure contains information associated with the shared address space area. */
78
struct share_info {
78
struct share_info {
79
    mutex_t lock;       /**< This lock must be acquired only when the as_area lock is held. */
79
    mutex_t lock;       /**< This lock must be acquired only when the as_area lock is held. */
80
    count_t refcount;   /**< This structure can be deallocated if refcount drops to 0. */
80
    count_t refcount;   /**< This structure can be deallocated if refcount drops to 0. */
81
    btree_t pagemap;    /**< B+tree containing complete map of anonymous pages of the shared area. */
81
    btree_t pagemap;    /**< B+tree containing complete map of anonymous pages of the shared area. */
82
};
82
};
83
 
83
 
84
as_operations_t *as_operations = NULL;
84
as_operations_t *as_operations = NULL;
85
 
85
 
86
/** This lock protects inactive_as_with_asid_head list. It must be acquired before as_t mutex. */
86
/** This lock protects inactive_as_with_asid_head list. It must be acquired before as_t mutex. */
87
SPINLOCK_INITIALIZE(inactive_as_with_asid_lock);
87
SPINLOCK_INITIALIZE(inactive_as_with_asid_lock);
88
 
88
 
89
/**
89
/**
90
 * This list contains address spaces that are not active on any
90
 * This list contains address spaces that are not active on any
91
 * processor and that have valid ASID.
91
 * processor and that have valid ASID.
92
 */
92
 */
93
LIST_INITIALIZE(inactive_as_with_asid_head);
93
LIST_INITIALIZE(inactive_as_with_asid_head);
94
 
94
 
95
/** Kernel address space. */
95
/** Kernel address space. */
96
as_t *AS_KERNEL = NULL;
96
as_t *AS_KERNEL = NULL;
97
 
97
 
98
static int area_flags_to_page_flags(int aflags);
98
static int area_flags_to_page_flags(int aflags);
99
static as_area_t *find_area_and_lock(as_t *as, __address va);
99
static as_area_t *find_area_and_lock(as_t *as, __address va);
100
static bool check_area_conflicts(as_t *as, __address va, size_t size, as_area_t *avoid_area);
100
static bool check_area_conflicts(as_t *as, __address va, size_t size, as_area_t *avoid_area);
101
static void sh_info_remove_reference(share_info_t *sh_info);
101
static void sh_info_remove_reference(share_info_t *sh_info);
102
 
102
 
103
/** Initialize address space subsystem. */
103
/** Initialize address space subsystem. */
104
void as_init(void)
104
void as_init(void)
105
{
105
{
106
    as_arch_init();
106
    as_arch_init();
107
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
107
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
108
    if (!AS_KERNEL)
108
    if (!AS_KERNEL)
109
        panic("can't create kernel address space\n");
109
        panic("can't create kernel address space\n");
110
   
110
   
111
}
111
}
112
 
112
 
113
/** Create address space.
113
/** Create address space.
114
 *
114
 *
115
 * @param flags Flags that influence way in wich the address space is created.
115
 * @param flags Flags that influence way in wich the address space is created.
116
 */
116
 */
117
as_t *as_create(int flags)
117
as_t *as_create(int flags)
118
{
118
{
119
    as_t *as;
119
    as_t *as;
120
 
120
 
121
    as = (as_t *) malloc(sizeof(as_t), 0);
121
    as = (as_t *) malloc(sizeof(as_t), 0);
122
    link_initialize(&as->inactive_as_with_asid_link);
122
    link_initialize(&as->inactive_as_with_asid_link);
123
    mutex_initialize(&as->lock);
123
    mutex_initialize(&as->lock);
124
    btree_create(&as->as_area_btree);
124
    btree_create(&as->as_area_btree);
125
   
125
   
126
    if (flags & FLAG_AS_KERNEL)
126
    if (flags & FLAG_AS_KERNEL)
127
        as->asid = ASID_KERNEL;
127
        as->asid = ASID_KERNEL;
128
    else
128
    else
129
        as->asid = ASID_INVALID;
129
        as->asid = ASID_INVALID;
130
   
130
   
131
    as->cpu_refcount = 0;
131
    as->cpu_refcount = 0;
132
    as->page_table = page_table_create(flags);
132
    as->page_table = page_table_create(flags);
133
 
133
 
134
    return as;
134
    return as;
135
}
135
}
136
 
136
 
137
/** Free Adress space */
137
/** Free Adress space */
138
void as_free(as_t *as)
138
void as_free(as_t *as)
139
{
139
{
140
    ASSERT(as->cpu_refcount == 0);
140
    ASSERT(as->cpu_refcount == 0);
141
 
141
 
142
    /* TODO: free as_areas and other resources held by as */
142
    /* TODO: free as_areas and other resources held by as */
143
    /* TODO: free page table */
143
    /* TODO: free page table */
144
    free(as);
144
    free(as);
145
}
145
}
146
 
146
 
147
/** Create address space area of common attributes.
147
/** Create address space area of common attributes.
148
 *
148
 *
149
 * The created address space area is added to the target address space.
149
 * The created address space area is added to the target address space.
150
 *
150
 *
151
 * @param as Target address space.
151
 * @param as Target address space.
152
 * @param flags Flags of the area memory.
152
 * @param flags Flags of the area memory.
153
 * @param size Size of area.
153
 * @param size Size of area.
154
 * @param base Base address of area.
154
 * @param base Base address of area.
155
 * @param attrs Attributes of the area.
155
 * @param attrs Attributes of the area.
156
 * @param backend Address space area backend. NULL if no backend is used.
156
 * @param backend Address space area backend. NULL if no backend is used.
157
 * @param backend_data NULL or a pointer to an array holding two void *.
157
 * @param backend_data NULL or a pointer to an array holding two void *.
158
 *
158
 *
159
 * @return Address space area on success or NULL on failure.
159
 * @return Address space area on success or NULL on failure.
160
 */
160
 */
161
as_area_t *as_area_create(as_t *as, int flags, size_t size, __address base, int attrs,
161
as_area_t *as_area_create(as_t *as, int flags, size_t size, __address base, int attrs,
162
           mem_backend_t *backend, void **backend_data)
162
           mem_backend_t *backend, void **backend_data)
163
{
163
{
164
    ipl_t ipl;
164
    ipl_t ipl;
165
    as_area_t *a;
165
    as_area_t *a;
166
   
166
   
167
    if (base % PAGE_SIZE)
167
    if (base % PAGE_SIZE)
168
        return NULL;
168
        return NULL;
169
 
169
 
170
    if (!size)
170
    if (!size)
171
        return NULL;
171
        return NULL;
172
 
172
 
173
    /* Writeable executable areas are not supported. */
173
    /* Writeable executable areas are not supported. */
174
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
174
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
175
        return NULL;
175
        return NULL;
176
   
176
   
177
    ipl = interrupts_disable();
177
    ipl = interrupts_disable();
178
    mutex_lock(&as->lock);
178
    mutex_lock(&as->lock);
179
   
179
   
180
    if (!check_area_conflicts(as, base, size, NULL)) {
180
    if (!check_area_conflicts(as, base, size, NULL)) {
181
        mutex_unlock(&as->lock);
181
        mutex_unlock(&as->lock);
182
        interrupts_restore(ipl);
182
        interrupts_restore(ipl);
183
        return NULL;
183
        return NULL;
184
    }
184
    }
185
   
185
   
186
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
186
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
187
 
187
 
188
    mutex_initialize(&a->lock);
188
    mutex_initialize(&a->lock);
189
   
189
   
190
    a->flags = flags;
190
    a->flags = flags;
191
    a->attributes = attrs;
191
    a->attributes = attrs;
192
    a->pages = SIZE2FRAMES(size);
192
    a->pages = SIZE2FRAMES(size);
193
    a->base = base;
193
    a->base = base;
194
    a->sh_info = NULL;
194
    a->sh_info = NULL;
195
    a->backend = backend;
195
    a->backend = backend;
196
    if (backend_data) {
196
    if (backend_data) {
197
        a->backend_data[0] = backend_data[0];
197
        a->backend_data[0] = backend_data[0];
198
        a->backend_data[1] = backend_data[1];
198
        a->backend_data[1] = backend_data[1];
199
    }
199
    }
200
    btree_create(&a->used_space);
200
    btree_create(&a->used_space);
201
   
201
   
202
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
202
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
203
 
203
 
204
    mutex_unlock(&as->lock);
204
    mutex_unlock(&as->lock);
205
    interrupts_restore(ipl);
205
    interrupts_restore(ipl);
206
 
206
 
207
    return a;
207
    return a;
208
}
208
}
209
 
209
 
210
/** Find address space area and change it.
210
/** Find address space area and change it.
211
 *
211
 *
212
 * @param as Address space.
212
 * @param as Address space.
213
 * @param address Virtual address belonging to the area to be changed. Must be page-aligned.
213
 * @param address Virtual address belonging to the area to be changed. Must be page-aligned.
214
 * @param size New size of the virtual memory block starting at address.
214
 * @param size New size of the virtual memory block starting at address.
215
 * @param flags Flags influencing the remap operation. Currently unused.
215
 * @param flags Flags influencing the remap operation. Currently unused.
216
 *
216
 *
217
 * @return Zero on success or a value from @ref errno.h otherwise.
217
 * @return Zero on success or a value from @ref errno.h otherwise.
218
 */
218
 */
219
int as_area_resize(as_t *as, __address address, size_t size, int flags)
219
int as_area_resize(as_t *as, __address address, size_t size, int flags)
220
{
220
{
221
    as_area_t *area;
221
    as_area_t *area;
222
    ipl_t ipl;
222
    ipl_t ipl;
223
    size_t pages;
223
    size_t pages;
224
   
224
   
225
    ipl = interrupts_disable();
225
    ipl = interrupts_disable();
226
    mutex_lock(&as->lock);
226
    mutex_lock(&as->lock);
227
   
227
   
228
    /*
228
    /*
229
     * Locate the area.
229
     * Locate the area.
230
     */
230
     */
231
    area = find_area_and_lock(as, address);
231
    area = find_area_and_lock(as, address);
232
    if (!area) {
232
    if (!area) {
233
        mutex_unlock(&as->lock);
233
        mutex_unlock(&as->lock);
234
        interrupts_restore(ipl);
234
        interrupts_restore(ipl);
235
        return ENOENT;
235
        return ENOENT;
236
    }
236
    }
237
 
237
 
238
    if (area->flags & AS_AREA_DEVICE) {
238
    if (area->flags & AS_AREA_DEVICE) {
239
        /*
239
        /*
240
         * Remapping of address space areas associated
240
         * Remapping of address space areas associated
241
         * with memory mapped devices is not supported.
241
         * with memory mapped devices is not supported.
242
         */
242
         */
243
        mutex_unlock(&area->lock);
243
        mutex_unlock(&area->lock);
244
        mutex_unlock(&as->lock);
244
        mutex_unlock(&as->lock);
245
        interrupts_restore(ipl);
245
        interrupts_restore(ipl);
246
        return ENOTSUP;
246
        return ENOTSUP;
247
    }
247
    }
248
    if (area->sh_info) {
248
    if (area->sh_info) {
249
        /*
249
        /*
250
         * Remapping of shared address space areas
250
         * Remapping of shared address space areas
251
         * is not supported.
251
         * is not supported.
252
         */
252
         */
253
        mutex_unlock(&area->lock);
253
        mutex_unlock(&area->lock);
254
        mutex_unlock(&as->lock);
254
        mutex_unlock(&as->lock);
255
        interrupts_restore(ipl);
255
        interrupts_restore(ipl);
256
        return ENOTSUP;
256
        return ENOTSUP;
257
    }
257
    }
258
 
258
 
259
    pages = SIZE2FRAMES((address - area->base) + size);
259
    pages = SIZE2FRAMES((address - area->base) + size);
260
    if (!pages) {
260
    if (!pages) {
261
        /*
261
        /*
262
         * Zero size address space areas are not allowed.
262
         * Zero size address space areas are not allowed.
263
         */
263
         */
264
        mutex_unlock(&area->lock);
264
        mutex_unlock(&area->lock);
265
        mutex_unlock(&as->lock);
265
        mutex_unlock(&as->lock);
266
        interrupts_restore(ipl);
266
        interrupts_restore(ipl);
267
        return EPERM;
267
        return EPERM;
268
    }
268
    }
269
   
269
   
270
    if (pages < area->pages) {
270
    if (pages < area->pages) {
271
        bool cond;
271
        bool cond;
272
        __address start_free = area->base + pages*PAGE_SIZE;
272
        __address start_free = area->base + pages*PAGE_SIZE;
273
 
273
 
274
        /*
274
        /*
275
         * Shrinking the area.
275
         * Shrinking the area.
276
         * No need to check for overlaps.
276
         * No need to check for overlaps.
277
         */
277
         */
278
 
