Subversion Repositories HelenOS-doc

Rev

Rev 66 | Rev 68 | Go to most recent revision | Show entire file | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 66 Rev 67
Line 2... Line 2...
2
<chapter id="mm">
2
<chapter id="mm">
3
  <?dbhtml filename="mm.html"?>
3
  <?dbhtml filename="mm.html"?>
4
 
4
 
5
  <title>Memory management</title>
5
  <title>Memory management</title>
6
 
6
 
7
  <section>
-
 
8
    <title>Virtual memory management</title>
-
 
9
 
-
 
10
    <section>
-
 
11
      <title>Introduction</title>
-
 
12
 
-
 
13
      <para>Virtual memory is a special memory management technique, used by
-
 
14
      kernel to achieve a bunch of mission critical goals. <itemizedlist>
-
 
15
          <listitem>
-
 
16
             Isolate each task from other tasks that are running on the system at the same time.
-
 
17
          </listitem>
-
 
18
 
-
 
19
          <listitem>
-
 
20
             Allow to allocate more memory, than is actual physical memory size of the machine.
-
 
21
          </listitem>
-
 
22
 
-
 
23
          <listitem>
-
 
24
             Allowing, in general, to load and execute two programs that are linked on the same address without complicated relocations.
-
 
25
          </listitem>
-
 
26
        </itemizedlist></para>
-
 
27
 
-
 
28
      <para><!--
-
 
29
                <para>
-
 
30
                        Address spaces. Address space area (B+ tree). Only for uspace. Set of syscalls (shrink/extend etc).
-
 
31
                        Special address space area type - device - prohibits shrink/extend syscalls to call on it.
-
 
32
                        Address space has link to mapping tables (hierarchical - per Address space, hash - global tables).
-
 
33
                </para>
-
 
34
 
-
 
35
--></para>
-
 
36
    </section>
-
 
37
 
-
 
38
    <section>
-
 
39
      <title>Address spaces</title>
-
 
40
 
-
 
41
      <section>
-
 
42
        <title>Address space areas</title>
-
 
43
 
-
 
44
        <para>Each address space consists of mutually disjunctive continuous
-
 
45
        address space areas. Address space area is precisely defined by its
-
 
46
        base address and the number of frames/pages is contains.</para>
-
 
47
 
-
 
48
        <para>Address space area , that define behaviour and permissions on
-
 
49
        the particular area. <itemizedlist>
-
 
50
            <listitem>
-
 
51
               
-
 
52
 
-
 
53
              <emphasis>AS_AREA_READ</emphasis>
-
 
54
 
-
 
55
               flag indicates reading permission.
-
 
56
            </listitem>
-
 
57
 
-
 
58
            <listitem>
-
 
59
               
-
 
60
 
-
 
61
              <emphasis>AS_AREA_WRITE</emphasis>
-
 
62
 
-
 
63
               flag indicates writing permission.
-
 
64
            </listitem>
-
 
65
 
-
 
66
            <listitem>
-
 
67
               
-
 
68
 
-
 
69
              <emphasis>AS_AREA_EXEC</emphasis>
-
 
70
 
-
 
71
               flag indicates code execution permission. Some architectures do not support execution persmission restriction. In this case this flag has no effect.
-
 
72
            </listitem>
-
 
73
 
-
 
74
            <listitem>
-
 
75
               
-
 
76
 
-
 
77
              <emphasis>AS_AREA_DEVICE</emphasis>
-
 
78
 
-
 
79
               marks area as mapped to the device memory.
-
 
80
            </listitem>
-
 
81
          </itemizedlist></para>
-
 
82
 
-
 
83
        <para>Kernel provides possibility tasks create/expand/shrink/share its
-
 
84
        address space via the set of syscalls.</para>
-
 
85
      </section>
-
 
86
 
-
 
87
      <section>
-
 
88
        <title>Address Space ID (ASID)</title>
-
 
89
 
-
 
90
        <para>When switching to the different task, kernel also require to
-
 
91
        switch mappings to the different address space. In case TLB cannot
-
 
92
        distinguish address space mappings, all mapping information in TLB
-
 
93
        from the old address space must be flushed, which can create certain
-
 
94
        uncessary overhead during the task switching. To avoid this, some
-
 
95
        architectures have capability to segregate different address spaces on
-
 
96
        hardware level introducing the address space identifier as a part of
-
 
97
        TLB record, telling the virtual address space translation unit to
-
 
98
        which address space this record is applicable.</para>
-
 
99
 
-
 
100
        <para>HelenOS kernel can take advantage of this hardware supported
-
 
101
        identifier by having an ASID abstraction which is somehow related to
-
 
102
        the corresponding architecture identifier. I.e. on ia64 kernel ASID is
-
 
103
        derived from RID (region identifier) and on the mips32 kernel ASID is
-
 
104
        actually the hardware identifier. As expected, this ASID information
-
 
105
        record is the part of <emphasis>as_t</emphasis> structure.</para>
-
 
106
 
-
 
107
        <para>Due to the hardware limitations, hardware ASID has limited
-
 
108
        length from 8 bits on ia64 to 24 bits on mips32, which makes it
-
 
109
        impossible to use it as unique address space identifier for all tasks
-
 
110
        running in the system. In such situations special ASID stealing
-
 
111
        algoritm is used, which takes ASID from inactive task and assigns it
-
 
112
        to the active task.<classname></classname></para>
-
 
113
      </section>
-
 
114
    </section>
-
 
115
 
-
 
116
    <section>
-
 
117
      <title>Virtual address translation</title>
-
 
118
 
-
 
119
      <section id="pagING">
-
 
120
        <title>Paging</title>
-
 
121
 
-
 
122
        <section>
-
 
123
          <title>Introduction</title>
-
 
124
 
-
 
125
          <para>Virtual memory is usually using paged memory model, where
-
 
126
          virtual memory address space is divided into the
-
 
127
          <emphasis>pages</emphasis> (usually having size 4096 bytes) and
-
 
128
          physical memory is divided into the frames (same sized as a page, of
-
 
129
          course). Each page may be mapped to some frame and then, upon memory
-
 
130
          access to the virtual address, CPU performs <emphasis>address
-
 
131
          translation</emphasis> during the instruction execution.
-
 
132
          Non-existing mapping generates page fault exception, calling kernel
-
 
133
          exception handler, thus allowing kernel to manipulate rules of
7
  <para>In previous chapters, this book described the scheduling subsystem as
134
          memory access. Information for pages mapping is stored by kernel in
-
 
