Subversion Repositories HelenOS-doc

Rev

Rev 169 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 169 Rev 185
1
<?xml version="1.0" encoding="UTF-8"?>
1
<?xml version="1.0" encoding="UTF-8"?>
2
<chapter id="mm">
2
<chapter id="mm">
3
  <?dbhtml filename="mm.html"?>
3
  <?dbhtml filename="mm.html"?>
4
 
4
 
5
  <title>Memory management</title>
5
  <title>Memory management</title>
6
 
6
 
7
  <para>In previous chapters, this book described the scheduling subsystem as
7
  <para>In previous chapters, this book described the scheduling subsystem as
8
  the creator of the impression that threads execute in parallel. The memory
8
  the creator of the impression that threads execute in parallel. The memory
9
  management subsystem, on the other hand, creates the impression that there
9
  management subsystem, on the other hand, creates the impression that there
10
  is enough physical memory for the kernel and that userspace tasks have the
10
  is enough physical memory for the kernel and that userspace tasks have the
11
  entire address space only for themselves.</para>
11
  entire address space only for themselves.</para>
12
 
12
 
13
  <section>
13
  <section>
14
    <title>Physical memory management</title>
14
    <title>Physical memory management</title>
15
 
15
 
16
    <section id="zones_and_frames">
16
    <section id="zones_and_frames">
17
      <title>Zones and frames</title>
17
      <title>Zones and frames</title>
18
 
18
 
19
      <para>HelenOS represents continuous areas of physical memory in
19
      <para>HelenOS represents continuous areas of physical memory in
20
      structures called frame zones (abbreviated as zones). Each zone contains
20
      structures called frame zones (abbreviated as zones). Each zone contains
21
      information about the number of allocated and unallocated physical
21
      information about the number of allocated and unallocated physical
22
      memory frames as well as the physical base address of the zone and
22
      memory frames as well as the physical base address of the zone and
23
      number of frames contained in it. A zone also contains an array of frame
23
      number of frames contained in it. A zone also contains an array of frame
24
      structures describing each frame of the zone and, in the last, but not
24
      structures describing each frame of the zone and, in the last, but not
25
      the least important, front, each zone is equipped with a buddy system
25
      the least important, front, each zone is equipped with a buddy system
26
      that faciliates effective allocation of power-of-two sized block of
26
      that faciliates effective allocation of power-of-two sized block of
27
      frames.</para>
27
      frames.</para>
28
 
28
 
29
      <para>This organization of physical memory provides good preconditions
29
      <para>This organization of physical memory provides good preconditions
30
      for hot-plugging of more zones. There is also one currently unused zone
30
      for hot-plugging of more zones. There is also one currently unused zone
31
      attribute: <code>flags</code>. The attribute could be used to give a
31
      attribute: <code>flags</code>. The attribute could be used to give a
32
      special meaning to some zones in the future.</para>
32
      special meaning to some zones in the future.</para>
33
 
33
 
34
      <para>The zones are linked in a doubly-linked list. This might seem a
34
      <para>The zones are linked in a doubly-linked list. This might seem a
35
      bit ineffective because the zone list is walked everytime a frame is
35
      bit ineffective because the zone list is walked everytime a frame is
36
      allocated or deallocated. However, this does not represent a significant
36
      allocated or deallocated. However, this does not represent a significant
37
      performance problem as it is expected that the number of zones will be
37
      performance problem as it is expected that the number of zones will be
38
      rather low. Moreover, most architectures merge all zones into
38
      rather low. Moreover, most architectures merge all zones into
39
      one.</para>
39
      one.</para>
40
 
40
 
41
      <para>Every physical memory frame in a zone, is described by a structure
41
      <para>Every physical memory frame in a zone, is described by a structure
42
      that contains number of references and other data used by buddy
42
      that contains number of references and other data used by buddy
43
      system.</para>
43
      system.</para>
44
    </section>
44
    </section>
45
 
45
 
46
    <section id="frame_allocator">
46
    <section id="frame_allocator">
47
      <indexterm>
47
      <indexterm>
48
        <primary>frame allocator</primary>
48
        <primary>frame allocator</primary>
49
      </indexterm>
49
      </indexterm>
50
 