278
 
279
        /*
279
        /*
280
         * Remove frames belonging to used space starting from
280
         * Remove frames belonging to used space starting from
281
         * the highest addresses downwards until an overlap with
281
         * the highest addresses downwards until an overlap with
282
         * the resized address space area is found. Note that this
282
         * the resized address space area is found. Note that this
283
         * is also the right way to remove part of the used_space
283
         * is also the right way to remove part of the used_space
284
         * B+tree leaf list.
284
         * B+tree leaf list.
285
         */    
285
         */    
286
        for (cond = true; cond;) {
286
        for (cond = true; cond;) {
287
            btree_node_t *node;
287
            btree_node_t *node;
288
       
288
       
289
            ASSERT(!list_empty(&area->used_space.leaf_head));
289
            ASSERT(!list_empty(&area->used_space.leaf_head));
290
            node = list_get_instance(area->used_space.leaf_head.prev, btree_node_t, leaf_link);
290
            node = list_get_instance(area->used_space.leaf_head.prev, btree_node_t, leaf_link);
291
            if ((cond = (bool) node->keys)) {
291
            if ((cond = (bool) node->keys)) {
292
                __address b = node->key[node->keys - 1];
292
                __address b = node->key[node->keys - 1];
293
                count_t c = (count_t) node->value[node->keys - 1];
293
                count_t c = (count_t) node->value[node->keys - 1];
294
                int i = 0;
294
                int i = 0;
295
           
295
           
296
                if (overlaps(b, c*PAGE_SIZE, area->base, pages*PAGE_SIZE)) {
296
                if (overlaps(b, c*PAGE_SIZE, area->base, pages*PAGE_SIZE)) {
297
                   
297
                   
298
                    if (b + c*PAGE_SIZE <= start_free) {
298
                    if (b + c*PAGE_SIZE <= start_free) {
299
                        /*
299
                        /*
300
                         * The whole interval fits completely
300
                         * The whole interval fits completely
301
                         * in the resized address space area.
301
                         * in the resized address space area.
302
                         */
302
                         */
303
                        break;
303
                        break;
304
                    }
304
                    }
305
       
305
       
306
                    /*
306
                    /*
307
                     * Part of the interval corresponding to b and c
307
                     * Part of the interval corresponding to b and c
308
                     * overlaps with the resized address space area.
308
                     * overlaps with the resized address space area.
309
                     */
309
                     */
310
       
310
       
311
                    cond = false;   /* we are almost done */
311
                    cond = false;   /* we are almost done */
312
                    i = (start_free - b) >> PAGE_WIDTH;
312
                    i = (start_free - b) >> PAGE_WIDTH;
313
                    if (!used_space_remove(area, start_free, c - i))
313
                    if (!used_space_remove(area, start_free, c - i))
314
                        panic("Could not remove used space.");
314
                        panic("Could not remove used space.");
315
                } else {
315
                } else {
316
                    /*
316
                    /*
317
                     * The interval of used space can be completely removed.
317
                     * The interval of used space can be completely removed.
318
                     */
318
                     */
319
                    if (!used_space_remove(area, b, c))
319
                    if (!used_space_remove(area, b, c))
320
                        panic("Could not remove used space.\n");
320
                        panic("Could not remove used space.\n");
321
                }
321
                }
322
           
322
           
323
                for (; i < c; i++) {
323
                for (; i < c; i++) {
324
                    pte_t *pte;
324
                    pte_t *pte;
325
           
325
           
326
                    page_table_lock(as, false);
326
                    page_table_lock(as, false);
327
                    pte = page_mapping_find(as, b + i*PAGE_SIZE);
327
                    pte = page_mapping_find(as, b + i*PAGE_SIZE);
328
                    ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
328
                    ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
329
                    if (area->backend && area->backend->backend_frame_free) {
329
                    if (area->backend && area->backend->backend_frame_free) {
330
                        area->backend->backend_frame_free(area,
330
                        area->backend->backend_frame_free(area,
331
                            b + i*PAGE_SIZE, PTE_GET_FRAME(pte));
331
                            b + i*PAGE_SIZE, PTE_GET_FRAME(pte));
332
                    }
332
                    }
333
                    page_mapping_remove(as, b + i*PAGE_SIZE);
333
                    page_mapping_remove(as, b + i*PAGE_SIZE);
334
                    page_table_unlock(as, false);
334
                    page_table_unlock(as, false);
335
                }
335
                }
336
            }
336
            }
337
        }
337
        }
338
        /*
338
        /*
339
         * Invalidate TLB's.
339
         * Invalidate TLB's.
340
         */
340
         */
341
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
341
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
342
        tlb_invalidate_pages(AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
342
        tlb_invalidate_pages(AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
343
        tlb_shootdown_finalize();
343
        tlb_shootdown_finalize();
344
    } else {
344
    } else {
345
        /*
345
        /*
346
         * Growing the area.
346
         * Growing the area.
347
         * Check for overlaps with other address space areas.
347
         * Check for overlaps with other address space areas.
348
         */
348
         */
349
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE, area)) {
349
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE, area)) {
350
            mutex_unlock(&area->lock);
350
            mutex_unlock(&area->lock);
351
            mutex_unlock(&as->lock);       
351
            mutex_unlock(&as->lock);       
352
            interrupts_restore(ipl);
352
            interrupts_restore(ipl);
353
            return EADDRNOTAVAIL;
353
            return EADDRNOTAVAIL;
354
        }
354
        }
355
    }
355
    }
356
 
356
 
357
    area->pages = pages;
357
    area->pages = pages;
358
   
358
   
359
    mutex_unlock(&area->lock);
359
    mutex_unlock(&area->lock);
360
    mutex_unlock(&as->lock);
360
    mutex_unlock(&as->lock);
361
    interrupts_restore(ipl);
361
    interrupts_restore(ipl);
362
 
362
 
363
    return 0;
363
    return 0;
364
}
364
}
365
 
365
 
366
/** Destroy address space area.
366
/** Destroy address space area.
367
 *
367
 *
368
 * @param as Address space.
368
 * @param as Address space.
369
 * @param address Address withing the area to be deleted.
369
 * @param address Address withing the area to be deleted.
370
 *
370
 *
371
 * @return Zero on success or a value from @ref errno.h on failure.
371
 * @return Zero on success or a value from @ref errno.h on failure.
372
 */
372
 */
373
int as_area_destroy(as_t *as, __address address)
373
int as_area_destroy(as_t *as, __address address)
374
{
374
{
375
    as_area_t *area;
375
    as_area_t *area;
376
    __address base;
376
    __address base;
377
    ipl_t ipl;
377
    ipl_t ipl;
378
    bool cond;
378
    bool cond;
379
 
379
 
380
    ipl = interrupts_disable();
380
    ipl = interrupts_disable();
381
    mutex_lock(&as->lock);
381
    mutex_lock(&as->lock);
382
 
382
 
383
    area = find_area_and_lock(as, address);
383
    area = find_area_and_lock(as, address);
384
    if (!area) {
384
    if (!area) {
385
        mutex_unlock(&as->lock);
385
        mutex_unlock(&as->lock);
386
        interrupts_restore(ipl);
386
        interrupts_restore(ipl);
387
        return ENOENT;
387
        return ENOENT;
388
    }
388
    }
389
 
389
 
390
    base = area->base;
390
    base = area->base;
391
 
391
 
392
    /*
392
    /*
393
     * Visit only the pages mapped by used_space B+tree.
393
     * Visit only the pages mapped by used_space B+tree.
394
     * Note that we must be very careful when walking the tree
394
     * Note that we must be very careful when walking the tree
395
     * leaf list and removing used space as the leaf list changes
395
     * leaf list and removing used space as the leaf list changes
396
     * unpredictibly after each remove. The solution is to actually
396
     * unpredictibly after each remove. The solution is to actually
397
     * not walk the tree at all, but to remove items from the head
397
     * not walk the tree at all, but to remove items from the head
398
     * of the leaf list until there are some keys left.
398
     * of the leaf list until there are some keys left.
399
     */
399
     */
400
    for (cond = true; cond;) {
400
    for (cond = true; cond;) {
401
        btree_node_t *node;
401
        btree_node_t *node;
402
       
402
       
403
        ASSERT(!list_empty(&area->used_space.leaf_head));
403
        ASSERT(!list_empty(&area->used_space.leaf_head));
404
        node = list_get_instance(area->used_space.leaf_head.next, btree_node_t, leaf_link);
404
        node = list_get_instance(area->used_space.leaf_head.next, btree_node_t, leaf_link);
405
        if ((cond = (bool) node->keys)) {
405
        if ((cond = (bool) node->keys)) {
406
            __address b = node->key[0];
406
            __address b = node->key[0];
407
            count_t i;
407
            count_t i;
408
            pte_t *pte;
408
            pte_t *pte;
409
           
409
           
410
            for (i = 0; i < (count_t) node->value[0]; i++) {
410
            for (i = 0; i < (count_t) node->value[0]; i++) {
411
                page_table_lock(as, false);
411
                page_table_lock(as, false);
412
                pte = page_mapping_find(as, b + i*PAGE_SIZE);
412
                pte = page_mapping_find(as, b + i*PAGE_SIZE);
413
                ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
413
                ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
414
                if (area->backend && area->backend->backend_frame_free) {
414
                if (area->backend && area->backend->backend_frame_free) {
415
                    area->backend->backend_frame_free(area,
415
                    area->backend->backend_frame_free(area,
416
                        b + i*PAGE_SIZE, PTE_GET_FRAME(pte));
416
                        b + i*PAGE_SIZE, PTE_GET_FRAME(pte));
417
                }
417
                }
418
                page_mapping_remove(as, b + i*PAGE_SIZE);
418
                page_mapping_remove(as, b + i*PAGE_SIZE);
419
                page_table_unlock(as, false);
419
                page_table_unlock(as, false);
420
            }
420
            }
421
            if (!used_space_remove(area, b, i))
421
            if (!used_space_remove(area, b, i))
422
                panic("Could not remove used space.\n");
422
                panic("Could not remove used space.\n");
423
        }
423
        }
424
    }
424
    }
425
    btree_destroy(&area->used_space);
425
    btree_destroy(&area->used_space);
426
 
426
 
427
    /*
427
    /*
428
     * Invalidate TLB's.
428
     * Invalidate TLB's.
429
     */
429
     */
430
    tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base, area->pages);
430
    tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base, area->pages);
431
    tlb_invalidate_pages(AS->asid, area->base, area->pages);
431
    tlb_invalidate_pages(AS->asid, area->base, area->pages);
432
    tlb_shootdown_finalize();
432
    tlb_shootdown_finalize();
433
 
433
 
434
    area->attributes |= AS_AREA_ATTR_PARTIAL;
434
    area->attributes |= AS_AREA_ATTR_PARTIAL;
435
   
435
   
436
    if (area->sh_info)
436
    if (area->sh_info)
437
        sh_info_remove_reference(area->sh_info);
437
        sh_info_remove_reference(area->sh_info);
438
       
438
       
439
    mutex_unlock(&area->lock);
439
    mutex_unlock(&area->lock);
440
 
440
 
441
    /*
441
    /*
442
     * Remove the empty area from address space.
442
     * Remove the empty area from address space.
443
     */
443
     */
444
    btree_remove(&AS->as_area_btree, base, NULL);
444
    btree_remove(&AS->as_area_btree, base, NULL);
445
   
445
   
446
    free(area);
446
    free(area);
447
   
447
   
448
    mutex_unlock(&AS->lock);
448
    mutex_unlock(&AS->lock);
449
    interrupts_restore(ipl);
449
    interrupts_restore(ipl);
450
    return 0;
450
    return 0;
451
}
451
}
452
 