135
          the <link linkend="page_tables">page tables</link></para>
-
 
136
 
-
 
137
          <para>The majority of the architectures use multi-level page tables,
-
 
138
          which means need to access physical memory several times before
-
 
139
          getting physical address. This fact would make serios performance
-
 
140
          overhead in virtual memory management. To avoid this <link
-
 
141
          linkend="tlb">Traslation Lookaside Buffer (TLB)</link> is
-
 
142
          used.</para>
-
 
143
 
-
 
144
          <para>HelenOS kernel has two different approaches to the paging
-
 
145
          implementation: <emphasis>4 level page tables</emphasis> and
-
 
146
          <emphasis>global hash table</emphasis>, which are accessible via
-
 
147
          generic paging abstraction layer. Such different functionality was
-
 
148
          caused by the major architectural differences between supported
-
 
149
          platforms. This abstraction is implemented with help of the global
8
  the creator of the impression that threads execute in parallel. The memory
150
          structure of pointers to basic mapping functions
-
 
151
          <emphasis>page_mapping_operations</emphasis>. To achieve different
-
 
152
          functionality of page tables, corresponding layer must implement
-
 
153
          functions, declared in
-
 
154
          <emphasis>page_mapping_operations</emphasis></para>
-
 
155
 
-
 
156
          <para>Thanks to the abstract paging interface, there was a place
-
 
157
          left for more paging implementations (besides already implemented
-
 
158
          hieararchical page tables and hash table), for example B-Tree based
-
 
159
          page tables.</para>
-
 
160
        </section>
-
 
161
 
-
 
162
        <section>
-
 
163
          <title>Hierarchical 4-level page tables</title>
-
 
164
 
-
 
165
          <para>Hierarchical 4-level page tables are the generalization of the
-
 
166
          hardware capabilities of most architectures. Each address space has
-
 
167
          its own page tables.<itemizedlist>
-
 
168
              <listitem>
-
 
169
                 ia32 uses 2-level page tables, with full hardware support.
-
 
170
              </listitem>
-
 
171
 
-
 
172
              <listitem>
-
 
173
                 amd64 uses 4-level page tables, also coming with full hardware support.
-
 
174
              </listitem>
-
 
175
 
-
 
176
              <listitem>
-
 
177
                 mips and ppc32 have 2-level tables, software simulated support.
-
 
178
              </listitem>
-
 
179
            </itemizedlist></para>
-
 
180
        </section>
-
 
181
 
-
 
182
        <section>
-
 
183
          <title>Global hash table</title>
-
 
184
 
-
 
185
          <para>Implementation of the global hash table was encouraged by the
-
 
186
          ia64 architecture support. One of the major differences between
-
 
187
          global hash table and hierarchical tables is that global hash table
-
 
188
          exists only once in the system and the hierarchical tables are
-
 
189
          maintained per address space. </para>
-
 
190
 
-
 
191
          <para>Thus, hash table contains information about all address spaces
-
 
192
          mappings in the system, so, the hash of an entry must contain
-
 
193
          information of both address space pointer or id and the virtual
-
 
194
          address of the page. Generic hash table implementation assumes that
9
  management subsystem, on the other hand, creates the impression that there
195
          the addresses of the pointers to the address spaces are likely to be
10
  is enough physical memory for the kernel and that userspace tasks have the
196
          on the close addresses, so it uses least significant bits for hash;
-
 
197
          also it assumes that the virtual page addresses have roughly the
-
 
198
          same probability of occurring, so the least significant bits of VPN
-
 
199
          compose the hash index.</para>
-
 
200
 
-
 
201
          <para>- global page hash table: existuje jen jedna v celem systemu
-
 
202
          (vyuziva ji ia64), pozn. ia64 ma zatim vypnuty VHPT. Pouziva se
-
 
203
          genericke hash table s oddelenymi collision chains. ASID support is
-
 
204
          required to use global hash tables.</para>
11
  entire address space only for themselves.</para>
205
        </section>
-
 
206
      </section>
-
 
207
 
-
 
208
      <section id="tlb">
-
 
209
        <title>Translation Lookaside buffer</title>
-
 
210
 
-
 
211
        <para>Due to the extensive overhead during the page mapping lookup in
-
 
212
        the page tables, all architectures has fast assotiative cache memory
-
 
213
        built-in CPU. This memory called TLB stores recently used page table
-
 
214
        entries.</para>
-
 
215
 
-
 
216
        <section id="tlb_shootdown">
-
 
217
          <title>TLB consistency. TLB shootdown algorithm.</title>
-
 
218
 
-
 
219
          <para>Operating system is responsible for keeping TLB consistent by
-
 
220
          invalidating the contents of TLB, whenever there is some change in
-
 
221
          page tables. Those changes may occur when page or group of pages
-
 
222
          were unmapped, mapping is changed or system switching active address
-
 
223
          space to schedule a new system task. Moreover, this invalidation
-
 
224
          operation must be done an all system CPUs because each CPU has its
-
 
225
          own independent TLB cache. Thus maintaining TLB consistency on SMP
-
 
226
          configuration as not as trivial task as it looks on the first
-
 
227
          glance. Naive solution would assume that is the CPU which wants to
-
 
228
          invalidate TLB will invalidate TLB caches on other CPUs. It is not
-
 
229
          possible on the most of the architectures, because of the simple
-
 
230
          fact - flushing TLB is allowed only on the local CPU and there is no
-
 
231
          possibility to access other CPUs' TLB caches, thus invalidate TLB
-
 
232
          remotely.</para>
-
 
233
 
-
 
234
          <para>Technique of remote invalidation of TLB entries is called "TLB
-
 
235
          shootdown". HelenOS uses a variation of the algorithm described by
-
 
236
          D. Black et al., "Translation Lookaside Buffer Consistency: A
-
 
237
          Software Approach," Proc. Third Int'l Conf. Architectural Support
-
 
238
          for Programming Languages and Operating Systems, 1989, pp.
-
 
239
          113-122.</para>
-
 
240
 
-
 
241
          <para>As the situation demands, you will want partitial invalidation
-
 
