Subversion Repositories HelenOS-historic

Rev

Rev 1121 | Rev 1136 | Go to most recent revision | Show entire file | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 1121 Rev 1134
Line 40... Line 40...
40
 *    directly.
40
 *    directly.
41
 *  - node_split() always creates the right sibling and preserves
41
 *  - node_split() always creates the right sibling and preserves
42
 *    the original node (which becomes the left sibling).
42
 *    the original node (which becomes the left sibling).
43
 *    There is always pointer to the left-hand side subtree
43
 *    There is always pointer to the left-hand side subtree
44
 *    (i.e. left sibling) in the parent node.
44
 *    (i.e. left sibling) in the parent node.
-
 
45
 *
-
 
46
 * Be carefull when using these trees. They need to allocate
-
 
47
 * and deallocate memory for their index nodes and as such
-
 
48
 * can sleep.
45
 */
49
 */
46
 
50
 
47
#include <adt/btree.h>
51
#include <adt/btree.h>
48
#include <adt/list.h>
52
#include <adt/list.h>
49
#include <mm/slab.h>
53
#include <mm/slab.h>
Line 53... Line 57...
53
#include <print.h>
57
#include <print.h>
54
 
58
 
55
static void _btree_insert(btree_t *t, __native key, void *value, btree_node_t *rsubtree, btree_node_t *node);
59
static void _btree_insert(btree_t *t, __native key, void *value, btree_node_t *rsubtree, btree_node_t *node);
56
static void node_initialize(btree_node_t *node);
60
static void node_initialize(btree_node_t *node);
57
static void node_insert_key(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree);
61
static void node_insert_key(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree);
-
 
62
void node_remove_key(btree_node_t *node, __native key);
58
static btree_node_t *node_split(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree, __native *median);
63
static btree_node_t *node_split(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree, __native *median);
59
 
64
 
60
#define ROOT_NODE(n)        (!(n)->parent)
65
#define ROOT_NODE(n)        (!(n)->parent)
61
#define INDEX_NODE(n)       ((n)->subtree[0] != NULL)
66
#define INDEX_NODE(n)       ((n)->subtree[0] != NULL)
62
#define LEAF_NODE(n)        ((n)->subtree[0] == NULL)
67
#define LEAF_NODE(n)        ((n)->subtree[0] == NULL)
Line 176... Line 181...
176
 * @return Pointer to value or NULL if there is no such key.
181
 * @return Pointer to value or NULL if there is no such key.
177
 */
182
 */
178
void *btree_search(btree_t *t, __native key, btree_node_t **leaf_node)
183
void *btree_search(btree_t *t, __native key, btree_node_t **leaf_node)
179
{
184
{
180
    btree_node_t *cur, *next;
185
    btree_node_t *cur, *next;
181
    void *val = NULL;
-
 
182
   
186
   
183
    /*
187
    /*
184
     * Iteratively descend to the leaf that can contain searched key.
188
     * Iteratively descend to the leaf that can contain the searched key.
185
     */
189
     */
186
    for (cur = t->root; cur; cur = next) {
190
    for (cur = t->root; cur; cur = next) {
187
        int i;
-
 
188
   
191
 
189
        /* Last iteration will set this with proper leaf node address. */
192
        /* Last iteration will set this with proper leaf node address. */
190
        *leaf_node = cur;
193
        *leaf_node = cur;
-
 
194
       
-
 
195
        /*
191
        for (i = 0; i < cur->keys; i++) {
196
         * The key can be in the leftmost subtree.
-
 
197
         * Test it separately.
-
 
198
         */
192
            if (key <= cur->key[i]) {
199
        if (key < cur->key[0]) {
193
                val = cur->value[i];
200
            next = cur->subtree[0];
194
                next = cur->subtree[i];
201
            continue;
-
 
202
        } else {
-
 
203
            void *val;
-
 
204
            int i;
195
               
205
       
196
                /*
206
            /*
197
                 * Check if there is anywhere to descend.
207
             * Now if the key is smaller than cur->key[i]
-
 
208
             * it can only mean that the value is in cur->subtree[i]
-
 
209
             * or it is not in the tree at all.
198
                 */
210
             */
-
 
211
            for (i = 1; i < cur->keys; i++) {
199
                if (!next) {
212
                if (key < cur->key[i]) {
200
                    /*
213
                    next = cur->subtree[i];
201
                     * Leaf-level.
214
                    val = cur->value[i - 1];
-
 
215
 
202
                     */
216
                    if (LEAF_NODE(cur))
203
                    return (key == cur->key[i]) ? val : NULL;
217
                        return key == cur->key[i - 1] ? val : NULL;
204
                }
218
 
205
                goto descend;
219
                    goto descend;
-
 
220
                }
206
            }
221
            }
-
 
222
           
-
 
223
            /*
-
 
224
             * Last possibility is that the key is in the rightmost subtree.
-
 
225
             */
-
 
226
            next = cur->subtree[i];
-
 
227
            val = cur->value[i - 1];
-
 
228
            if (LEAF_NODE(cur))
-
 
229
                return key == cur->key[i - 1] ? val : NULL;
207
        }
230
        }
208
        next = cur->subtree[i];
-
 
209
    descend:
231
        descend:
210
        ;
232
            ;
211
    }
233
    }
212
 
234
 
213
    /*
235
    /*
214
     * The key was not found in the *leaf_node and is greater than any of its keys.
236
     * The key was not found in the *leaf_node and is smaller than any of its keys.
215
     */
237
     */
216
    return NULL;
238
    return NULL;
217
}
239
}
218
 
240
 
219
/** Get pointer to value with the smallest key within the node.
241
/** Get pointer to value with the smallest key within the node.
Line 270... Line 292...
270
 