452
 
453
/** Share address space area with another or the same address space.
453
/** Share address space area with another or the same address space.
454
 *
454
 *
455
 * Address space area of anonymous memory is shared with a new address
455
 * Address space area of anonymous memory is shared with a new address
456
 * space area. If the source address space area has not been shared so
456
 * space area. If the source address space area has not been shared so
457
 * far, a new sh_info is created and the original mapping is duplicated
457
 * far, a new sh_info is created and the original mapping is duplicated
458
 * in its pagemap B+tree. The new address space are simply gets the
458
 * in its pagemap B+tree. The new address space are simply gets the
459
 * sh_info of the source area.
459
 * sh_info of the source area.
460
 *
460
 *
461
 * @param src_as Pointer to source address space.
461
 * @param src_as Pointer to source address space.
462
 * @param src_base Base address of the source address space area.
462
 * @param src_base Base address of the source address space area.
463
 * @param acc_size Expected size of the source area.
463
 * @param acc_size Expected size of the source area.
464
 * @param dst_base Target base address.
464
 * @param dst_base Target base address.
465
 * @param dst_flags_mask Destination address space area flags mask.
465
 * @param dst_flags_mask Destination address space area flags mask.
466
 *
466
 *
467
 * @return Zero on success or ENOENT if there is no such task or
467
 * @return Zero on success or ENOENT if there is no such task or
468
 *     if there is no such address space area,
468
 *     if there is no such address space area,
469
 *     EPERM if there was a problem in accepting the area or
469
 *     EPERM if there was a problem in accepting the area or
470
 *     ENOMEM if there was a problem in allocating destination
470
 *     ENOMEM if there was a problem in allocating destination
471
 *     address space area. ENOTSUP is returned if an attempt
471
 *     address space area. ENOTSUP is returned if an attempt
472
 *     to share non-anonymous address space area is detected.
472
 *     to share non-anonymous address space area is detected.
473
 */
473
 */
474
int as_area_share(as_t *src_as, __address src_base, size_t acc_size,
474
int as_area_share(as_t *src_as, __address src_base, size_t acc_size,
475
          __address dst_base, int dst_flags_mask)
475
          __address dst_base, int dst_flags_mask)
476
{
476
{
477
    ipl_t ipl;
477
    ipl_t ipl;
478
    int src_flags;
478
    int src_flags;
479
    size_t src_size;
479
    size_t src_size;
480
    as_area_t *src_area, *dst_area;
480
    as_area_t *src_area, *dst_area;
481
    share_info_t *sh_info;
481
    share_info_t *sh_info;
482
    link_t *cur;
482
    link_t *cur;
483
 
483
 
484
    ipl = interrupts_disable();
484
    ipl = interrupts_disable();
485
    mutex_lock(&src_as->lock);
485
    mutex_lock(&src_as->lock);
486
    src_area = find_area_and_lock(src_as, src_base);
486
    src_area = find_area_and_lock(src_as, src_base);
487
    if (!src_area) {
487
    if (!src_area) {
488
        /*
488
        /*
489
         * Could not find the source address space area.
489
         * Could not find the source address space area.
490
         */
490
         */
491
        mutex_unlock(&src_as->lock);
491
        mutex_unlock(&src_as->lock);
492
        interrupts_restore(ipl);
492
        interrupts_restore(ipl);
493
        return ENOENT;
493
        return ENOENT;
494
    }
494
    }
495
   
495
   
496
    if (!src_area->backend || src_area->backend != &anon_backend) {
496
    if (!src_area->backend || src_area->backend != &anon_backend) {
497
        /*
497
        /*
498
         * As of now, only anonymous address space areas can be shared.
498
         * As of now, only anonymous address space areas can be shared.
499
         */
499
         */
500
        mutex_unlock(&src_area->lock);
500
        mutex_unlock(&src_area->lock);
501
        mutex_unlock(&src_as->lock);
501
        mutex_unlock(&src_as->lock);
502
        interrupts_restore(ipl);
502
        interrupts_restore(ipl);
503
        return ENOTSUP;
503
        return ENOTSUP;
504
    }
504
    }
505
   
505
   
506
    src_size = src_area->pages * PAGE_SIZE;
506
    src_size = src_area->pages * PAGE_SIZE;
507
    src_flags = src_area->flags;
507
    src_flags = src_area->flags;
508
   
508
   
509
    if (src_size != acc_size) {
509
    if (src_size != acc_size) {
510
        mutex_unlock(&src_area->lock);
510
        mutex_unlock(&src_area->lock);
511
        mutex_unlock(&src_as->lock);
511
        mutex_unlock(&src_as->lock);
512
        interrupts_restore(ipl);
512
        interrupts_restore(ipl);
513
        return EPERM;
513
        return EPERM;
514
    }
514
    }
515
 
515
 
516
    /*
516
    /*
517
     * Now we are committed to sharing the area.
517
     * Now we are committed to sharing the area.
518
     * First prepare the area for sharing.
518
     * First prepare the area for sharing.
519
     * Then it will be safe to unlock it.
519
     * Then it will be safe to unlock it.
520
     */
520
     */
521
    sh_info = src_area->sh_info;
521
    sh_info = src_area->sh_info;
522
    if (!sh_info) {
522
    if (!sh_info) {
523
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
523
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
524
        mutex_initialize(&sh_info->lock);
524
        mutex_initialize(&sh_info->lock);
525
        sh_info->refcount = 2;
525
        sh_info->refcount = 2;
526
        btree_create(&sh_info->pagemap);
526
        btree_create(&sh_info->pagemap);
527
        src_area->sh_info = sh_info;
527
        src_area->sh_info = sh_info;
528
    } else {
528
    } else {
529
        mutex_lock(&sh_info->lock);
529
        mutex_lock(&sh_info->lock);
530
        sh_info->refcount++;
530
        sh_info->refcount++;
531
        mutex_unlock(&sh_info->lock);
531
        mutex_unlock(&sh_info->lock);
532
    }
532
    }
533
 
533
 
534
    /*
534
    /*
535
     * Copy used portions of the area to sh_info's page map.
535
     * Copy used portions of the area to sh_info's page map.
536
     */
536
     */
537
    mutex_lock(&sh_info->lock);
537
    mutex_lock(&sh_info->lock);
538
    for (cur = src_area->used_space.leaf_head.next; cur != &src_area->used_space.leaf_head; cur = cur->next) {
538
    for (cur = src_area->used_space.leaf_head.next; cur != &src_area->used_space.leaf_head; cur = cur->next) {
539
        btree_node_t *node;
539
        btree_node_t *node;
540
        int i;
540
        int i;
541
       
541
       
542
        node = list_get_instance(cur, btree_node_t, leaf_link);
542
        node = list_get_instance(cur, btree_node_t, leaf_link);
543
        for (i = 0; i < node->keys; i++) {
543
        for (i = 0; i < node->keys; i++) {
544
            __address base = node->key[i];
544
            __address base = node->key[i];
545
            count_t count = (count_t) node->value[i];
545
            count_t count = (count_t) node->value[i];
546
            int j;
546
            int j;
547
           
547
           
548
            for (j = 0; j < count; j++) {
548
            for (j = 0; j < count; j++) {
549
                pte_t *pte;
549
                pte_t *pte;
550
           
550
           
551
                page_table_lock(src_as, false);
551
                page_table_lock(src_as, false);
552
                pte = page_mapping_find(src_as, base + j*PAGE_SIZE);
552
                pte = page_mapping_find(src_as, base + j*PAGE_SIZE);
553
                ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
553
                ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
554
                btree_insert(&sh_info->pagemap, (base + j*PAGE_SIZE) - src_area->base,
554
                btree_insert(&sh_info->pagemap, (base + j*PAGE_SIZE) - src_area->base,
555
                    (void *) PTE_GET_FRAME(pte), NULL);
555
                    (void *) PTE_GET_FRAME(pte), NULL);
556
                page_table_unlock(src_as, false);
556
                page_table_unlock(src_as, false);
557
            }
557
            }
558
               
558
               
559
        }
559
        }
560
    }
560
    }
561
    mutex_unlock(&sh_info->lock);
561
    mutex_unlock(&sh_info->lock);
562
 
562
 
563
    mutex_unlock(&src_area->lock);
563
    mutex_unlock(&src_area->lock);
564
    mutex_unlock(&src_as->lock);
564
    mutex_unlock(&src_as->lock);
565
 
565
 
566
    /*
566
    /*
567
     * Create copy of the source address space area.
567
     * Create copy of the source address space area.
568
     * The destination area is created with AS_AREA_ATTR_PARTIAL
568
     * The destination area is created with AS_AREA_ATTR_PARTIAL
569
     * attribute set which prevents race condition with
569
     * attribute set which prevents race condition with
570
     * preliminary as_page_fault() calls.
570
     * preliminary as_page_fault() calls.
571
     * The flags of the source area are masked against dst_flags_mask
571
     * The flags of the source area are masked against dst_flags_mask
572
     * to support sharing in less privileged mode.
572
     * to support sharing in less privileged mode.
573
     */
573
     */
574
    dst_area = as_area_create(AS, src_flags & dst_flags_mask, src_size, dst_base,
574
    dst_area = as_area_create(AS, src_flags & dst_flags_mask, src_size, dst_base,
575
                  AS_AREA_ATTR_PARTIAL, &anon_backend, NULL);
575
                  AS_AREA_ATTR_PARTIAL, &anon_backend, NULL);
576
    if (!dst_area) {
576
    if (!dst_area) {
577
        /*
577
        /*
578
         * Destination address space area could not be created.
578
         * Destination address space area could not be created.
579
         */
579
         */
580
        sh_info_remove_reference(sh_info);
580
        sh_info_remove_reference(sh_info);
581
       
581
       
582
        interrupts_restore(ipl);
582
        interrupts_restore(ipl);
583
        return ENOMEM;
583
        return ENOMEM;
584
    }
584
    }
585
   
585
   
586
    /*
586
    /*
587
     * Now the destination address space area has been
587
     * Now the destination address space area has been
588
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
588
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
589
     * attribute and set the sh_info.
589
     * attribute and set the sh_info.
590
     */
590
     */
591
    mutex_lock(&dst_area->lock);
591
    mutex_lock(&dst_area->lock);
592
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
592
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
593
    dst_area->sh_info = sh_info;
593
    dst_area->sh_info = sh_info;
594
    mutex_unlock(&dst_area->lock);
594
    mutex_unlock(&dst_area->lock);
595
   
595
   
596
    interrupts_restore(ipl);
596
    interrupts_restore(ipl);
597
   
597
   
598
    return 0;
598
    return 0;
599
}
599
}
600
 
600
 
601
/** Initialize mapping for one page of address space.
601
/** Initialize mapping for one page of address space.
602
 *
602
 *
603
 * This functions maps 'page' to 'frame' according
603
 * This functions maps 'page' to 'frame' according
604
 * to attributes of the address space area to
604
 * to attributes of the address space area to
605
 * wich 'page' belongs.
605
 * wich 'page' belongs.
606
 *
606
 *
607
 * @param as Target address space.
607
 * @param as Target address space.
608
 * @param page Virtual page within the area.
608
 * @param page Virtual page within the area.
609
 * @param frame Physical frame to which page will be mapped.
609
 * @param frame Physical frame to which page will be mapped.
610
 */
610
 */
611
void as_set_mapping(as_t *as, __address page, __address frame)
611
void as_set_mapping(as_t *as, __address page, __address frame)
612
{
612
{
613
    as_area_t *area;
613
    as_area_t *area;
614
    ipl_t ipl;
614
    ipl_t ipl;
615
   
615
   
616
    ipl = interrupts_disable();
616
    ipl = interrupts_disable();
617
    page_table_lock(as, true);
617
    page_table_lock(as, true);
618
   
618
   
619
    area = find_area_and_lock(as, page);
619
    area = find_area_and_lock(as, page);
620
    if (!area) {
620
    if (!area) {
621
        panic("Page not part of any as_area.\n");
621
        panic("Page not part of any as_area.\n");
622
    }
622
    }
623
 
623
 
624
    ASSERT(!area->backend);
624
    ASSERT(!area->backend);
625
   
625
   
626
    page_mapping_insert(as, page, frame, as_area_get_flags(area));
626
    page_mapping_insert(as, page, frame, as_area_get_flags(area));
627
    if (!used_space_insert(area, page, 1))
627
    if (!used_space_insert(area, page, 1))
628
        panic("Could not insert used space.\n");
628
        panic("Could not insert used space.\n");
629
   
629
   
630
    mutex_unlock(&area->lock);
630
    mutex_unlock(&area->lock);
631
    page_table_unlock(as, true);
631
    page_table_unlock(as, true);
632
    interrupts_restore(ipl);
632
    interrupts_restore(ipl);
633
}
633
}
634
 
634
 
-
 
635
/** Check access mode for address space area.
-
 
636
 *
-
 
637
 * The address space area must be locked prior to this call.
-
 
638
 *
-
 
639
 * @param area Address space area.
-
 
640
 * @param access Access mode.
-
 
641
 *
-
 
642
 * @return False if access violates area's permissions, true otherwise.
-
 
643
 */
-
 
644
bool as_area_check_access(as_area_t *area, pf_access_t access)
-
 
645
{
-
 
646
    int flagmap[] = {
-
 
647
        [PF_ACCESS_READ] = AS_AREA_READ,
-
 
648
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
-
 
649
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
-
 
650
    };
-
 
651
 
-
 
652
    if (!(area->flags & flagmap[access]))
-
 
653
        return false;
-
 
654
   
-
 
655
    return true;
-
 
656
}
-
 
657
 
635
/** Handle page fault within the current address space.
658
/** Handle page fault within the current address space.
636
 *
659
 *
637
 * This is the high-level page fault handler. It decides
660
 * This is the high-level page fault handler. It decides
638
 * whether the page fault can be resolved by any backend
661
 * whether the page fault can be resolved by any backend
639
 * and if so, it invokes the backend to resolve the page
662
 * and if so, it invokes the backend to resolve the page
640
 * fault.
663
 * fault.
641
 *
664
 *
642
 * Interrupts are assumed disabled.
665
 * Interrupts are assumed disabled.
643
 *
666
 *
644
 * @param page Faulting page.
667
 * @param page Faulting page.
645
 * @param access Access mode that caused the fault (i.e. read/write/exec).
668
 * @param access Access mode that caused the fault (i.e. read/write/exec).
646
 * @param istate Pointer to interrupted state.
669
 * @param istate Pointer to interrupted state.
647
 *
670
 *
648
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
671
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
649
 *     fault was caused by copy_to_uspace() or copy_from_uspace().
672
 *     fault was caused by copy_to_uspace() or copy_from_uspace().
650
 */
673
 */
651
int as_page_fault(__address page, pf_access_t access, istate_t *istate)
674
int as_page_fault(__address page, pf_access_t access, istate_t *istate)
652
{
675
{
653
    pte_t *pte;
676
    pte_t *pte;
654
    as_area_t *area;
677
    as_area_t *area;
655
   