242
          of TLB caches. In case of simple memory mapping change it is
-
 
243
          necessary to invalidate only one or more adjacent pages. In case if
-
 
244
          the architecture is aware of ASIDs, when kernel needs to dump some
-
 
245
          ASID to use by another task, it invalidates only entries from this
-
 
246
          particular address space. Final option of the TLB invalidation is
-
 
247
          the complete TLB cache invalidation, which is the operation that
-
 
248
          flushes all entries in TLB.</para>
-
 
249
 
-
 
250
          <para>TLB shootdown is performed in two phases.</para>
-
 
251
 
-
 
252
          <formalpara>
-
 
253
            <title>Phase 1.</title>
-
 
254
 
-
 
255
            <para>First, initiator locks a global TLB spinlock, then request
-
 
256
            is being put to the local request cache of every other CPU in the
-
 
257
            system protected by its spinlock. In case the cache is full, all
-
 
258
            requests in the cache are replaced by one request, indicating
-
 
259
            global TLB flush. Then the initiator thread sends an IPI message
-
 
260
            indicating the TLB shootdown request to the rest of the CPUs and
-
 
261
            waits actively until all CPUs confirm TLB invalidating action
-
 
262
            execution by setting up a special flag. After setting this flag
-
 
263
            this thread is blocked on the TLB spinlock, held by the
-
 
264
            initiator.</para>
-
 
265
          </formalpara>
-
 
266
 
-
 
267
          <formalpara>
-
 
268
            <title>Phase 2.</title>
-
 
269
 
-
 
270
            <para>All CPUs are waiting on the TLB spinlock to execute TLB
-
 
271
            invalidation action and have indicated their intention to the
-
 
272
            initiator. Initiator continues, cleaning up its TLB and releasing
-
 
273
            the global TLB spinlock. After this all other CPUs gain and
-
 
274
            immidiately release TLB spinlock and perform TLB invalidation
-
 
275
            actions.</para>
-
 
276
          </formalpara>
-
 
277
        </section>
-
 
278
      </section>
-
 
279
    </section>
-
 
280
 
-
 
281
    <section>
-
 
282
      <title>---</title>
-
 
283
 
-
 
284
      <para>At the moment HelenOS does not support swapping.</para>
-
 
285
 
-
 
286
      <para>- pouzivame vypadky stranky k alokaci ramcu on-demand v ramci
-
 
287
      as_area - na architekturach, ktere to podporuji, podporujeme non-exec
-
 
288
      stranky</para>
-
 
289
    </section>
-
 
290
  </section>
-
 
291
 
12
 
292
  <section>
13
  <section>
293
    <title>Physical memory management</title>
14
    <title>Physical memory management</title>
294
 
15
 
295
    <section id="zones_and_frames">
16
    <section id="zones_and_frames">
296
      <title>Zones and frames</title>
17
      <title>Zones and frames</title>
297
 
18
 
298
      <para>On some architectures not whole physical memory is available for
19
      <para>HelenOS represents continuous areas of physical memory in
299
      conventional usage. This limitations require from kernel to maintain a
20
      structures called frame zones (abbreviated as zones). Each zone contains
-
 
21
      information about the number of allocated and unallocated physical
300
      table of available and unavailable ranges of physical memory addresses.
22
      memory frames as well as the physical base address of the zone and
301
      Main idea of zones is in creating memory zone entity, that is a
23
      number of frames contained in it. A zone also contains an array of frame
302
      continuous chunk of memory available for allocation. If some chunk is
24
      structures describing each frame of the zone and, in the last, but not
-
 
25
      the least important, front, each zone is equipped with a buddy system
303
      not available, we simply do not put it in any zone.</para>
26
      that faciliates effective allocation of power-of-two sized block of
-
 
27
      frames.</para>
304
 
28
 
305
      <para>Zone is also serves for informational purposes, containing
29
      <para>This organization of physical memory provides good preconditions
306
      information about number of free and busy frames. Physical memory
-
 
307
      allocation is also done inside the certain zone. Allocation of zone
30
      for hot-plugging of more zones. There is also one currently unused zone
308
      frame must be organized by the <link linkend="frame_allocator">frame
31
      attribute: <code>flags</code>. The attribute could be used to give a
309
      allocator</link> associated with the zone.</para>
32
      special meaning to some zones in the future.</para>
310
 
33
 
311
      <para>Some of the architectures (mips32, ppc32) have only one zone, that
34
      <para>The zones are linked in a doubly-linked list. This might seem a
312
      covers whole physical memory, and the others (like ia32) may have
35
      bit ineffective because the zone list is walked everytime a frame is
313
      multiple zones. Information about zones on current machine is stored in
36
      allocated or deallocated. However, this does not represent a significant
314
      BIOS hardware tables or can be hardcoded into kernel during compile
37
      performance problem as it is expected that the number of zones will be
-
 
38
      rather low. Moreover, most architectures merge all zones into
315
      time.</para>
39
      one.</para>
-
 
40
 
-
 
41
      <para>For each physical memory frame found in a zone, there is a frame
-
 
42
      structure that contains number of references and data used by buddy
-
 
43
      system.</para>
316
    </section>
44
    </section>
317
 
45
 
318
    <section id="frame_allocator">
46
    <section id="frame_allocator">
319
      <title>Frame allocator</title>
47
      <title>Frame allocator</title>
320
 
48
 
321
      <figure>
49
      <para>The frame allocator satisfies kernel requests to allocate
322
        <mediaobject id="frame_alloc">
50
      power-of-two sized blocks of physical memory. Because of zonal
323
          <imageobject role="html">
51
      organization of physical memory, the frame allocator is always working
324
            <imagedata fileref="images/frame_alloc.png" format="PNG" />
52
      within a context of some frame zone. In order to carry out the
325
          </imageobject>
53
      allocation requests, the frame allocator is tightly integrated with the
326
 
-
 
327
          <imageobject role="fop">
54
      buddy system belonging to the zone. The frame allocator is also
328
            <imagedata fileref="images.vector/frame_alloc.svg" format="SVG" />
55
      responsible for updating information about the number of free and busy
329
          </imageobject>
56
      frames in the zone. <figure>
330
        </mediaobject>
57
          <mediaobject id="frame_alloc">
331
 
-
 
332
        <title>Frame allocator scheme.</title>
58
            <imageobject role="html">
-
 