50
 
51
      <title>Frame allocator</title>
51
      <title>Frame allocator</title>
52
 
52
 
53
      <para>The frame allocator satisfies kernel requests to allocate
53
      <para>The frame allocator satisfies kernel requests to allocate
54
      power-of-two sized blocks of physical memory. Because of zonal
54
      power-of-two sized blocks of physical memory. Because of zonal
55
      organization of physical memory, the frame allocator is always working
55
      organization of physical memory, the frame allocator is always working
56
      within a context of a particular frame zone. In order to carry out the
56
      within a context of a particular frame zone. In order to carry out the
57
      allocation requests, the frame allocator is tightly integrated with the
57
      allocation requests, the frame allocator is tightly integrated with the
58
      buddy system belonging to the zone. The frame allocator is also
58
      buddy system belonging to the zone. The frame allocator is also
59
      responsible for updating information about the number of free and busy
59
      responsible for updating information about the number of free and busy
60
      frames in the zone. <figure float="1">
60
      frames in the zone. <figure float="1">
61
          <mediaobject id="frame_alloc">
61
          <mediaobject id="frame_alloc">
62
            <imageobject role="pdf">
62
            <imageobject role="pdf">
63
              <imagedata fileref="images/frame_alloc.pdf" format="PDF" />
63
              <imagedata fileref="images/frame_alloc.pdf" format="PDF" />
64
            </imageobject>
64
            </imageobject>
65
 
65
 
66
            <imageobject role="html">
66
            <imageobject role="html">
67
              <imagedata fileref="images/frame_alloc.png" format="PNG" />
67
              <imagedata fileref="images/frame_alloc.png" format="PNG" />
68
            </imageobject>
68
            </imageobject>
69
 
69
 
70
            <imageobject role="fop">
70
            <imageobject role="fop">
71
              <imagedata fileref="images/frame_alloc.svg" format="SVG" />
71
              <imagedata fileref="images/frame_alloc.svg" format="SVG" />
72
            </imageobject>
72
            </imageobject>
73
          </mediaobject>
73
          </mediaobject>
74
 
74
 
75
          <title>Frame allocator scheme.</title>
75
          <title>Frame allocator scheme.</title>
76
        </figure></para>
76
        </figure></para>
77
 
77
 
78
      <formalpara>
78
      <formalpara>
79
        <title>Allocation / deallocation</title>
79
        <title>Allocation / deallocation</title>
80
 
80
 
81
        <para>Upon allocation request via function <code>frame_alloc()</code>,
81
        <para>Upon allocation request via function <code>frame_alloc()</code>,
82
        the frame allocator first tries to find a zone that can satisfy the
82
        the frame allocator first tries to find a zone that can satisfy the
83
        request (i.e. has the required amount of free frames). Once a suitable
83
        request (i.e. has the required amount of free frames). Once a suitable
84
        zone is found, the frame allocator uses the buddy allocator on the
84
        zone is found, the frame allocator uses the buddy allocator on the
85
        zone's buddy system to perform the allocation. During deallocation,
85
        zone's buddy system to perform the allocation. During deallocation,
86
        which is triggered by a call to <code>frame_free()</code>, the frame
86
        which is triggered by a call to <code>frame_free()</code>, the frame
87
        allocator looks up the respective zone that contains the frame being
87
        allocator looks up the respective zone that contains the frame being
88
        deallocated. Afterwards, it calls the buddy allocator again, this time
88
        deallocated. Afterwards, it calls the buddy allocator again, this time
89
        to take care of deallocation within the zone's buddy system.</para>
89
        to take care of deallocation within the zone's buddy system.</para>
90
      </formalpara>
90
      </formalpara>
91
    </section>
91
    </section>
92
 
92
 
93
    <section id="buddy_allocator">
93
    <section id="buddy_allocator">
94
      <indexterm>
94
      <indexterm>
95
        <primary>buddy system</primary>
95
        <primary>buddy system</primary>
96
      </indexterm>
96
      </indexterm>
97
 
97
 
98
      <title>Buddy allocator</title>
98
      <title>Buddy allocator</title>
99
 