678
   
656
    if (!THREAD)
679
    if (!THREAD)
657
        return AS_PF_FAULT;
680
        return AS_PF_FAULT;
658
       
681
       
659
    ASSERT(AS);
682
    ASSERT(AS);
660
 
683
 
661
    mutex_lock(&AS->lock);
684
    mutex_lock(&AS->lock);
662
    area = find_area_and_lock(AS, page);   
685
    area = find_area_and_lock(AS, page);   
663
    if (!area) {
686
    if (!area) {
664
        /*
687
        /*
665
         * No area contained mapping for 'page'.
688
         * No area contained mapping for 'page'.
666
         * Signal page fault to low-level handler.
689
         * Signal page fault to low-level handler.
667
         */
690
         */
668
        mutex_unlock(&AS->lock);
691
        mutex_unlock(&AS->lock);
669
        goto page_fault;
692
        goto page_fault;
670
    }
693
    }
671
 
694
 
672
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
695
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
673
        /*
696
        /*
674
         * The address space area is not fully initialized.
697
         * The address space area is not fully initialized.
675
         * Avoid possible race by returning error.
698
         * Avoid possible race by returning error.
676
         */
699
         */
677
        mutex_unlock(&area->lock);
700
        mutex_unlock(&area->lock);
678
        mutex_unlock(&AS->lock);
701
        mutex_unlock(&AS->lock);
679
        goto page_fault;       
702
        goto page_fault;       
680
    }
703
    }
681
 
704
 
682
    if (!area->backend || !area->backend->backend_page_fault) {
705
    if (!area->backend || !area->backend->backend_page_fault) {
683
        /*
706
        /*
684
         * The address space area is not backed by any backend
707
         * The address space area is not backed by any backend
685
         * or the backend cannot handle page faults.
708
         * or the backend cannot handle page faults.
686
         */
709
         */
687
        mutex_unlock(&area->lock);
710
        mutex_unlock(&area->lock);
688
        mutex_unlock(&AS->lock);
711
        mutex_unlock(&AS->lock);
689
        goto page_fault;       
712
        goto page_fault;       
690
    }
713
    }
691
 
714
 
692
    page_table_lock(AS, false);
715
    page_table_lock(AS, false);
693
   
716
   
694
    /*
717
    /*
695
     * To avoid race condition between two page faults
718
     * To avoid race condition between two page faults
696
     * on the same address, we need to make sure
719
     * on the same address, we need to make sure
697
     * the mapping has not been already inserted.
720
     * the mapping has not been already inserted.
698
     */
721
     */
699
    if ((pte = page_mapping_find(AS, page))) {
722
    if ((pte = page_mapping_find(AS, page))) {
700
        if (PTE_PRESENT(pte)) {
723
        if (PTE_PRESENT(pte)) {
-
 
724
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
-
 
725
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
-
 
726
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
701
            page_table_unlock(AS, false);
727
                page_table_unlock(AS, false);
702
            mutex_unlock(&area->lock);
728
                mutex_unlock(&area->lock);
703
            mutex_unlock(&AS->lock);
729
                mutex_unlock(&AS->lock);
704
            return AS_PF_OK;
730
                return AS_PF_OK;
-
 
731
            }
705
        }
732
        }
706
    }
733
    }
707
   
734
   
708
    /*
735
    /*
709
     * Resort to the backend page fault handler.
736
     * Resort to the backend page fault handler.
710
     */
737
     */
711
    if (area->backend->backend_page_fault(area, page, access) != AS_PF_OK) {
738
    if (area->backend->backend_page_fault(area, page, access) != AS_PF_OK) {
712
        page_table_unlock(AS, false);
739
        page_table_unlock(AS, false);
713
        mutex_unlock(&area->lock);
740
        mutex_unlock(&area->lock);
714
        mutex_unlock(&AS->lock);
741
        mutex_unlock(&AS->lock);
715
        goto page_fault;
742
        goto page_fault;
716
    }
743
    }
717
   
744
   
718
    page_table_unlock(AS, false);
745
    page_table_unlock(AS, false);
719
    mutex_unlock(&area->lock);
746
    mutex_unlock(&area->lock);
720
    mutex_unlock(&AS->lock);
747
    mutex_unlock(&AS->lock);
721
    return AS_PF_OK;
748
    return AS_PF_OK;
722
 
749
 
723
page_fault:
750
page_fault:
724
    if (THREAD->in_copy_from_uspace) {
751
    if (THREAD->in_copy_from_uspace) {
725
        THREAD->in_copy_from_uspace = false;
752
        THREAD->in_copy_from_uspace = false;
726
        istate_set_retaddr(istate, (__address) &memcpy_from_uspace_failover_address);
753
        istate_set_retaddr(istate, (__address) &memcpy_from_uspace_failover_address);
727
    } else if (THREAD->in_copy_to_uspace) {
754
    } else if (THREAD->in_copy_to_uspace) {
728
        THREAD->in_copy_to_uspace = false;
755
        THREAD->in_copy_to_uspace = false;
729
        istate_set_retaddr(istate, (__address) &memcpy_to_uspace_failover_address);
756
        istate_set_retaddr(istate, (__address) &memcpy_to_uspace_failover_address);
730
    } else {
757
    } else {
731
        return AS_PF_FAULT;
758
        return AS_PF_FAULT;
732
    }
759
    }
733
 
760
 
734
    return AS_PF_DEFER;
761
    return AS_PF_DEFER;
735
}
762
}
736
 
763
 
737
/** Switch address spaces.
764
/** Switch address spaces.
738
 *
765
 *
739
 * Note that this function cannot sleep as it is essentially a part of
766
 * Note that this function cannot sleep as it is essentially a part of
740
 * scheduling. Sleeping here would lead to deadlock on wakeup.
767
 * scheduling. Sleeping here would lead to deadlock on wakeup.
741
 *
768
 *
742
 * @param old Old address space or NULL.
769
 * @param old Old address space or NULL.
743
 * @param new New address space.
770
 * @param new New address space.
744
 */
771
 */
745
void as_switch(as_t *old, as_t *new)
772
void as_switch(as_t *old, as_t *new)
746
{
773
{
747
    ipl_t ipl;
774
    ipl_t ipl;
748
    bool needs_asid = false;
775
    bool needs_asid = false;
749
   
776
   
750
    ipl = interrupts_disable();
777
    ipl = interrupts_disable();
751
    spinlock_lock(&inactive_as_with_asid_lock);
778
    spinlock_lock(&inactive_as_with_asid_lock);
752
 
779
 
753
    /*
780
    /*
754
     * First, take care of the old address space.
781
     * First, take care of the old address space.
755
     */
782
     */
756
    if (old) {
783
    if (old) {
757
        mutex_lock_active(&old->lock);
784
        mutex_lock_active(&old->lock);
758
        ASSERT(old->cpu_refcount);
785
        ASSERT(old->cpu_refcount);
759
        if((--old->cpu_refcount == 0) && (old != AS_KERNEL)) {
786
        if((--old->cpu_refcount == 0) && (old != AS_KERNEL)) {
760
            /*
787
            /*
761
             * The old address space is no longer active on
788
             * The old address space is no longer active on
762
             * any processor. It can be appended to the
789
             * any processor. It can be appended to the
763
             * list of inactive address spaces with assigned
790
             * list of inactive address spaces with assigned
764
             * ASID.
791
             * ASID.
765
             */
792
             */
766
             ASSERT(old->asid != ASID_INVALID);
793
             ASSERT(old->asid != ASID_INVALID);
767
             list_append(&old->inactive_as_with_asid_link, &inactive_as_with_asid_head);
794
             list_append(&old->inactive_as_with_asid_link, &inactive_as_with_asid_head);
768
        }
795
        }
769
        mutex_unlock(&old->lock);
796
        mutex_unlock(&old->lock);
770
    }
797
    }
771
 
798
 
772
    /*
799
    /*
773
     * Second, prepare the new address space.
800
     * Second, prepare the new address space.
774
     */
801
     */
775
    mutex_lock_active(&new->lock);
802
    mutex_lock_active(&new->lock);
776
    if ((new->cpu_refcount++ == 0) && (new != AS_KERNEL)) {
803
    if ((new->cpu_refcount++ == 0) && (new != AS_KERNEL)) {
777
        if (new->asid != ASID_INVALID)
804
        if (new->asid != ASID_INVALID)
778
            list_remove(&new->inactive_as_with_asid_link);
805
            list_remove(&new->inactive_as_with_asid_link);
779
        else
806
        else
780
            needs_asid = true;  /* defer call to asid_get() until new->lock is released */
807
            needs_asid = true;  /* defer call to asid_get() until new->lock is released */
781
    }
808
    }
782
    SET_PTL0_ADDRESS(new->page_table);
809
    SET_PTL0_ADDRESS(new->page_table);
783
    mutex_unlock(&new->lock);
810
    mutex_unlock(&new->lock);
784
 
811
 
785
    if (needs_asid) {
812
    if (needs_asid) {
786
        /*
813
        /*
787
         * Allocation of new ASID was deferred
814
         * Allocation of new ASID was deferred
788
         * until now in order to avoid deadlock.
815
         * until now in order to avoid deadlock.
789
         */
816
         */
790
        asid_t asid;
817
        asid_t asid;
791
       
818
       
792
        asid = asid_get();
819
        asid = asid_get();
793
        mutex_lock_active(&new->lock);
820
        mutex_lock_active(&new->lock);
794
        new->asid = asid;
821
        new->asid = asid;
795
        mutex_unlock(&new->lock);
822
        mutex_unlock(&new->lock);
796
    }
823
    }
797
    spinlock_unlock(&inactive_as_with_asid_lock);
824
    spinlock_unlock(&inactive_as_with_asid_lock);
798
    interrupts_restore(ipl);
825
    interrupts_restore(ipl);
799
   
826
   
800
    /*
827
    /*
801
     * Perform architecture-specific steps.
828
     * Perform architecture-specific steps.
802
     * (e.g. write ASID to hardware register etc.)
829
     * (e.g. write ASID to hardware register etc.)
803
     */
830
     */
804
    as_install_arch(new);
831
    as_install_arch(new);
805
   
832
   
806
    AS = new;
833
    AS = new;
807
}
834
}
808
 
835
 
809
/** Convert address space area flags to page flags.
836
/** Convert address space area flags to page flags.
810
 *
837
 *
811
 * @param aflags Flags of some address space area.
838
 * @param aflags Flags of some address space area.
812
 *
839
 *
813
 * @return Flags to be passed to page_mapping_insert().
840
 * @return Flags to be passed to page_mapping_insert().
814
 */
841
 */
815
int area_flags_to_page_flags(int aflags)
842
int area_flags_to_page_flags(int aflags)
816
{
843
{
817
    int flags;
844
    int flags;
818
 
845
 
819
    flags = PAGE_USER | PAGE_PRESENT;
846
    flags = PAGE_USER | PAGE_PRESENT;
820
   
847
   
821
    if (aflags & AS_AREA_READ)
848
    if (aflags & AS_AREA_READ)
822
        flags |= PAGE_READ;
849
        flags |= PAGE_READ;
823
       
850
       
824
    if (aflags & AS_AREA_WRITE)
851
    if (aflags & AS_AREA_WRITE)
825
        flags |= PAGE_WRITE;
852
        flags |= PAGE_WRITE;
826
   
853
   
827
    if (aflags & AS_AREA_EXEC)
854
    if (aflags & AS_AREA_EXEC)
828
        flags |= PAGE_EXEC;
855
        flags |= PAGE_EXEC;
829
   
856
   
830
    if (!(aflags & AS_AREA_DEVICE))
857
    if (!(aflags & AS_AREA_DEVICE))
831
        flags |= PAGE_CACHEABLE;
858
        flags |= PAGE_CACHEABLE;
832
       