59
              <imagedata fileref="images/frame_alloc.png" format="PNG" />
333
      </figure>
60
            </imageobject>
334
 
61
 
-
 
62
            <imageobject role="fop">
-
 
63
              <imagedata fileref="images.vector/frame_alloc.svg" format="SVG" />
335
      <formalpara>
64
            </imageobject>
336
        <title>Overview</title>
65
          </mediaobject>
337
 
66
 
338
        <para>Frame allocator provides physical memory allocation for the
-
 
339
        kernel. Because of zonal organization of physical memory, frame
-
 
340
        allocator is always working in context of some zone, thus making
-
 
341
        impossible to allocate a piece of memory, which lays in different
-
 
342
        zone, which cannot happen, because two adjacent zones can be merged
-
 
343
        into one. Frame allocator is also being responsible to update
67
          <title>Frame allocator scheme.</title>
344
        information on the number of free/busy frames in zone. Physical memory
-
 
345
        allocation inside one <link linkend="zones_and_frames">memory
-
 
346
        zone</link> is being handled by an instance of <link
-
 
347
        linkend="buddy_allocator">buddy allocator</link> tailored to allocate
-
 
348
        blocks of physical memory frames.</para>
-
 
349
      </formalpara>
68
        </figure></para>
350
 
69
 
351
      <formalpara>
70
      <formalpara>
352
        <title>Allocation / deallocation</title>
71
        <title>Allocation / deallocation</title>
353
 
72
 
354
        <para>Upon allocation request, frame allocator tries to find first
73
        <para>Upon allocation request via function <code>frame_alloc</code>,
355
        zone, that can satisfy the incoming request (has required amount of
74
        the frame allocator first tries to find a zone that can satisfy the
356
        free frames to allocate). During deallocation, frame allocator needs
75
        request (i.e. has the required amount of free frames). Once a suitable
357
        to find zone, that contain deallocated frame. This approach could
76
        zone is found, the frame allocator uses the buddy allocator on the
358
        bring up two potential problems: <itemizedlist>
77
        zone's buddy system to perform the allocation. During deallocation,
359
            <listitem>
78
        which is triggered by a call to <code>frame_free</code>, the frame
360
               Linear search of zones does not any good to performance, but number of zones is not expected to be high. And if yes, list of zones can be replaced with more time-efficient B-tree.
79
        allocator looks up the respective zone that contains the frame being
361
            </listitem>
-
 
362
 
-
 
363
            <listitem>
-
 
364
               Quickly find out if zone contains required number of frames to allocate and if this chunk of memory is properly aligned. This issue is perfectly solved bu the buddy allocator.
80
        deallocated. Afterwards, it calls the buddy allocator again, this time
365
            </listitem>
-
 
366
          </itemizedlist></para>
81
        to take care of deallocation within the zone's buddy system.</para>
367
      </formalpara>
82
      </formalpara>
368
    </section>
83
    </section>
369
 
84
 
370
    <section id="buddy_allocator">
85
    <section id="buddy_allocator">
371
      <title>Buddy allocator</title>
86
      <title>Buddy allocator</title>
372
 
87
 
-
 
88
      <para>In the buddy system, the memory is broken down into power-of-two
-
 
89
      sized naturally aligned blocks. These blocks are organized in an array
-
 
90
      of lists, in which the list with index i contains all unallocated blocks
-
 
91
      of size <mathphrase>2<superscript>i</superscript></mathphrase>. The
-
 
92
      index i is called the order of block. Should there be two adjacent
-
 
93
      equally sized blocks in the list i<mathphrase />(i.e. buddies), the
-
 
94
      buddy allocator would coalesce them and put the resulting block in list
-
 
95
      <mathphrase>i + 1</mathphrase>, provided that the resulting block would
-
 
96
      be naturally aligned. Similarily, when the allocator is asked to
373
      <section>
97
      allocate a block of size
-
 
98
      <mathphrase>2<superscript>i</superscript></mathphrase>, it first tries
-
 
99
      to satisfy the request from the list with index i. If the request cannot
-
 
100
      be satisfied (i.e. the list i is empty), the buddy allocator will try to
-
 
101
      allocate and split a larger block from the list with index i + 1. Both
-
 
102
      of these algorithms are recursive. The recursion ends either when there
-
 
103
      are no blocks to coalesce in the former case or when there are no blocks
374
        <title>Overview</title>
104
      that can be split in the latter case.</para>
375
 
105
 
-
 
106
      <para>This approach greatly reduces external fragmentation of memory and
-
 
107
      helps in allocating bigger continuous blocks of memory aligned to their
-
 
108
      size. On the other hand, the buddy allocator suffers increased internal
-
 
109
      fragmentation of memory and is not suitable for general kernel
-
 
110
      allocations. This purpose is better addressed by the <link
376
        <figure>
111
      linkend="slab">slab allocator</link>.<figure>
377
          <mediaobject id="buddy_alloc">
112
          <mediaobject id="buddy_alloc">
378
            <imageobject role="html">
113
            <imageobject role="html">
379
              <imagedata fileref="images/buddy_alloc.png" format="PNG" />
114
              <imagedata fileref="images/buddy_alloc.png" format="PNG" />
380
            </imageobject>
115
            </imageobject>
381
 
116
 
Line 383... Line 118...
383
              <imagedata fileref="images.vector/buddy_alloc.svg" format="SVG" />
118
              <imagedata fileref="images.vector/buddy_alloc.svg" format="SVG" />
384
            </imageobject>
119
            </imageobject>
385
          </mediaobject>
120
          </mediaobject>
386
 
121
 
387
          <title>Buddy system scheme.</title>
122
          <title>Buddy system scheme.</title>
388
        </figure>
123
        </figure></para>
389
 
-
 
390
        <para>In the buddy allocator, the memory is broken down into
-
 
391
        power-of-two sized naturally aligned blocks. These blocks are
-
 
392
        organized in an array of lists, in which the list with index i
-
 
393
        contains all unallocated blocks of size
-
 
394
        <mathphrase>2<superscript>i</superscript></mathphrase>. The index i is
-
 
395
        called the order of block. Should there be two adjacent equally sized
-
 
396
        blocks in the list i<mathphrase />(i.e. buddies), the buddy allocator
-
 
397
        would coalesce them and put the resulting block in list <mathphrase>i
-
 