99
 
100
      <para>In the buddy system, the memory is broken down into power-of-two
100
      <para>In the buddy system, the memory is broken down into power-of-two
101
      sized naturally aligned blocks. These blocks are organized in an array
101
      sized naturally aligned blocks. These blocks are organized in an array
102
      of lists, in which the list with index <emphasis>i</emphasis> contains
102
      of lists, in which the list with index <emphasis>i</emphasis> contains
103
      all unallocated blocks of size
103
      all unallocated blocks of size
104
      <emphasis>2<superscript>i</superscript></emphasis>. The index
104
      <emphasis>2<superscript>i</superscript></emphasis>. The index
105
      <emphasis>i</emphasis> is called the order of block. Should there be two
105
      <emphasis>i</emphasis> is called the order of block. Should there be two
106
      adjacent equally sized blocks in the list <emphasis>i</emphasis> (i.e.
106
      adjacent equally sized blocks in the list <emphasis>i</emphasis> (i.e.
107
      buddies), the buddy allocator would coalesce them and put the resulting
107
      buddies), the buddy allocator would coalesce them and put the resulting
108
      block in list <emphasis>i + 1</emphasis>, provided that the resulting
108
      block in list <emphasis>i + 1</emphasis>, provided that the resulting
109
      block would be naturally aligned. Similarily, when the allocator is
109
      block would be naturally aligned. Similarily, when the allocator is
110
      asked to allocate a block of size
110
      asked to allocate a block of size
111
      <emphasis>2<superscript>i</superscript></emphasis>, it first tries to
111
      <emphasis>2<superscript>i</superscript></emphasis>, it first tries to
112
      satisfy the request from the list with index <emphasis>i</emphasis>. If
112
      satisfy the request from the list with index <emphasis>i</emphasis>. If
113
      the request cannot be satisfied (i.e. the list <emphasis>i</emphasis> is
113
      the request cannot be satisfied (i.e. the list <emphasis>i</emphasis> is
114
      empty), the buddy allocator will try to allocate and split a larger
114
      empty), the buddy allocator will try to allocate and split a larger
115
      block from the list with index <emphasis>i + 1</emphasis>. Both of these
115
      block from the list with index <emphasis>i + 1</emphasis>. Both of these
116
      algorithms are recursive. The recursion ends either when there are no
116
      algorithms are recursive. The recursion ends either when there are no
117
      blocks to coalesce in the former case or when there are no blocks that
117
      blocks to coalesce in the former case or when there are no blocks that
118
      can be split in the latter case.</para>
118
      can be split in the latter case.</para>
119
 
119
 
120
      <para>This approach greatly reduces external fragmentation of memory and
120
      <para>This approach greatly reduces external fragmentation of memory and
121
      helps in allocating bigger continuous blocks of memory aligned to their
121
      helps in allocating bigger continuous blocks of memory aligned to their
122
      size. On the other hand, the buddy allocator suffers increased internal
122
      size. On the other hand, the buddy allocator suffers increased internal
123
      fragmentation of memory and is not suitable for general kernel
123
      fragmentation of memory and is not suitable for general kernel
124
      allocations. This purpose is better addressed by the <link
124
      allocations. This purpose is better addressed by the <link
125
      linkend="slab">slab allocator</link>.<figure float="1">
125
      linkend="slab">slab allocator</link>.<figure float="1">
126
          <mediaobject id="buddy_alloc">
126
          <mediaobject id="buddy_alloc">
127
            <imageobject role="pdf">
127
            <imageobject role="pdf">
128
              <imagedata fileref="images/buddy_alloc.pdf" format="PDF" />
128
              <imagedata fileref="images/buddy_alloc.pdf" format="PDF" />
129
            </imageobject>
129
            </imageobject>
130
 
130
 
131
            <imageobject role="html">
131
            <imageobject role="html">
132
              <imagedata fileref="images/buddy_alloc.png" format="PNG" />
132
              <imagedata fileref="images/buddy_alloc.png" format="PNG" />
133
            </imageobject>
133
            </imageobject>
134
 