859
       
833
    return flags;
860
    return flags;
834
}
861
}
835
 
862
 
836
/** Compute flags for virtual address translation subsytem.
863
/** Compute flags for virtual address translation subsytem.
837
 *
864
 *
838
 * The address space area must be locked.
865
 * The address space area must be locked.
839
 * Interrupts must be disabled.
866
 * Interrupts must be disabled.
840
 *
867
 *
841
 * @param a Address space area.
868
 * @param a Address space area.
842
 *
869
 *
843
 * @return Flags to be used in page_mapping_insert().
870
 * @return Flags to be used in page_mapping_insert().
844
 */
871
 */
845
int as_area_get_flags(as_area_t *a)
872
int as_area_get_flags(as_area_t *a)
846
{
873
{
847
    return area_flags_to_page_flags(a->flags);
874
    return area_flags_to_page_flags(a->flags);
848
}
875
}
849
 
876
 
850
/** Create page table.
877
/** Create page table.
851
 *
878
 *
852
 * Depending on architecture, create either address space
879
 * Depending on architecture, create either address space
853
 * private or global page table.
880
 * private or global page table.
854
 *
881
 *
855
 * @param flags Flags saying whether the page table is for kernel address space.
882
 * @param flags Flags saying whether the page table is for kernel address space.
856
 *
883
 *
857
 * @return First entry of the page table.
884
 * @return First entry of the page table.
858
 */
885
 */
859
pte_t *page_table_create(int flags)
886
pte_t *page_table_create(int flags)
860
{
887
{
861
        ASSERT(as_operations);
888
        ASSERT(as_operations);
862
        ASSERT(as_operations->page_table_create);
889
        ASSERT(as_operations->page_table_create);
863
 
890
 
864
        return as_operations->page_table_create(flags);
891
        return as_operations->page_table_create(flags);
865
}
892
}
866
 
893
 
867
/** Lock page table.
894
/** Lock page table.
868
 *
895
 *
869
 * This function should be called before any page_mapping_insert(),
896
 * This function should be called before any page_mapping_insert(),
870
 * page_mapping_remove() and page_mapping_find().
897
 * page_mapping_remove() and page_mapping_find().
871
 *
898
 *
872
 * Locking order is such that address space areas must be locked
899
 * Locking order is such that address space areas must be locked
873
 * prior to this call. Address space can be locked prior to this
900
 * prior to this call. Address space can be locked prior to this
874
 * call in which case the lock argument is false.
901
 * call in which case the lock argument is false.
875
 *
902
 *
876
 * @param as Address space.
903
 * @param as Address space.
877
 * @param lock If false, do not attempt to lock as->lock.
904
 * @param lock If false, do not attempt to lock as->lock.
878
 */
905
 */
879
void page_table_lock(as_t *as, bool lock)
906
void page_table_lock(as_t *as, bool lock)
880
{
907
{
881
    ASSERT(as_operations);
908
    ASSERT(as_operations);
882
    ASSERT(as_operations->page_table_lock);
909
    ASSERT(as_operations->page_table_lock);
883
 
910
 
884
    as_operations->page_table_lock(as, lock);
911
    as_operations->page_table_lock(as, lock);
885
}
912
}
886
 
913
 
887
/** Unlock page table.
914
/** Unlock page table.
888
 *
915
 *
889
 * @param as Address space.
916
 * @param as Address space.
890
 * @param unlock If false, do not attempt to unlock as->lock.
917
 * @param unlock If false, do not attempt to unlock as->lock.
891
 */
918
 */
892
void page_table_unlock(as_t *as, bool unlock)
919
void page_table_unlock(as_t *as, bool unlock)
893
{
920
{
894
    ASSERT(as_operations);
921
    ASSERT(as_operations);
895
    ASSERT(as_operations->page_table_unlock);
922
    ASSERT(as_operations->page_table_unlock);
896
 
923
 
897
    as_operations->page_table_unlock(as, unlock);
924
    as_operations->page_table_unlock(as, unlock);
898
}
925
}
899
 
926
 
900
 
927
 
901
/** Find address space area and lock it.
928
/** Find address space area and lock it.
902
 *
929
 *
903
 * The address space must be locked and interrupts must be disabled.
930
 * The address space must be locked and interrupts must be disabled.
904
 *
931
 *
905
 * @param as Address space.
932
 * @param as Address space.
906
 * @param va Virtual address.
933
 * @param va Virtual address.
907
 *
934
 *
908
 * @return Locked address space area containing va on success or NULL on failure.
935
 * @return Locked address space area containing va on success or NULL on failure.
909
 */
936
 */
910
as_area_t *find_area_and_lock(as_t *as, __address va)
937
as_area_t *find_area_and_lock(as_t *as, __address va)
911
{
938
{
912
    as_area_t *a;
939
    as_area_t *a;
913
    btree_node_t *leaf, *lnode;
940
    btree_node_t *leaf, *lnode;
914
    int i;
941
    int i;
915
   
942
   
916
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
943
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
917
    if (a) {
944
    if (a) {
918
        /* va is the base address of an address space area */
945
        /* va is the base address of an address space area */
919
        mutex_lock(&a->lock);
946
        mutex_lock(&a->lock);
920
        return a;
947
        return a;
921
    }
948
    }
922
   
949
   
923
    /*
950
    /*
924
     * Search the leaf node and the righmost record of its left neighbour
951
     * Search the leaf node and the righmost record of its left neighbour
925
     * to find out whether this is a miss or va belongs to an address
952
     * to find out whether this is a miss or va belongs to an address
926
     * space area found there.
953
     * space area found there.
927
     */
954
     */
928
   
955
   
929
    /* First, search the leaf node itself. */
956
    /* First, search the leaf node itself. */
930
    for (i = 0; i < leaf->keys; i++) {
957
    for (i = 0; i < leaf->keys; i++) {
931
        a = (as_area_t *) leaf->value[i];
958
        a = (as_area_t *) leaf->value[i];
932
        mutex_lock(&a->lock);
959
        mutex_lock(&a->lock);
933
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
960
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
934
            return a;
961
            return a;
935
        }
962
        }
936
        mutex_unlock(&a->lock);
963
        mutex_unlock(&a->lock);
937
    }
964
    }
938
 
965
 
939
    /*
966
    /*
940
     * Second, locate the left neighbour and test its last record.
967
     * Second, locate the left neighbour and test its last record.
941
     * Because of its position in the B+tree, it must have base < va.
968
     * Because of its position in the B+tree, it must have base < va.
942
     */
969
     */
943
    if ((lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
970
    if ((lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
944
        a = (as_area_t *) lnode->value[lnode->keys - 1];
971
        a = (as_area_t *) lnode->value[lnode->keys - 1];
945
        mutex_lock(&a->lock);
972
        mutex_lock(&a->lock);
946
        if (va < a->base + a->pages * PAGE_SIZE) {
973
        if (va < a->base + a->pages * PAGE_SIZE) {
947
            return a;
974
            return a;
948
        }
975
        }
949
        mutex_unlock(&a->lock);
976
        mutex_unlock(&a->lock);
950
    }
977
    }
951
 
978
 
952
    return NULL;
979
    return NULL;
953
}
980
}
954
 
981
 
955
/** Check area conflicts with other areas.
982
/** Check area conflicts with other areas.
956
 *
983
 *
957
 * The address space must be locked and interrupts must be disabled.
984
 * The address space must be locked and interrupts must be disabled.
958
 *
985
 *
959
 * @param as Address space.
986
 * @param as Address space.
960
 * @param va Starting virtual address of the area being tested.
987
 * @param va Starting virtual address of the area being tested.
961
 * @param size Size of the area being tested.
988
 * @param size Size of the area being tested.
962
 * @param avoid_area Do not touch this area.
989
 * @param avoid_area Do not touch this area.
963
 *
990
 *
964
 * @return True if there is no conflict, false otherwise.
991
 * @return True if there is no conflict, false otherwise.
965
 */
992
 */
966
bool check_area_conflicts(as_t *as, __address va, size_t size, as_area_t *avoid_area)
993
bool check_area_conflicts(as_t *as, __address va, size_t size, as_area_t *avoid_area)
967
{
994
{
968
    as_area_t *a;
995
    as_area_t *a;
969
    btree_node_t *leaf, *node;
996
    btree_node_t *leaf, *node;
970
    int i;
997
    int i;
971
   
998
   
972
    /*
999
    /*
973
     * We don't want any area to have conflicts with NULL page.
1000
     * We don't want any area to have conflicts with NULL page.
974
     */
1001
     */
975
    if (overlaps(va, size, NULL, PAGE_SIZE))
1002
    if (overlaps(va, size, NULL, PAGE_SIZE))
976
        return false;
1003
        return false;
977
   
1004
   
978
    /*
1005
    /*
979
     * The leaf node is found in O(log n), where n is proportional to
1006
     * The leaf node is found in O(log n), where n is proportional to
980
     * the number of address space areas belonging to as.
1007
     * the number of address space areas belonging to as.
981
     * The check for conflicts is then attempted on the rightmost
1008
     * The check for conflicts is then attempted on the rightmost
982
     * record in the left neighbour, the leftmost record in the right
1009
     * record in the left neighbour, the leftmost record in the right
983
     * neighbour and all records in the leaf node itself.
1010
     * neighbour and all records in the leaf node itself.
984
     */
1011
     */
985
   
1012
   
986
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1013
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
987
        if (a != avoid_area)
1014
        if (a != avoid_area)
988
            return false;
1015
            return false;
989
    }
1016
    }
990
   
1017
   
991
    /* First, check the two border cases. */
1018
    /* First, check the two border cases. */
992
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1019
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
993
        a = (as_area_t *) node->value[node->keys - 1];
1020
        a = (as_area_t *) node->value[node->keys - 1];
994
        mutex_lock(&a->lock);
1021
        mutex_lock(&a->lock);
995
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1022
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
996
            mutex_unlock(&a->lock);
1023
            mutex_unlock(&a->lock);
997
            return false;
1024
            return false;
998
        }
1025
        }
999
        mutex_unlock(&a->lock);
1026
        mutex_unlock(&a->lock);
1000
    }
1027
    }
1001
    if ((node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf))) {
1028
    if ((node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf))) {
1002
        a = (as_area_t *) node->value[0];
1029
        a = (as_area_t *) node->value[0];
1003
        mutex_lock(&a->lock);
1030
        mutex_lock(&a->lock);
1004
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1031
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1005
            mutex_unlock(&a->lock);
1032
            mutex_unlock(&a->lock);
1006
            return false;
1033
            return false;
1007
        }
1034
        }
1008
        mutex_unlock(&a->lock);
1035
        mutex_unlock(&a->lock);
1009
    }
1036
    }
1010
   
1037
   
1011
    /* Second, check the leaf node. */
1038
    /* Second, check the leaf node. */
1012
    for (i = 0; i < leaf->keys; i++) {
1039
    for (i = 0; i < leaf->keys; i++) {
1013
        a = (as_area_t *) leaf->value[i];
1040
        a = (as_area_t *) leaf->value[i];
1014
   
1041
   
1015
        if (a == avoid_area)
1042
        if (a == avoid_area)
1016
            continue;
1043
            continue;
1017
   
1044
   
1018
        mutex_lock(&a->lock);
1045
        mutex_lock(&a->lock);
1019
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1046
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1020
            mutex_unlock(&a->lock);
1047
            mutex_unlock(&a->lock);
1021
            return false;
1048
            return false;
1022
        }
1049
        }
1023
        mutex_unlock(&a->lock);
1050
        mutex_unlock(&a->lock);
1024
    }
1051
    }
1025
 
1052
 
1026
    /*
1053
    /*
1027
     * So far, the area does not conflict with other areas.
1054
     * So far, the area does not conflict with other areas.
1028
     * Check if it doesn't conflict with kernel address space.
1055
     * Check if it doesn't conflict with kernel address space.
1029
     */  
1056
     */  
1030
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1057
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1031
        return !overlaps(va, size,
1058
        return !overlaps(va, size,
1032
            KERNEL_ADDRESS_SPACE_START, KERNEL_ADDRESS_SPACE_END-KERNEL_ADDRESS_SPACE_START);
1059
            KERNEL_ADDRESS_SPACE_START, KERNEL_ADDRESS_SPACE_END-KERNEL_ADDRESS_SPACE_START);
1033
    }
1060
    }
1034
 
1061
 
1035
    return true;
1062
    return true;
1036
}
1063
}
1037
 
1064
 
1038
/** Return size of the address space area with given base.  */
1065
/** Return size of the address space area with given base.  */
1039
size_t as_get_size(__address base)
1066
size_t as_get_size(__address base)
1040
{
1067
{
1041
    ipl_t ipl;
1068
    ipl_t ipl;
1042
    as_area_t *src_area;
1069
    as_area_t *src_area;
1043
    size_t size;
1070
    size_t size;
1044
 