398
        + 1</mathphrase>, provided that the resulting block would be naturally
-
 
399
        aligned. Similarily, when the allocator is asked to allocate a block
-
 
400
        of size <mathphrase>2<superscript>i</superscript></mathphrase>, it
-
 
401
        first tries to satisfy the request from the list with index i. If the
-
 
402
        request cannot be satisfied (i.e. the list i is empty), the buddy
-
 
403
        allocator will try to allocate and split a larger block from the list
-
 
404
        with index i + 1. Both of these algorithms are recursive. The
-
 
405
        recursion ends either when there are no blocks to coalesce in the
-
 
406
        former case or when there are no blocks that can be split in the
-
 
407
        latter case.</para>
-
 
408
 
-
 
409
        <!--graphic fileref="images/mm1.png" format="EPS" /-->
-
 
410
 
-
 
411
        <para>This approach greatly reduces external fragmentation of memory
-
 
412
        and helps in allocating bigger continuous blocks of memory aligned to
-
 
413
        their size. On the other hand, the buddy allocator suffers increased
-
 
414
        internal fragmentation of memory and is not suitable for general
-
 
415
        kernel allocations. This purpose is better addressed by the <link
-
 
416
        linkend="slab">slab allocator</link>.</para>
-
 
417
      </section>
-
 
418
 
124
 
419
      <section>
125
      <section>
420
        <title>Implementation</title>
126
        <title>Implementation</title>
421
 
127
 
422
        <para>The buddy allocator is, in fact, an abstract framework wich can
128
        <para>The buddy allocator is, in fact, an abstract framework wich can
Line 425... Line 131...
425
        lack of this knowledge, the buddy allocator exports an interface that
131
        lack of this knowledge, the buddy allocator exports an interface that
426
        each of its clients is required to implement. When supplied with an
132
        each of its clients is required to implement. When supplied with an
427
        implementation of this interface, the buddy allocator can use
133
        implementation of this interface, the buddy allocator can use
428
        specialized external functions to find a buddy for a block, split and
134
        specialized external functions to find a buddy for a block, split and
429
        coalesce blocks, manipulate block order and mark blocks busy or
135
        coalesce blocks, manipulate block order and mark blocks busy or
430
        available. For precise documentation of this interface, refer to
136
        available.</para>
431
        <emphasis>"HelenOS Generic Kernel Reference Manual"</emphasis>.</para>
-
 
432
 
137
 
433
        <formalpara>
138
        <formalpara>
434
          <title>Data organization</title>
139
          <title>Data organization</title>
435
 
140
 
436
          <para>Each entity allocable by the buddy allocator is required to
141
          <para>Each entity allocable by the buddy allocator is required to
Line 445... Line 150...
445
          for effective identification of buddies in a one-dimensional array
150
          for effective identification of buddies in a one-dimensional array
446
          because the entity that represents a potential buddy cannot be
151
          because the entity that represents a potential buddy cannot be
447
          associated with <constant>BUDDY_INNER_BLOCK</constant> (i.e. if it
152
          associated with <constant>BUDDY_INNER_BLOCK</constant> (i.e. if it
448
          is associated with <constant>BUDDY_INNER_BLOCK</constant> then it is
153
          is associated with <constant>BUDDY_INNER_BLOCK</constant> then it is
449
          not a buddy).</para>
154
          not a buddy).</para>
450
 
-
 
451
          <para>The buddy allocator always uses the first frame to represent
-
 
452
          the frame block. This frame contains <varname>buddy_order</varname>
-
 
453
          variable to provide information about the block size it actually
-
 
454
          represents (
-
 
455
          <mathphrase>2<superscript>buddy_order</superscript></mathphrase>
-
 
456
          frames block). Other frames in block have this value set to magic
-
 
457
          <constant>BUDDY_INNER_BLOCK</constant> that is much greater than
-
 
458
          buddy <varname>max_order</varname> value.</para>
-
 
459
 
-
 
460
          <para>Each <varname>frame_t</varname> also contains pointer member
-
 
461
          to hold frame structure in the linked list inside one order.</para>
-
 
462
        </formalpara>
-
 
463
 
-
 
464
        <formalpara>
-
 
465
          <title>Allocation algorithm</title>
-
 
466
 
-
 
467
          <para>Upon <mathphrase>2<superscript>i</superscript></mathphrase>
-
 
468
          frames block allocation request, allocator checks if there are any
-
 
469
          blocks available at the order list <varname>i</varname>. If yes,
-
 
470
          removes block from order list and returns its address. If no,
-
 
471
          recursively allocates
-
 
472
          <mathphrase>2<superscript>i+1</superscript></mathphrase> frame
-
 
473
          block, splits it into two
-
 
474
          <mathphrase>2<superscript>i</superscript></mathphrase> frame blocks.
-
 
475
          Then adds one of the blocks to the <varname>i</varname> order list
-
 
476
          and returns address of another.</para>
-
 
477
        </formalpara>
-
 
478
 
-
 
479
        <formalpara>
-
 
480
          <title>Deallocation algorithm</title>
-
 
481
 
-
 
482
          <para>Check if block has so called buddy (another free
-
 
483
          <mathphrase>2<superscript>i</superscript></mathphrase> frame block
-
 
484
          that can be linked with freed block into the
-
 
485
          <mathphrase>2<superscript>i+1</superscript></mathphrase> block).
-
 
486
          Technically, buddy is a odd/even block for even/odd block
-
 
487
          respectively. Plus we can put an extra requirement, that resulting
-
 
488
          block must be aligned to its size. This requirement guarantees
-
 
489
          natural block alignment for the blocks coming out the allocation
-
 
490
          system.</para>
-
 
491
 
-
 
492
          <para>Using direct pointer arithmetics,
-
 
493
          <varname>frame_t::ref_count</varname> and
-
 
494
          <varname>frame_t::buddy_order</varname> variables, finding buddy is
-
 
495
          done at constant time.</para>
-
 
496
        </formalpara>
155
        </formalpara>
497
      </section>
156
      </section>
498
    </section>
157
    </section>
499
 
158
 
500
    <section id="slab">
159
    <section id="slab">
501
      <title>Slab allocator</title>
160
      <title>Slab allocator</title>
502
 
161
 
-
 
162
      <para>The majority of memory allocation requests in the kernel is for
-
 