134
 
135
            <imageobject role="fop">
135
            <imageobject role="fop">
136
              <imagedata fileref="images/buddy_alloc.svg" format="SVG" />
136
              <imagedata fileref="images/buddy_alloc.svg" format="SVG" />
137
            </imageobject>
137
            </imageobject>
138
          </mediaobject>
138
          </mediaobject>
139
 
139
 
140
          <title>Buddy system scheme.</title>
140
          <title>Buddy system scheme.</title>
141
        </figure></para>
141
        </figure></para>
142
 
142
 
143
      <section>
143
      <section>
144
        <title>Implementation</title>
144
        <title>Implementation</title>
145
 
145
 
146
        <para>The buddy allocator is, in fact, an abstract framework which can
146
        <para>The buddy allocator is, in fact, an abstract framework which can
147
        be easily specialized to serve one particular task. It knows nothing
147
        be easily specialized to serve one particular task. It knows nothing
148
        about the nature of memory it helps to allocate. In order to beat the
148
        about the nature of memory it helps to allocate. In order to beat the
149
        lack of this knowledge, the buddy allocator exports an interface that
149
        lack of this knowledge, the buddy allocator exports an interface that
150
        each of its clients is required to implement. When supplied with an
150
        each of its clients is required to implement. When supplied with an
151
        implementation of this interface, the buddy allocator can use
151
        implementation of this interface, the buddy allocator can use
152
        specialized external functions to find a buddy for a block, split and
152
        specialized external functions to find a buddy for a block, split and
153
        coalesce blocks, manipulate block order and mark blocks busy or
153
        coalesce blocks, manipulate block order and mark blocks busy or
154
        available.</para>
154
        available.</para>
155
 
155
 
156
        <formalpara>
156
        <formalpara>
157
          <title>Data organization</title>
157
          <title>Data organization</title>
158
 
158
 
159
          <para>Each entity allocable by the buddy allocator is required to
159
          <para>Each entity allocable by the buddy allocator is required to
160
          contain space for storing block order number and a link variable
160
          contain space for storing block order number and a link variable
161
          used to interconnect blocks within the same order.</para>
161
          used to interconnect blocks within the same order.</para>
162
 
162
 
163
          <para>Whatever entities are allocated by the buddy allocator, the
163
          <para>Whatever entities are allocated by the buddy allocator, the
164
          first entity within a block is used to represent the entire block.
164
          first entity within a block is used to represent the entire block.
165
          The first entity keeps the order of the whole block. Other entities
165
          The first entity keeps the order of the whole block. Other entities
166
          within the block are assigned the magic value
166
          within the block are assigned the magic value
167
          <constant>BUDDY_INNER_BLOCK</constant>. This is especially important
167
          <constant>BUDDY_INNER_BLOCK</constant>. This is especially important
168
          for effective identification of buddies in a one-dimensional array
168
          for effective identification of buddies in a one-dimensional array
169
          because the entity that represents a potential buddy cannot be
169
          because the entity that represents a potential buddy cannot be
170
          associated with <constant>BUDDY_INNER_BLOCK</constant> (i.e. if it
170
          associated with <constant>BUDDY_INNER_BLOCK</constant> (i.e. if it
171
          is associated with <constant>BUDDY_INNER_BLOCK</constant> then it is
171
          is associated with <constant>BUDDY_INNER_BLOCK</constant> then it is
172
          not a buddy).</para>
172
          not a buddy).</para>
173
        </formalpara>
173
        </formalpara>
174
      </section>
174
      </section>
175
    </section>
175
    </section>
176
 
176
 
177
    <section id="slab">
177
    <section id="slab">
178
      <indexterm>
178
      <indexterm>
179
        <primary>slab allocator</primary>
179
        <primary>slab allocator</primary>
180
      </indexterm>
180
      </indexterm>
181
 
181
 
182
      <title>Slab allocator</title>
182
      <title>Slab allocator</title>
183
 