1071
 
1045
    ipl = interrupts_disable();
1072
    ipl = interrupts_disable();
1046
    src_area = find_area_and_lock(AS, base);
1073
    src_area = find_area_and_lock(AS, base);
1047
    if (src_area){
1074
    if (src_area){
1048
        size = src_area->pages * PAGE_SIZE;
1075
        size = src_area->pages * PAGE_SIZE;
1049
        mutex_unlock(&src_area->lock);
1076
        mutex_unlock(&src_area->lock);
1050
    } else {
1077
    } else {
1051
        size = 0;
1078
        size = 0;
1052
    }
1079
    }
1053
    interrupts_restore(ipl);
1080
    interrupts_restore(ipl);
1054
    return size;
1081
    return size;
1055
}
1082
}
1056
 
1083
 
1057
/** Mark portion of address space area as used.
1084
/** Mark portion of address space area as used.
1058
 *
1085
 *
1059
 * The address space area must be already locked.
1086
 * The address space area must be already locked.
1060
 *
1087
 *
1061
 * @param a Address space area.
1088
 * @param a Address space area.
1062
 * @param page First page to be marked.
1089
 * @param page First page to be marked.
1063
 * @param count Number of page to be marked.
1090
 * @param count Number of page to be marked.
1064
 *
1091
 *
1065
 * @return 0 on failure and 1 on success.
1092
 * @return 0 on failure and 1 on success.
1066
 */
1093
 */
1067
int used_space_insert(as_area_t *a, __address page, count_t count)
1094
int used_space_insert(as_area_t *a, __address page, count_t count)
1068
{
1095
{
1069
    btree_node_t *leaf, *node;
1096
    btree_node_t *leaf, *node;
1070
    count_t pages;
1097
    count_t pages;
1071
    int i;
1098
    int i;
1072
 
1099
 
1073
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1100
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1074
    ASSERT(count);
1101
    ASSERT(count);
1075
 
1102
 
1076
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1103
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1077
    if (pages) {
1104
    if (pages) {
1078
        /*
1105
        /*
1079
         * We hit the beginning of some used space.
1106
         * We hit the beginning of some used space.
1080
         */
1107
         */
1081
        return 0;
1108
        return 0;
1082
    }
1109
    }
1083
 
1110
 
1084
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1111
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1085
    if (node) {
1112
    if (node) {
1086
        __address left_pg = node->key[node->keys - 1], right_pg = leaf->key[0];
1113
        __address left_pg = node->key[node->keys - 1], right_pg = leaf->key[0];
1087
        count_t left_cnt = (count_t) node->value[node->keys - 1], right_cnt = (count_t) leaf->value[0];
1114
        count_t left_cnt = (count_t) node->value[node->keys - 1], right_cnt = (count_t) leaf->value[0];
1088
       
1115
       
1089
        /*
1116
        /*
1090
         * Examine the possibility that the interval fits
1117
         * Examine the possibility that the interval fits
1091
         * somewhere between the rightmost interval of
1118
         * somewhere between the rightmost interval of
1092
         * the left neigbour and the first interval of the leaf.
1119
         * the left neigbour and the first interval of the leaf.
1093
         */
1120
         */
1094
         
1121
         
1095
        if (page >= right_pg) {
1122
        if (page >= right_pg) {
1096
            /* Do nothing. */
1123
            /* Do nothing. */
1097
        } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1124
        } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1098
            /* The interval intersects with the left interval. */
1125
            /* The interval intersects with the left interval. */
1099
            return 0;
1126
            return 0;
1100
        } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1127
        } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1101
            /* The interval intersects with the right interval. */
1128
            /* The interval intersects with the right interval. */
1102
            return 0;          
1129
            return 0;          
1103
        } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1130
        } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1104
            /* The interval can be added by merging the two already present intervals. */
1131
            /* The interval can be added by merging the two already present intervals. */
1105
            node->value[node->keys - 1] += count + right_cnt;
1132
            node->value[node->keys - 1] += count + right_cnt;
1106
            btree_remove(&a->used_space, right_pg, leaf);
1133
            btree_remove(&a->used_space, right_pg, leaf);
1107
            return 1;
1134
            return 1;
1108
        } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1135
        } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1109
            /* The interval can be added by simply growing the left interval. */
1136
            /* The interval can be added by simply growing the left interval. */
1110
            node->value[node->keys - 1] += count;
1137
            node->value[node->keys - 1] += count;
1111
            return 1;
1138
            return 1;
1112
        } else if (page + count*PAGE_SIZE == right_pg) {
1139
        } else if (page + count*PAGE_SIZE == right_pg) {
1113
            /*
1140
            /*
1114
             * The interval can be addded by simply moving base of the right
1141
             * The interval can be addded by simply moving base of the right
1115
             * interval down and increasing its size accordingly.
1142
             * interval down and increasing its size accordingly.
1116
             */
1143
             */
1117
            leaf->value[0] += count;
1144
            leaf->value[0] += count;
1118
            leaf->key[0] = page;
1145
            leaf->key[0] = page;
1119
            return 1;
1146
            return 1;
1120
        } else {
1147
        } else {
1121
            /*
1148
            /*
1122
             * The interval is between both neigbouring intervals,
1149
             * The interval is between both neigbouring intervals,
1123
             * but cannot be merged with any of them.
1150
             * but cannot be merged with any of them.
1124
             */
1151
             */
1125
            btree_insert(&a->used_space, page, (void *) count, leaf);
1152
            btree_insert(&a->used_space, page, (void *) count, leaf);
1126
            return 1;
1153
            return 1;
1127
        }
1154
        }
1128
    } else if (page < leaf->key[0]) {
1155
    } else if (page < leaf->key[0]) {
1129
        __address right_pg = leaf->key[0];
1156
        __address right_pg = leaf->key[0];
1130
        count_t right_cnt = (count_t) leaf->value[0];
1157
        count_t right_cnt = (count_t) leaf->value[0];
1131
   
1158
   
1132
        /*
1159
        /*
1133
         * Investigate the border case in which the left neighbour does not
1160
         * Investigate the border case in which the left neighbour does not
1134
         * exist but the interval fits from the left.
1161
         * exist but the interval fits from the left.
1135
         */
1162
         */
1136
         
1163
         
1137
        if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1164
        if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1138
            /* The interval intersects with the right interval. */
1165
            /* The interval intersects with the right interval. */
1139
            return 0;
1166
            return 0;
1140
        } else if (page + count*PAGE_SIZE == right_pg) {
1167
        } else if (page + count*PAGE_SIZE == right_pg) {
1141
            /*
1168
            /*
1142
             * The interval can be added by moving the base of the right interval down
1169
             * The interval can be added by moving the base of the right interval down
1143
             * and increasing its size accordingly.
1170
             * and increasing its size accordingly.
1144
             */
1171
             */
1145
            leaf->key[0] = page;
1172
            leaf->key[0] = page;
1146
            leaf->value[0] += count;
1173
            leaf->value[0] += count;
1147
            return 1;
1174
            return 1;
1148
        } else {
1175
        } else {
1149
            /*
1176
            /*
1150
             * The interval doesn't adjoin with the right interval.
1177
             * The interval doesn't adjoin with the right interval.
1151
             * It must be added individually.
1178
             * It must be added individually.
1152
             */
1179
             */
1153
            btree_insert(&a->used_space, page, (void *) count, leaf);
1180
            btree_insert(&a->used_space, page, (void *) count, leaf);
1154
            return 1;
1181
            return 1;
1155
        }
1182
        }
1156
    }
1183
    }
1157
 
1184
 
1158
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1185
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1159
    if (node) {
1186
    if (node) {
1160
        __address left_pg = leaf->key[leaf->keys - 1], right_pg = node->key[0];
1187
        __address left_pg = leaf->key[leaf->keys - 1], right_pg = node->key[0];
1161
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1], right_cnt = (count_t) node->value[0];
1188
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1], right_cnt = (count_t) node->value[0];
1162
       
1189
       
1163
        /*
1190
        /*
1164
         * Examine the possibility that the interval fits
1191
         * Examine the possibility that the interval fits
1165
         * somewhere between the leftmost interval of
1192
         * somewhere between the leftmost interval of
1166
         * the right neigbour and the last interval of the leaf.
1193
         * the right neigbour and the last interval of the leaf.
1167
         */
1194
         */
1168
 
1195
 
1169
        if (page < left_pg) {
1196
        if (page < left_pg) {
1170
            /* Do nothing. */
1197
            /* Do nothing. */
1171
        } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1198
        } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1172
            /* The interval intersects with the left interval. */
1199
            /* The interval intersects with the left interval. */
1173
            return 0;
1200
            return 0;
1174
        } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1201
        } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1175
            /* The interval intersects with the right interval. */
1202
            /* The interval intersects with the right interval. */
1176
            return 0;          
1203
            return 0;          
1177
        } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1204
        } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1178
            /* The interval can be added by merging the two already present intervals. */
1205
            /* The interval can be added by merging the two already present intervals. */
1179
            leaf->value[leaf->keys - 1] += count + right_cnt;
1206
            leaf->value[leaf->keys - 1] += count + right_cnt;
1180
            btree_remove(&a->used_space, right_pg, node);
1207
            btree_remove(&a->used_space, right_pg, node);
1181
            return 1;
1208
            return 1;
1182
        } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1209
        } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1183
            /* The interval can be added by simply growing the left interval. */
1210
            /* The interval can be added by simply growing the left interval. */
1184
            leaf->value[leaf->keys - 1] +=  count;
1211
            leaf->value[leaf->keys - 1] +=  count;
1185
            return 1;
1212
            return 1;
1186
        } else if (page + count*PAGE_SIZE == right_pg) {
1213
        } else if (page + count*PAGE_SIZE == right_pg) {
1187
            /*
1214
            /*
1188
             * The interval can be addded by simply moving base of the right
1215
             * The interval can be addded by simply moving base of the right
1189
             * interval down and increasing its size accordingly.
1216
             * interval down and increasing its size accordingly.
1190
             */
1217
             */
1191
            node->value[0] += count;
1218
            node->value[0] += count;
1192
            node->key[0] = page;
1219
            node->key[0] = page;
1193
            return 1;
1220
            return 1;
1194
        } else {
1221
        } else {
1195
            /*
1222
            /*
1196
             * The interval is between both neigbouring intervals,
1223
             * The interval is between both neigbouring intervals,
1197
             * but cannot be merged with any of them.
1224
             * but cannot be merged with any of them.
1198
             */
1225
             */
1199
            btree_insert(&a->used_space, page, (void *) count, leaf);
1226
            btree_insert(&a->used_space, page, (void *) count, leaf);
1200
            return 1;
1227
            return 1;
1201
        }
1228
        }
1202
    } else if (page >= leaf->key[leaf->keys - 1]) {
1229
    } else if (page >= leaf->key[leaf->keys - 1]) {
1203
        __address left_pg = leaf->key[leaf->keys - 1];
1230
        __address left_pg = leaf->key[leaf->keys - 1];
1204
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1231
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1205
   
1232
   
1206
        /*
1233
        /*
1207
         * Investigate the border case in which the right neighbour does not
1234
         * Investigate the border case in which the right neighbour does not
1208
         * exist but the interval fits from the right.
1235
         * exist but the interval fits from the right.
1209
         */
1236
         */
1210
         
1237
         
1211
        if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1238
        if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1212
            /* The interval intersects with the left interval. */
1239
            /* The interval intersects with the left interval. */
1213
            return 0;
1240
            return 0;
1214
        } else if (left_pg + left_cnt*PAGE_SIZE == page) {
1241
        } else if (left_pg + left_cnt*PAGE_SIZE == page) {
1215
            /* The interval can be added by growing the left interval. */
1242
            /* The interval can be added by growing the left interval. */
1216
            leaf->value[leaf->keys - 1] += count;
1243
            leaf->value[leaf->keys - 1] += count;
1217
            return 1;
1244
            return 1;
1218
        } else {
1245
        } else {
1219
            /*
1246
            /*
1220
             * The interval doesn't adjoin with the left interval.
1247
             * The interval doesn't adjoin with the left interval.
1221
             * It must be added individually.
1248
             * It must be added individually.
1222
             */
1249
             */
1223
            btree_insert(&a->used_space, page, (void *) count, leaf);
1250
            btree_insert(&a->used_space, page, (void *) count, leaf);
1224
            return 1;
1251
            return 1;
1225
        }
1252
        }
1226
    }
1253
    }
1227
   
1254
   
1228
    /*
1255
    /*
1229
     * Note that if the algorithm made it thus far, the interval can fit only
1256
     * Note that if the algorithm made it thus far, the interval can fit only
1230
     * between two other intervals of the leaf. The two border cases were already
1257
     * between two other intervals of the leaf. The two border cases were already
1231
     * resolved.
1258
     * resolved.
1232
     */
1259
     */
1233
    for (i = 1; i < leaf->keys; i++) {
1260
    for (i = 1; i < leaf->keys; i++) {
1234
        if (page < leaf->key[i]) {
1261
        if (page < leaf->key[i]) {
1235
            __address left_pg = leaf->key[i - 1], right_pg = leaf->key[i];
1262
            __address left_pg = leaf->key[i - 1], right_pg = leaf->key[i];
1236
            count_t left_cnt = (count_t) leaf->value[i - 1], right_cnt = (count_t) leaf->value[i];
1263
            count_t left_cnt = (count_t) leaf->value[i - 1], right_cnt = (count_t) leaf->value[i];
1237
 