163
      small, frequently used data structures. The basic idea behind the slab
-
 
164
      allocator is that commonly used objects are preallocated in continuous
-
 
165
      areas of physical memory called slabs<footnote>
-
 
166
          <para>Slabs are in fact blocks of physical memory frames allocated
-
 
167
          from the frame allocator.</para>
-
 
168
        </footnote>. Whenever an object is to be allocated, the slab allocator
-
 
169
      returns the first available item from a suitable slab corresponding to
503
      <section>
170
      the object type<footnote>
-
 
171
          <para>The mechanism is rather more complicated, see the next
504
        <title>Overview</title>
172
          paragraph.</para>
-
 
173
        </footnote>. Due to the fact that the sizes of the requested and
-
 
174
      allocated object match, the slab allocator significantly reduces
-
 
175
      internal fragmentation.</para>
505
 
176
 
506
        <para><termdef><glossterm>Slab</glossterm> represents a contiguous
177
      <para>Slabs of one object type are organized in a structure called slab
507
        piece of memory, usually made of several physically contiguous
178
      cache. There are ususally more slabs in the slab cache, depending on
-
 
179
      previous allocations. If the the slab cache runs out of available slabs,
-
 
180
      new slabs are allocated. In order to exploit parallelism and to avoid
508
        pages.</termdef> <termdef><glossterm>Slab cache</glossterm> consists
181
      locking of shared spinlocks, slab caches can have variants of
-
 
182
      processor-private slabs called magazines. On each processor, there is a
-
 
183
      two-magazine cache. Full magazines that are not part of any
-
 
184
      per-processor magazine cache are stored in a global list of full
509
        of one or more slabs.</termdef></para>
185
      magazines.</para>
510
 
186
 
511
        <para>The majority of memory allocation requests in the kernel are for
187
      <para>Each object begins its life in a slab. When it is allocated from
-
 
188
      there, the slab allocator calls a constructor that is registered in the
512
        small, frequently used data structures. For this purpose the slab
189
      respective slab cache. The constructor initializes and brings the object
513
        allocator is a perfect solution. The basic idea behind the slab
190
      into a known state. The object is then used by the user. When the user
514
        allocator is to have lists of commonly used objects available packed
191
      later frees the object, the slab allocator puts it into a processor
-
 
192
      private magazine cache, from where it can be precedently allocated
515
        into pages. This avoids the overhead of allocating and destroying
193
      again. Note that allocations satisfied from a magazine are already
-
 
194
      initialized by the constructor. When both of the processor cached
516
        commonly used types of objects such threads, virtual memory structures
195
      magazines get full, the allocator will move one of the magazines to the
-
 
196
      list of full magazines. Similarily, when allocating from an empty
-
 
197
      processor magazine cache, the kernel will reload only one magazine from
517
        etc. Also due to the exact allocated size matching, slab allocation
198
      the list of full magazines. In other words, the slab allocator tries to
-
 
199
      keep the processor magazine cache only half-full in order to prevent
518
        completely eliminates internal fragmentation issue.</para>
200
      thrashing when allocations and deallocations interleave on magazine
519
      </section>
201
      boundaries.</para>
520
 
202
 
-
 
203
      <para>Should HelenOS run short of memory, it would start deallocating
521
      <section>
204
      objects from magazines, calling slab cache destructor on them and
-
 
205
      putting them back into slabs. When a slab contanins no allocated object,
522
        <title>Implementation</title>
206
      it is immediately freed.</para>
523
 
207
 
524
        <figure>
208
      <para><figure>
525
          <mediaobject id="slab_alloc">
209
          <mediaobject id="slab_alloc">
526
            <imageobject role="html">
210
            <imageobject role="html">
527
              <imagedata fileref="images/slab_alloc.png" format="PNG" />
211
              <imagedata fileref="images/slab_alloc.png" format="PNG" />
528
            </imageobject>
212
            </imageobject>
529
 
-
 
530
            <imageobject role="fop">
-
 
531
              <imagedata fileref="images.vector/slab_alloc.svg" format="SVG" />
-
 
532
            </imageobject>
-
 
533
          </mediaobject>
213
          </mediaobject>
534
 
214
 
535
          <title>Slab allocator scheme.</title>
215
          <title>Slab allocator scheme.</title>
536
        </figure>
216
        </figure></para>
537
 
217
 
-
 
218
      <section>
538
        <para>The slab allocator is closely modelled after <ulink
219
        <title>Implementation</title>
-
 
220
 
539
        url="http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/">
221
        <para>The slab allocator is closely modelled after OpenSolaris slab
540
        OpenSolaris slab allocator by Jeff Bonwick and Jonathan Adams </ulink>
222
        allocator by Jeff Bonwick and Jonathan Adams with the following
541
        with the following exceptions: <itemizedlist>
223
        exceptions:<itemizedlist>
542
            <listitem>
224
            <listitem>
543
               empty slabs are deallocated immediately (in Linux they are kept in linked list, in Solaris ???)
225
              empty slabs are immediately deallocated
544
            </listitem>
226
            </listitem>
545
 
227
 
546
            <listitem>
228
            <listitem>
547
               empty magazines are deallocated when not needed (in Solaris they are held in linked list in slab cache)
229
              <para>empty magazines are deallocated when not needed</para>
548
            </listitem>
230
            </listitem>
549
          </itemizedlist> Following features are not currently supported but
231
          </itemizedlist> Following features are not currently supported but
550
        would be easy to do: <itemizedlist>
232
        would be easy to do: <itemizedlist>
551
            <listitem>
233
            <listitem>
552
               - cache coloring
234
               cache coloring
553
            </listitem>
235
            </listitem>
554
 
236
 
555
            <listitem>
237
            <listitem>
556
               - dynamic magazine grow (different magazine sizes are already supported, but we would need to adjust allocation strategy)
238
               dynamic magazine grow (different magazine sizes are already supported, but the allocation strategy would need to be adjusted)
557
            </listitem>
239
            </listitem>
558
          </itemizedlist></para>
240
          </itemizedlist></para>
559
 
241
 
560
        <section>
242
        <section>
561
          <title>Magazine layer</title>
243
          <title>Magazine layer</title>
Line 659... Line 341...
659
 
341
 
660
    <!-- End of Physmem -->
342
    <!-- End of Physmem -->
661
  </section>
343
  </section>
662
 