292
 
271
    link_initialize(&node->bfs_link);
293
    link_initialize(&node->bfs_link);
272
    node->depth = 0;
294
    node->depth = 0;
273
}
295
}
274
 
296
 
275
/** Insert key-value-left-subtree triplet into B-tree non-full node.
297
/** Insert key-value-right-subtree triplet into B-tree non-full node.
276
 *
298
 *
277
 * It is actually possible to have more keys than BTREE_MAX_KEYS.
299
 * It is actually possible to have more keys than BTREE_MAX_KEYS.
278
 * This feature is used during splitting the node when the
300
 * This feature is used during splitting the node when the
279
 * number of keys is BTREE_MAX_KEYS + 1.
301
 * number of keys is BTREE_MAX_KEYS + 1.
280
 *
302
 *
Line 305... Line 327...
305
    node->subtree[i + 1] = rsubtree;
327
    node->subtree[i + 1] = rsubtree;
306
           
328
           
307
    node->keys++;
329
    node->keys++;
308
}
330
}
309
 
331
 
310
/** Split full B-tree node and insert new key-value-left-subtree triplet.
332
/** Split full B-tree node and insert new key-value-right-subtree triplet.
311
 *
333
 *
312
 * This function will split a node and return pointer to a newly created
334
 * This function will split a node and return pointer to a newly created
313
 * node containing keys greater than the lesser of medians (or median)
335
 * node containing keys greater than or equal to the greater of medians
314
 * of the old keys and the newly added key. It will also write the
336
 * (or median) of the old keys and the newly added key. It will also write
315
 * median key to a memory address supplied by the caller.
337
 * the median key to a memory address supplied by the caller.
316
 *
338
 *
317
 * If the node being split is an index node, the median will be
339
 * If the node being split is an index node, the median will not be
318
 * removed from the original node. If the node is a leaf node,
340
 * included in the new node. If the node is a leaf node,
319
 * the median will be preserved.
341
 * the median will be copied there.
320
 *
342
 *
321
 * @param node B-tree node wich is going to be split.
343
 * @param node B-tree node wich is going to be split.
322
 * @param key The key to be inserted.
344
 * @param key The key to be inserted.
323
 * @param value Pointer to the value to be inserted.
345
 * @param value Pointer to the value to be inserted.
324
 * @param rsubtree Pointer to the right subtree of the key being added.
346
 * @param rsubtree Pointer to the right subtree of the key being added.
Line 340... Line 362...
340
    node_insert_key(node, key, value, rsubtree);
362
    node_insert_key(node, key, value, rsubtree);
341
 
363
 
342
    /*
364
    /*
343
     * Compute median of keys.
365
     * Compute median of keys.
344
     */
366
     */
345
    *median = MEDIAN_LOW(node);
367
    *median = MEDIAN_HIGH(node);
346
       
368
       
-
 
369
    /*
-
 
370
     * Allocate and initialize new right sibling.
-
 
371
     */
347
    rnode = (btree_node_t *) malloc(sizeof(btree_node_t), 0);
372
    rnode = (btree_node_t *) malloc(sizeof(btree_node_t), 0);
348
    node_initialize(rnode);
373
    node_initialize(rnode);
349
    rnode->parent = node->parent;
374
    rnode->parent = node->parent;
350
    rnode->depth = node->depth;
375
    rnode->depth = node->depth;
351
   
376
   
352
    /*
377
    /*
353
     * Copy big keys, values and subtree pointers to the new right sibling.
378
     * Copy big keys, values and subtree pointers to the new right sibling.
-
 
379
     * If this is an index node, do not copy the median.
354
     */
380
     */
-
 
381
    i = (int) INDEX_NODE(node);
355
    for (i = MEDIAN_LOW_INDEX(node) + 1, j = 0; i < node->keys; i++, j++) {
382
    for (i += MEDIAN_HIGH_INDEX(node), j = 0; i < node->keys; i++, j++) {
356
        rnode->key[j] = node->key[i];
383
        rnode->key[j] = node->key[i];
357
        rnode->value[j] = node->value[i];
384
        rnode->value[j] = node->value[i];
358
        rnode->subtree[j] = node->subtree[i];
385
        rnode->subtree[j] = node->subtree[i];
359
       
386
       
360
        /*
387
        /*
Line 365... Line 392...
365
           
392
           
366
    }
393
    }
367
    rnode->subtree[j] = node->subtree[i];
394
    rnode->subtree[j] = node->subtree[i];
368
    if (rnode->subtree[j])
395
    if (rnode->subtree[j])
369
        rnode->subtree[j]->parent = rnode;
396
        rnode->subtree[j]->parent = rnode;
370
    rnode->keys = j;
-
 
371
   
397
 
372
    /*
-
 
373
     * Shrink the old node.
-
 
374
     * If this is an index node, remove the median.
398
    rnode->keys = j;    /* Set number of keys of the new node. */
375
     */
-
 
376
    node->keys = MEDIAN_LOW_INDEX(node) + 1;
399
    node->keys /= 2;    /* Shrink the old node. */
377
    if (INDEX_NODE(node))
-
 
378
        node->keys--;
-
 
379
       
400
       
380
    return rnode;
401
    return rnode;
381
}
402
}
382
 
403
 
-
 
404
/** Remove key from B-tree node.
-
 
405
 *
-
 
406
 * @param node B-tree node.
-
 
407
 * @param key Key to be removed.
-
 
408
 */
-
 
409
void node_remove_key(btree_node_t *node, __native key)
-
 
410
{
-
 
411
}
-
 
412
 
383
/** Print B-tree.
413
/** Print B-tree.
384
 *
414
 *
385
 * @param t Print out B-tree.
415
 * @param t Print out B-tree.
386
 */
416
 */
387
void btree_print(btree_t *t)
417
void btree_print(btree_t *t)