1264
 
1238
            /*
1265
            /*
1239
             * The interval fits between left_pg and right_pg.
1266
             * The interval fits between left_pg and right_pg.
1240
             */
1267
             */
1241
 
1268
 
1242
            if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1269
            if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1243
                /* The interval intersects with the left interval. */
1270
                /* The interval intersects with the left interval. */
1244
                return 0;
1271
                return 0;
1245
            } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1272
            } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1246
                /* The interval intersects with the right interval. */
1273
                /* The interval intersects with the right interval. */
1247
                return 0;          
1274
                return 0;          
1248
            } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1275
            } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1249
                /* The interval can be added by merging the two already present intervals. */
1276
                /* The interval can be added by merging the two already present intervals. */
1250
                leaf->value[i - 1] += count + right_cnt;
1277
                leaf->value[i - 1] += count + right_cnt;
1251
                btree_remove(&a->used_space, right_pg, leaf);
1278
                btree_remove(&a->used_space, right_pg, leaf);
1252
                return 1;
1279
                return 1;
1253
            } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1280
            } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1254
                /* The interval can be added by simply growing the left interval. */
1281
                /* The interval can be added by simply growing the left interval. */
1255
                leaf->value[i - 1] += count;
1282
                leaf->value[i - 1] += count;
1256
                return 1;
1283
                return 1;
1257
            } else if (page + count*PAGE_SIZE == right_pg) {
1284
            } else if (page + count*PAGE_SIZE == right_pg) {
1258
                /*
1285
                /*
1259
                     * The interval can be addded by simply moving base of the right
1286
                     * The interval can be addded by simply moving base of the right
1260
                 * interval down and increasing its size accordingly.
1287
                 * interval down and increasing its size accordingly.
1261
                 */
1288
                 */
1262
                leaf->value[i] += count;
1289
                leaf->value[i] += count;
1263
                leaf->key[i] = page;
1290
                leaf->key[i] = page;
1264
                return 1;
1291
                return 1;
1265
            } else {
1292
            } else {
1266
                /*
1293
                /*
1267
                 * The interval is between both neigbouring intervals,
1294
                 * The interval is between both neigbouring intervals,
1268
                 * but cannot be merged with any of them.
1295
                 * but cannot be merged with any of them.
1269
                 */
1296
                 */
1270
                btree_insert(&a->used_space, page, (void *) count, leaf);
1297
                btree_insert(&a->used_space, page, (void *) count, leaf);
1271
                return 1;
1298
                return 1;
1272
            }
1299
            }
1273
        }
1300
        }
1274
    }
1301
    }
1275
 
1302
 
1276
    panic("Inconsistency detected while adding %d pages of used space at %P.\n", count, page);
1303
    panic("Inconsistency detected while adding %d pages of used space at %P.\n", count, page);
1277
}
1304
}
1278
 
1305
 
1279
/** Mark portion of address space area as unused.
1306
/** Mark portion of address space area as unused.
1280
 *
1307
 *
1281
 * The address space area must be already locked.
1308
 * The address space area must be already locked.
1282
 *
1309
 *
1283
 * @param a Address space area.
1310
 * @param a Address space area.
1284
 * @param page First page to be marked.
1311
 * @param page First page to be marked.
1285
 * @param count Number of page to be marked.
1312
 * @param count Number of page to be marked.
1286
 *
1313
 *
1287
 * @return 0 on failure and 1 on success.
1314
 * @return 0 on failure and 1 on success.
1288
 */
1315
 */
1289
int used_space_remove(as_area_t *a, __address page, count_t count)
1316
int used_space_remove(as_area_t *a, __address page, count_t count)
1290
{
1317
{
1291
    btree_node_t *leaf, *node;
1318
    btree_node_t *leaf, *node;
1292
    count_t pages;
1319
    count_t pages;
1293
    int i;
1320
    int i;
1294
 
1321
 
1295
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1322
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1296
    ASSERT(count);
1323
    ASSERT(count);
1297
 
1324
 
1298
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1325
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1299
    if (pages) {
1326
    if (pages) {
1300
        /*
1327
        /*
1301
         * We are lucky, page is the beginning of some interval.
1328
         * We are lucky, page is the beginning of some interval.
1302
         */
1329
         */
1303
        if (count > pages) {
1330
        if (count > pages) {
1304
            return 0;
1331
            return 0;
1305
        } else if (count == pages) {
1332
        } else if (count == pages) {
1306
            btree_remove(&a->used_space, page, leaf);
1333
            btree_remove(&a->used_space, page, leaf);
1307
            return 1;
1334
            return 1;
1308
        } else {
1335
        } else {
1309
            /*
1336
            /*
1310
             * Find the respective interval.
1337
             * Find the respective interval.
1311
             * Decrease its size and relocate its start address.
1338
             * Decrease its size and relocate its start address.
1312
             */
1339
             */
1313
            for (i = 0; i < leaf->keys; i++) {
1340
            for (i = 0; i < leaf->keys; i++) {
1314
                if (leaf->key[i] == page) {
1341
                if (leaf->key[i] == page) {
1315
                    leaf->key[i] += count*PAGE_SIZE;
1342
                    leaf->key[i] += count*PAGE_SIZE;
1316
                    leaf->value[i] -= count;
1343
                    leaf->value[i] -= count;
1317
                    return 1;
1344
                    return 1;
1318
                }
1345
                }
1319
            }
1346
            }
1320
            goto error;
1347
            goto error;
1321
        }
1348
        }
1322
    }
1349
    }
1323
 
1350
 
1324
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1351
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1325
    if (node && page < leaf->key[0]) {
1352
    if (node && page < leaf->key[0]) {
1326
        __address left_pg = node->key[node->keys - 1];
1353
        __address left_pg = node->key[node->keys - 1];
1327
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1354
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1328
 
1355
 
1329
        if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1356
        if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1330
            if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1357
            if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1331
                /*
1358
                /*
1332
                 * The interval is contained in the rightmost interval
1359
                 * The interval is contained in the rightmost interval
1333
                 * of the left neighbour and can be removed by
1360
                 * of the left neighbour and can be removed by
1334
                 * updating the size of the bigger interval.
1361
                 * updating the size of the bigger interval.
1335
                 */
1362
                 */
1336
                node->value[node->keys - 1] -= count;
1363
                node->value[node->keys - 1] -= count;
1337
                return 1;
1364
                return 1;
1338
            } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1365
            } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1339
                count_t new_cnt;
1366
                count_t new_cnt;
1340
               
1367
               
1341
                /*
1368
                /*
1342
                 * The interval is contained in the rightmost interval
1369
                 * The interval is contained in the rightmost interval
1343
                 * of the left neighbour but its removal requires
1370
                 * of the left neighbour but its removal requires
1344
                 * both updating the size of the original interval and
1371
                 * both updating the size of the original interval and
1345
                 * also inserting a new interval.
1372
                 * also inserting a new interval.
1346
                 */
1373
                 */
1347
                new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1374
                new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1348
                node->value[node->keys - 1] -= count + new_cnt;
1375
                node->value[node->keys - 1] -= count + new_cnt;
1349
                btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1376
                btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1350
                return 1;
1377
                return 1;
1351
            }
1378
            }
1352
        }
1379
        }
1353
        return 0;
1380
        return 0;
1354
    } else if (page < leaf->key[0]) {
1381
    } else if (page < leaf->key[0]) {
1355
        return 0;
1382
        return 0;
1356
    }
1383
    }
1357
   
1384
   
1358
    if (page > leaf->key[leaf->keys - 1]) {
1385
    if (page > leaf->key[leaf->keys - 1]) {
1359
        __address left_pg = leaf->key[leaf->keys - 1];
1386
        __address left_pg = leaf->key[leaf->keys - 1];
1360
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1387
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1361
 
1388
 
1362
        if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1389
        if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1363
            if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1390
            if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1364
                /*
1391
                /*
1365
                 * The interval is contained in the rightmost interval
1392
                 * The interval is contained in the rightmost interval
1366
                 * of the leaf and can be removed by updating the size
1393
                 * of the leaf and can be removed by updating the size
1367
                 * of the bigger interval.
1394
                 * of the bigger interval.
1368
                 */
1395
                 */
1369
                leaf->value[leaf->keys - 1] -= count;
1396
                leaf->value[leaf->keys - 1] -= count;
1370
                return 1;
1397
                return 1;
1371
            } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1398
            } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1372
                count_t new_cnt;
1399
                count_t new_cnt;
1373
               
1400
               
1374
                /*
1401
                /*
1375
                 * The interval is contained in the rightmost interval
1402
                 * The interval is contained in the rightmost interval
1376
                 * of the leaf but its removal requires both updating
1403
                 * of the leaf but its removal requires both updating
1377
                 * the size of the original interval and
1404
                 * the size of the original interval and
1378
                 * also inserting a new interval.
1405
                 * also inserting a new interval.
1379
                 */
1406
                 */
1380
                new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1407
                new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1381
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1408
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1382
                btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1409
                btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1383
                return 1;
1410
                return 1;
1384
            }
1411
            }
1385
        }
1412
        }
1386
        return 0;
1413
        return 0;
1387
    }  
1414
    }  
1388
   
1415
   
1389
    /*
1416
    /*
1390
     * The border cases have been already resolved.
1417
     * The border cases have been already resolved.
1391
     * Now the interval can be only between intervals of the leaf.
1418
     * Now the interval can be only between intervals of the leaf.
1392
     */
1419
     */
1393
    for (i = 1; i < leaf->keys - 1; i++) {
1420
    for (i = 1; i < leaf->keys - 1; i++) {
1394
        if (page < leaf->key[i]) {
1421
        if (page < leaf->key[i]) {
1395
            __address left_pg = leaf->key[i - 1];
1422
            __address left_pg = leaf->key[i - 1];
1396
            count_t left_cnt = (count_t) leaf->value[i - 1];
1423
            count_t left_cnt = (count_t) leaf->value[i - 1];
1397
 
1424
 
1398
            /*
1425
            /*
1399
             * Now the interval is between intervals corresponding to (i - 1) and i.
1426
             * Now the interval is between intervals corresponding to (i - 1) and i.
1400
             */
1427
             */
1401
            if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1428
            if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1402
                if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1429
                if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1403
                    /*
1430
                    /*
1404
                    * The interval is contained in the interval (i - 1)
1431
                    * The interval is contained in the interval (i - 1)
1405
                     * of the leaf and can be removed by updating the size
1432
                     * of the leaf and can be removed by updating the size
1406
                     * of the bigger interval.
1433
                     * of the bigger interval.
1407
                     */
1434
                     */
1408
                    leaf->value[i - 1] -= count;
1435
                    leaf->value[i - 1] -= count;
1409
                    return 1;
1436
                    return 1;
1410
                } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1437
                } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1411
                    count_t new_cnt;
1438
                    count_t new_cnt;
1412
               
1439
               
1413
                    /*
1440
                    /*
1414
                     * The interval is contained in the interval (i - 1)
1441
                     * The interval is contained in the interval (i - 1)
1415
                     * of the leaf but its removal requires both updating
1442
                     * of the leaf but its removal requires both updating
1416
                     * the size of the original interval and
1443
                     * the size of the original interval and
1417
                     * also inserting a new interval.
1444
                     * also inserting a new interval.
1418
                     */
1445
                     */
1419
                    new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1446
                    new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1420
                    leaf->value[i - 1] -= count + new_cnt;
1447
                    leaf->value[i - 1] -= count + new_cnt;
1421
                    btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1448
                    btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1422
                    return 1;
1449
                    return 1;
1423
                }
1450
                }
1424
            }
1451
            }
1425
            return 0;
1452
            return 0;
1426
        }
1453
        }
1427
    }
1454
    }
1428
 
1455
 
1429
error:
1456
error:
1430
    panic("Inconsistency detected while removing %d pages of used space from %P.\n", count, page);
1457
    panic("Inconsistency detected while removing %d pages of used space from %P.\n", count, page);
1431
}
1458
}
1432
 
1459
 
1433
/** Remove reference to address space area share info.
1460
/** Remove reference to address space area share info.
1434
 *
1461
 *
1435
 * If the reference count drops to 0, the sh_info is deallocated.
1462
 * If the reference count drops to 0, the sh_info is deallocated.
1436
 *
1463
 *
1437
 * @param sh_info Pointer to address space area share info.
1464
 * @param sh_info Pointer to address space area share info.
1438
 */
1465
 */
1439
void sh_info_remove_reference(share_info_t *sh_info)
1466
void sh_info_remove_reference(share_info_t *sh_info)
1440
{
1467
{
1441
    bool dealloc = false;
1468
    bool dealloc = false;
1442
 