344
 
663
  <section>
345
  <section>
-
 
346
    <title>Virtual memory management</title>
-
 
347
 
-
 
348
    <section>
-
 
349
      <title>Introduction</title>
-
 
350
 
-
 
351
      <para>Virtual memory is a special memory management technique, used by
-
 
352
      kernel to achieve a bunch of mission critical goals. <itemizedlist>
-
 
353
          <listitem>
-
 
354
             Isolate each task from other tasks that are running on the system at the same time.
-
 
355
          </listitem>
-
 
356
 
-
 
357
          <listitem>
-
 
358
             Allow to allocate more memory, than is actual physical memory size of the machine.
-
 
359
          </listitem>
-
 
360
 
-
 
361
          <listitem>
-
 
362
             Allowing, in general, to load and execute two programs that are linked on the same address without complicated relocations.
-
 
363
          </listitem>
-
 
364
        </itemizedlist></para>
-
 
365
 
-
 
366
      <para><!--
-
 
367
 
-
 
368
                TLB shootdown ASID/ASID:PAGE/ALL.
-
 
369
                TLB shootdown requests can come in asynchroniously
-
 
370
                so there is a cache of TLB shootdown requests. Upon cache overflow TLB shootdown ALL is executed
-
 
371
 
-
 
372
 
-
 
373
                <para>
-
 
374
                        Address spaces. Address space area (B+ tree). Only for uspace. Set of syscalls (shrink/extend etc).
-
 
375
                        Special address space area type - device - prohibits shrink/extend syscalls to call on it.
-
 
376
                        Address space has link to mapping tables (hierarchical - per Address space, hash - global tables).
-
 
377
                </para>
-
 
378
 
-
 
379
--></para>
-
 
380
    </section>
-
 
381
 
-
 
382
    <section>
664
    <title>Memory sharing</title>
383
      <title>Paging</title>
-
 
384
 
-
 
385
      <para>Virtual memory is usually using paged memory model, where virtual
-
 
386
      memory address space is divided into the <emphasis>pages</emphasis>
-
 
387
      (usually having size 4096 bytes) and physical memory is divided into the
-
 
388
      frames (same sized as a page, of course). Each page may be mapped to
-
 
389
      some frame and then, upon memory access to the virtual address, CPU
-
 
390
      performs <emphasis>address translation</emphasis> during the instruction
-
 
391
      execution. Non-existing mapping generates page fault exception, calling
-
 
392
      kernel exception handler, thus allowing kernel to manipulate rules of
-
 
393
      memory access. Information for pages mapping is stored by kernel in the
-
 
394
      <link linkend="page_tables">page tables</link></para>
-
 
395
 
-
 
396
      <para>The majority of the architectures use multi-level page tables,
-
 
397
      which means need to access physical memory several times before getting
-
 
398
      physical address. This fact would make serios performance overhead in
-
 
399
      virtual memory management. To avoid this <link linkend="tlb">Traslation
-
 
400
      Lookaside Buffer (TLB)</link> is used.</para>
-
 
401
    </section>
-
 
402
 
-
 
403
    <section>
-
 
404
      <title>Address spaces</title>
-
 
405
 
-
 
406
      <section>
-
 
407
        <title>Address space areas</title>
-
 
408
 
-
 
409
        <para>Each address space consists of mutually disjunctive continuous
-
 
410
        address space areas. Address space area is precisely defined by its
-
 
411
        base address and the number of frames/pages is contains.</para>
-
 
412
 
-
 
413
        <para>Address space area , that define behaviour and permissions on
-
 
414
        the particular area. <itemizedlist>
-
 
415
            <listitem>
-
 
416
               
-
 
417
 
-
 
418
              <emphasis>AS_AREA_READ</emphasis>
-
 
419
 
-
 
420
               flag indicates reading permission.
-
 
421
            </listitem>
-
 
422
 
-
 
423
            <listitem>
-
 
424
               
-
 
425
 
-
 
426
              <emphasis>AS_AREA_WRITE</emphasis>
-
 
427
 
-
 
428
               flag indicates writing permission.
-
 
429
            </listitem>
-
 
430
 
-
 
431
            <listitem>
-
 
432
               
-
 
433
 
-
 
434
              <emphasis>AS_AREA_EXEC</emphasis>
-
 
435
 
-
 
436
               flag indicates code execution permission. Some architectures do not support execution persmission restriction. In this case this flag has no effect.
-
 
437
            </listitem>
-
 
438
 
-
 
439
            <listitem>
-
 
440
               
-
 
441
 
-
 
442
              <emphasis>AS_AREA_DEVICE</emphasis>
-
 
443
 
-
 
444
               marks area as mapped to the device memory.
-
 
445
            </listitem>
-
 
446
          </itemizedlist></para>
665
 
447
 
-
 
448
        <para>Kernel provides possibility tasks create/expand/shrink/share its
-
 
449
        address space via the set of syscalls.</para>
-
 
450
      </section>
-
 
451
 
-
 
452
      <section>
-
 
453
        <title>Address Space ID (ASID)</title>
-
 
454
 
-
 
455
        <para>When switching to the different task, kernel also require to
-
 
456
        switch mappings to the different address space. In case TLB cannot
-
 
457
        distinguish address space mappings, all mapping information in TLB
-
 
458
        from the old address space must be flushed, which can create certain
-
 
459
        uncessary overhead during the task switching. To avoid this, some
-
 
460
        architectures have capability to segregate different address spaces on
-
 
461
        hardware level introducing the address space identifier as a part of
-
 
462
        TLB record, telling the virtual address space translation unit to
-
 
463
        which address space this record is applicable.</para>
-
 
464
 
-
 
465
        <para>HelenOS kernel can take advantage of this hardware supported
-
 
466
        identifier by having an ASID abstraction which is somehow related to
-
 
467
        the corresponding architecture identifier. I.e. on ia64 kernel ASID is
-
 
468
        derived from RID (region identifier) and on the mips32 kernel ASID is
-
 
469
        actually the hardware identifier. As expected, this ASID information
-
 
470
        record is the part of <emphasis>as_t</emphasis> structure.</para>
-
 
471
 
-
 
472
        <para>Due to the hardware limitations, hardware ASID has limited
-
 
473
        length from 8 bits on ia64 to 24 bits on mips32, which makes it
-
 
474
        impossible to use it as unique address space identifier for all tasks
-
 