1469
 
1443
    mutex_lock(&sh_info->lock);
1470
    mutex_lock(&sh_info->lock);
1444
    ASSERT(sh_info->refcount);
1471
    ASSERT(sh_info->refcount);
1445
    if (--sh_info->refcount == 0) {
1472
    if (--sh_info->refcount == 0) {
1446
        dealloc = true;
1473
        dealloc = true;
1447
        bool cond;
1474
        bool cond;
1448
       
1475
       
1449
        /*
1476
        /*
1450
         * Now walk carefully the pagemap B+tree and free/remove
1477
         * Now walk carefully the pagemap B+tree and free/remove
1451
         * reference from all frames found there.
1478
         * reference from all frames found there.
1452
         */
1479
         */
1453
        for (cond = true; cond;) {
1480
        for (cond = true; cond;) {
1454
            btree_node_t *node;
1481
            btree_node_t *node;
1455
           
1482
           
1456
            ASSERT(!list_empty(&sh_info->pagemap.leaf_head));
1483
            ASSERT(!list_empty(&sh_info->pagemap.leaf_head));
1457
            node = list_get_instance(sh_info->pagemap.leaf_head.next, btree_node_t, leaf_link);
1484
            node = list_get_instance(sh_info->pagemap.leaf_head.next, btree_node_t, leaf_link);
1458
            if ((cond = node->keys)) {
1485
            if ((cond = node->keys)) {
1459
                frame_free(ADDR2PFN((__address) node->value[0]));
1486
                frame_free(ADDR2PFN((__address) node->value[0]));
1460
                btree_remove(&sh_info->pagemap, node->key[0], node);
1487
                btree_remove(&sh_info->pagemap, node->key[0], node);
1461
            }
1488
            }
1462
        }
1489
        }
1463
       
1490
       
1464
    }
1491
    }
1465
    mutex_unlock(&sh_info->lock);
1492
    mutex_unlock(&sh_info->lock);
1466
   
1493
   
1467
    if (dealloc) {
1494
    if (dealloc) {
1468
        btree_destroy(&sh_info->pagemap);
1495
        btree_destroy(&sh_info->pagemap);
1469
        free(sh_info);
1496
        free(sh_info);
1470
    }
1497
    }
1471
}
1498
}
1472
 
1499
 
1473
static int anon_page_fault(as_area_t *area, __address addr, pf_access_t access);
1500
static int anon_page_fault(as_area_t *area, __address addr, pf_access_t access);
1474
static void anon_frame_free(as_area_t *area, __address page, __address frame);
1501
static void anon_frame_free(as_area_t *area, __address page, __address frame);
1475
 
1502
 
1476
/*
1503
/*
1477
 * Anonymous memory backend.
1504
 * Anonymous memory backend.
1478
 */
1505
 */
1479
mem_backend_t anon_backend = {
1506
mem_backend_t anon_backend = {
1480
    .backend_page_fault = anon_page_fault,
1507
    .backend_page_fault = anon_page_fault,
1481
    .backend_frame_free = anon_frame_free
1508
    .backend_frame_free = anon_frame_free
1482
};
1509
};
1483
 
1510
 
1484
/** Service a page fault in the anonymous memory address space area.
1511
/** Service a page fault in the anonymous memory address space area.
1485
 *
1512
 *
1486
 * The address space area and page tables must be already locked.
1513
 * The address space area and page tables must be already locked.
1487
 *
1514
 *
1488
 * @param area Pointer to the address space area.
1515
 * @param area Pointer to the address space area.
1489
 * @param addr Faulting virtual address.
1516
 * @param addr Faulting virtual address.
1490
 * @param access Access mode that caused the fault (i.e. read/write/exec).
1517
 * @param access Access mode that caused the fault (i.e. read/write/exec).
1491
 *
1518
 *
1492
 * @return AS_PF_FAULT on failure (i.e. page fault) or AS_PF_OK on success (i.e. serviced).
1519
 * @return AS_PF_FAULT on failure (i.e. page fault) or AS_PF_OK on success (i.e. serviced).
1493
 */
1520
 */
1494
int anon_page_fault(as_area_t *area, __address addr, pf_access_t access)
1521
int anon_page_fault(as_area_t *area, __address addr, pf_access_t access)
1495
{
1522
{
1496
    __address frame;
1523
    __address frame;
1497
 
1524
 
-
 
1525
    if (!as_area_check_access(area, access))
-
 
1526
        return AS_PF_FAULT;
-
 
1527
 
1498
    if (area->sh_info) {
1528
    if (area->sh_info) {
1499
        btree_node_t *leaf;
1529
        btree_node_t *leaf;
1500
       
1530
       
1501
        /*
1531
        /*
1502
         * The area is shared, chances are that the mapping can be found
1532
         * The area is shared, chances are that the mapping can be found
1503
         * in the pagemap of the address space area share info structure.
1533
         * in the pagemap of the address space area share info structure.
1504
         * In the case that the pagemap does not contain the respective
1534
         * In the case that the pagemap does not contain the respective
1505
         * mapping, a new frame is allocated and the mapping is created.
1535
         * mapping, a new frame is allocated and the mapping is created.
1506
         */
1536
         */
1507
        mutex_lock(&area->sh_info->lock);
1537
        mutex_lock(&area->sh_info->lock);
1508
        frame = (__address) btree_search(&area->sh_info->pagemap,
1538
        frame = (__address) btree_search(&area->sh_info->pagemap,
1509
            ALIGN_DOWN(addr, PAGE_SIZE) - area->base, &leaf);
1539
            ALIGN_DOWN(addr, PAGE_SIZE) - area->base, &leaf);
1510
        if (!frame) {
1540
        if (!frame) {
1511
            bool allocate = true;
1541
            bool allocate = true;
1512
            int i;
1542
            int i;
1513
           
1543
           
1514
            /*
1544
            /*
1515
             * Zero can be returned as a valid frame address.
1545
             * Zero can be returned as a valid frame address.
1516
             * Just a small workaround.
1546
             * Just a small workaround.
1517
             */
1547
             */
1518
            for (i = 0; i < leaf->keys; i++) {
1548
            for (i = 0; i < leaf->keys; i++) {
1519
                if (leaf->key[i] == ALIGN_DOWN(addr, PAGE_SIZE)) {
1549
                if (leaf->key[i] == ALIGN_DOWN(addr, PAGE_SIZE)) {
1520
                    allocate = false;
1550
                    allocate = false;
1521
                    break;
1551
                    break;
1522
                }
1552
                }
1523
            }
1553
            }
1524
            if (allocate) {
1554
            if (allocate) {
1525
                frame = PFN2ADDR(frame_alloc(ONE_FRAME, 0));
1555
                frame = PFN2ADDR(frame_alloc(ONE_FRAME, 0));
1526
                memsetb(PA2KA(frame), FRAME_SIZE, 0);
1556
                memsetb(PA2KA(frame), FRAME_SIZE, 0);
1527
               
1557
               
1528
                /*
1558
                /*
1529
                 * Insert the address of the newly allocated frame to the pagemap.
1559
                 * Insert the address of the newly allocated frame to the pagemap.
1530
                 */
1560
                 */
1531
                btree_insert(&area->sh_info->pagemap, ALIGN_DOWN(addr, PAGE_SIZE) - area->base, (void *) frame, leaf);
1561
                btree_insert(&area->sh_info->pagemap, ALIGN_DOWN(addr, PAGE_SIZE) - area->base, (void *) frame, leaf);
1532
            }
1562
            }
1533
        }
1563
        }
1534
        mutex_unlock(&area->sh_info->lock);
1564
        mutex_unlock(&area->sh_info->lock);
1535
    } else {
1565
    } else {
1536
 
1566
 
1537
        /*
1567
        /*
1538
         * In general, there can be several reasons that
1568
         * In general, there can be several reasons that
1539
         * can have caused this fault.
1569
         * can have caused this fault.
1540
         *
1570
         *
1541
         * - non-existent mapping: the area is an anonymous
1571
         * - non-existent mapping: the area is an anonymous
1542
         *   area (e.g. heap or stack) and so far has not been
1572
         *   area (e.g. heap or stack) and so far has not been
1543
         *   allocated a frame for the faulting page
1573
         *   allocated a frame for the faulting page
1544
         *
1574
         *
1545
         * - non-present mapping: another possibility,
1575
         * - non-present mapping: another possibility,
1546
         *   currently not implemented, would be frame
1576
         *   currently not implemented, would be frame
1547
         *   reuse; when this becomes a possibility,
1577
         *   reuse; when this becomes a possibility,
1548
         *   do not forget to distinguish between
1578
         *   do not forget to distinguish between
1549
         *   the different causes
1579
         *   the different causes
1550
         */
1580
         */
1551
        frame = PFN2ADDR(frame_alloc(ONE_FRAME, 0));
1581
        frame = PFN2ADDR(frame_alloc(ONE_FRAME, 0));
1552
        memsetb(PA2KA(frame), FRAME_SIZE, 0);
1582
        memsetb(PA2KA(frame), FRAME_SIZE, 0);
1553
    }
1583
    }
1554
   
1584
   
1555
    /*
1585
    /*
1556
     * Map 'page' to 'frame'.
1586
     * Map 'page' to 'frame'.
1557
     * Note that TLB shootdown is not attempted as only new information is being
1587
     * Note that TLB shootdown is not attempted as only new information is being
1558
     * inserted into page tables.
1588
     * inserted into page tables.
1559
     */
1589
     */
1560
    page_mapping_insert(AS, addr, frame, as_area_get_flags(area));
1590
    page_mapping_insert(AS, addr, frame, as_area_get_flags(area));
1561
    if (!used_space_insert(area, ALIGN_DOWN(addr, PAGE_SIZE), 1))
1591
    if (!used_space_insert(area, ALIGN_DOWN(addr, PAGE_SIZE), 1))
1562
        panic("Could not insert used space.\n");
1592
        panic("Could not insert used space.\n");
1563
       
1593
       
1564
    return AS_PF_OK;
1594
    return AS_PF_OK;
1565
}
1595
}
1566
 
1596
 
1567
/** Free a frame that is backed by the anonymous memory backend.
1597
/** Free a frame that is backed by the anonymous memory backend.
1568
 *
1598
 *
1569
 * The address space area and page tables must be already locked.
1599
 * The address space area and page tables must be already locked.
1570
 *
1600
 *
1571
 * @param area Ignored.
1601
 * @param area Ignored.
1572
 * @param page Ignored.
1602
 * @param page Ignored.
1573
 * @param frame Frame to be released.
1603
 * @param frame Frame to be released.
1574
 */
1604
 */
1575
void anon_frame_free(as_area_t *area, __address page, __address frame)
1605
void anon_frame_free(as_area_t *area, __address page, __address frame)
1576
{
1606
{
1577
    frame_free(ADDR2PFN(frame));
1607
    frame_free(ADDR2PFN(frame));
1578
}
1608
}
1579
 
1609
 
1580
/*
1610
/*
1581
 * Address space related syscalls.
1611
 * Address space related syscalls.
1582
 */
1612
 */
1583
 
1613
 
1584
/** Wrapper for as_area_create(). */
1614
/** Wrapper for as_area_create(). */
1585
__native sys_as_area_create(__address address, size_t size, int flags)
1615
__native sys_as_area_create(__address address, size_t size, int flags)
1586
{
1616
{
1587
    if (as_area_create(AS, flags, size, address, AS_AREA_ATTR_NONE, &anon_backend, NULL))
1617
    if (as_area_create(AS, flags, size, address, AS_AREA_ATTR_NONE, &anon_backend, NULL))
1588
        return (__native) address;
1618
        return (__native) address;
1589
    else
1619
    else
1590
        return (__native) -1;
1620
        return (__native) -1;
1591
}
1621
}
1592
 
1622
 
1593
/** Wrapper for as_area_resize. */
1623
/** Wrapper for as_area_resize. */
1594
__native sys_as_area_resize(__address address, size_t size, int flags)
1624
__native sys_as_area_resize(__address address, size_t size, int flags)
1595
{
1625
{
1596
    return (__native) as_area_resize(AS, address, size, 0);
1626
    return (__native) as_area_resize(AS, address, size, 0);
1597
}
1627
}
1598
 
1628
 
1599
/** Wrapper for as_area_destroy. */
1629
/** Wrapper for as_area_destroy. */
1600
__native sys_as_area_destroy(__address address)
1630
__native sys_as_area_destroy(__address address)
1601
{
1631
{
1602
    return (__native) as_area_destroy(AS, address);
1632
    return (__native) as_area_destroy(AS, address);
1603
}
1633
}
1604
 
1634