475
        running in the system. In such situations special ASID stealing
-
 
476
        algoritm is used, which takes ASID from inactive task and assigns it
-
 
477
        to the active task.</para>
-
 
478
 
-
 
479
        <para><classname>ASID stealing algoritm here.</classname></para>
-
 
480
      </section>
-
 
481
    </section>
-
 
482
 
-
 
483
    <section>
-
 
484
      <title>Virtual address translation</title>
-
 
485
 
-
 
486
      <section id="page_tables">
-
 
487
        <title>Page tables</title>
-
 
488
 
-
 
489
        <para>HelenOS kernel has two different approaches to the paging
-
 
490
        implementation: <emphasis>4 level page tables</emphasis> and
-
 
491
        <emphasis>global hash tables</emphasis>, which are accessible via
-
 
492
        generic paging abstraction layer. Such different functionality was
-
 
493
        caused by the major architectural differences between supported
-
 
494
        platforms. This abstraction is implemented with help of the global
-
 
495
        structure of pointers to basic mapping functions
-
 
496
        <emphasis>page_mapping_operations</emphasis>. To achieve different
-
 
497
        functionality of page tables, corresponding layer must implement
-
 
498
        functions, declared in
-
 
499
        <emphasis>page_mapping_operations</emphasis></para>
-
 
500
 
-
 
501
        <formalpara>
-
 
502
          <title>4-level page tables</title>
-
 
503
 
-
 
504
          <para>4-level page tables are the generalization of the hardware
-
 
505
          capabilities of several architectures.<itemizedlist>
-
 
506
              <listitem>
-
 
507
                 ia32 uses 2-level page tables, with full hardware support.
-
 
508
              </listitem>
-
 
509
 
-
 
510
              <listitem>
-
 
511
                 amd64 uses 4-level page tables, also coming with full hardware support.
-
 
512
              </listitem>
-
 
513
 
-
 
514
              <listitem>
-
 
515
                 mips and ppc32 have 2-level tables, software simulated support.
-
 
516
              </listitem>
666
    <para>Not implemented yet(?)</para>
517
            </itemizedlist></para>
-
 
518
        </formalpara>
-
 
519
 
-
 
520
        <formalpara>
-
 
521
          <title>Global hash tables</title>
-
 
522
 
-
 
523
          <para>- global page hash table: existuje jen jedna v celem systemu
-
 
524
          (vyuziva ji ia64), pozn. ia64 ma zatim vypnuty VHPT. Pouziva se
-
 
525
          genericke hash table s oddelenymi collision chains. ASID support is
-
 
526
          required to use global hash tables.</para>
-
 
527
        </formalpara>
-
 
528
 
-
 
529
        <para>Thanks to the abstract paging interface, there is possibility
-
 
530
        left have more paging implementations, for example B-Tree page
-
 
531
        tables.</para>
-
 
532
      </section>
-
 
533
 
-
 
534
      <section id="tlb">
-
 
535
        <title>Translation Lookaside buffer</title>
-
 
536
 
-
 
537
        <para>Due to the extensive overhead during the page mapping lookup in
-
 
538
        the page tables, all architectures has fast assotiative cache memory
-
 
539
        built-in CPU. This memory called TLB stores recently used page table
-
 
540
        entries.</para>
-
 
541
 
-
 
542
        <section id="tlb_shootdown">
-
 
543
          <title>TLB consistency. TLB shootdown algorithm.</title>
-
 
544
 
-
 
545
          <para>Operating system is responsible for keeping TLB consistent by
-
 
546
          invalidating the contents of TLB, whenever there is some change in
-
 
547
          page tables. Those changes may occur when page or group of pages
-
 
548
          were unmapped, mapping is changed or system switching active address
-
 
549
          space to schedule a new system task (which is a batch unmap of all
-
 
550
          address space mappings). Moreover, this invalidation operation must
-
 
551
          be done an all system CPUs because each CPU has its own independent
-
 
552
          TLB cache. Thus maintaining TLB consistency on SMP configuration as
-
 
553
          not as trivial task as it looks at the first glance. Naive solution
-
 
554
          would assume remote TLB invalidatation, which is not possible on the
-
 
555
          most of the architectures, because of the simple fact - flushing TLB
-
 
556
          is allowed only on the local CPU and there is no possibility to
-
 
557
          access other CPUs' TLB caches.</para>
-
 
558
 
-
 
559
          <para>Technique of remote invalidation of TLB entries is called "TLB
-
 
560
          shootdown". HelenOS uses a variation of the algorithm described by
-
 
561
          D. Black et al., "Translation Lookaside Buffer Consistency: A
-
 
562
          Software Approach," Proc. Third Int'l Conf. Architectural Support
-
 
563
          for Programming Languages and Operating Systems, 1989, pp.
-
 
564
          113-122.</para>
-
 
565
 
-
 
566
          <para>As the situation demands, you will want partitial invalidation
-
 
567
          of TLB caches. In case of simple memory mapping change it is
-
 
568
          necessary to invalidate only one or more adjacent pages. In case if
-
 
569
          the architecture is aware of ASIDs, during the address space
-
 
570
          switching, kernel invalidates only entries from this particular
-
 
571
          address space. Final option of the TLB invalidation is the complete
-
 
572
          TLB cache invalidation, which is the operation that flushes all
-
 
573
          entries in TLB.</para>
-
 
574
 
-
 
575
          <para>TLB shootdown is performed in two phases. First, the initiator
-
 
576
          process sends an IPI message indicating the TLB shootdown request to
-
 
577
          the rest of the CPUs. Then, it waits until all CPUs confirm TLB
-
 
578
          invalidating action execution.</para>
-
 
579
        </section>
-
 
580
      </section>
-
 
581
    </section>
-
 
582
 
-
 
583
    <section>
-
 
584
      <title>---</title>
-
 
585
 
-
 
586
      <para>At the moment HelenOS does not support swapping.</para>
-
 
587
 
-
 
588
      <para>- pouzivame vypadky stranky k alokaci ramcu on-demand v ramci
-
 
589
      as_area - na architekturach, ktere to podporuji, podporujeme non-exec
-
 
590
      stranky</para>
-
 
591
    </section>
667
  </section>
592
  </section>
668
</chapter>
593
</chapter>
669
594