183
 
184
      <para>The majority of memory allocation requests in the kernel is for
184
      <para>The majority of memory allocation requests in the kernel is for
185
      small, frequently used data structures. The basic idea behind the slab
185
      small, frequently used data structures. The basic idea behind the slab
186
      allocator is that commonly used objects are preallocated in continuous
186
      allocator is that commonly used objects are preallocated in continuous
187
      areas of physical memory called slabs<footnote>
187
      areas of physical memory called slabs<footnote>
188
          <para>Slabs are in fact blocks of physical memory frames allocated
188
          <para>Slabs are in fact blocks of physical memory frames allocated
189
          from the frame allocator.</para>
189
          from the frame allocator.</para>
190
        </footnote>. Whenever an object is to be allocated, the slab allocator
190
        </footnote>. Whenever an object is to be allocated, the slab allocator
191
      returns the first available item from a suitable slab corresponding to
191
      returns the first available item from a suitable slab corresponding to
192
      the object type<footnote>
192
      the object type<footnote>
193
          <para>The mechanism is rather more complicated, see the next
193
          <para>The mechanism is rather more complicated, see the next
194
          paragraph.</para>
194
          paragraph.</para>
195
        </footnote>. Due to the fact that the sizes of the requested and
195
        </footnote>. Due to the fact that the sizes of the requested and
196
      allocated object match, the slab allocator significantly reduces
196
      allocated object match, the slab allocator significantly reduces
197
      internal fragmentation.</para>
197
      internal fragmentation.</para>
198
 
198
 
199
      <indexterm>
199
      <indexterm>
200
        <primary>slab allocator</primary>
200
        <primary>slab allocator</primary>
201
 
201
 
202
        <secondary>- slab cache</secondary>
202
        <secondary>- slab cache</secondary>
203
      </indexterm>
203
      </indexterm>
204
 
204
 
205
      <para>Slabs of one object type are organized in a structure called slab
205
      <para>Slabs of one object type are organized in a structure called slab
206
      cache. There are ususally more slabs in the slab cache, depending on
206
      cache. There are ususally more slabs in the slab cache, depending on
207
      previous allocations. If the the slab cache runs out of available slabs,
207
      previous allocations. If the the slab cache runs out of available slabs,
208
      new slabs are allocated. In order to exploit parallelism and to avoid
208
      new slabs are allocated. In order to exploit parallelism and to avoid
209
      locking of shared spinlocks, slab caches can have variants of
209
      locking of shared spinlocks, slab caches can have variants of
210
      processor-private slabs called magazines. On each processor, there is a
210
      processor-private slabs called magazines. On each processor, there is a
211
      two-magazine cache. Full magazines that are not part of any
211
      two-magazine cache. Full magazines that are not part of any
212
      per-processor magazine cache are stored in a global list of full
212
      per-processor magazine cache are stored in a global list of full
213
      magazines.</para>
213
      magazines.</para>
214
 
214
 
215
      <indexterm>
215
      <indexterm>
216
        <primary>slab allocator</primary>
216
        <primary>slab allocator</primary>
217
 
217
 
218
        <secondary>- magazine</secondary>
218
        <secondary>- magazine</secondary>
219
      </indexterm>
219
      </indexterm>
220
 
220
 
221
      <para>Each object begins its life in a slab. When it is allocated from
221
      <para>Each object begins its life in a slab. When it is allocated from
222
      there, the slab allocator calls a constructor that is registered in the
222
      there, the slab allocator calls a constructor that is registered in the
223
      respective slab cache. The constructor initializes and brings the object
223
      respective slab cache. The constructor initializes and brings the object
224
      into a known state. The object is then used by the user. When the user
224
      into a known state. The object is then used by the user. When the user
225
      later frees the object, the slab allocator puts it into a processor
225
      later frees the object, the slab allocator puts it into a processor
226
      private <indexterm>
226
      private <indexterm>
227
          <primary>slab allocator</primary>
227
          <primary>slab allocator</primary>
228
 
228
 
229
          <secondary>- magazine</secondary>
229
          <secondary>- magazine</secondary>
230
        </indexterm>magazine cache, from where it can be precedently allocated
230
        </indexterm>magazine cache, from where it can be precedently allocated
231
      again. Note that allocations satisfied from a magazine are already
231
      again. Note that allocations satisfied from a magazine are already
232
      initialized by the constructor. When both of the processor cached
232
      initialized by the constructor. When both of the processor cached
233
      magazines get full, the allocator will move one of the magazines to the
233
      magazines get full, the allocator will move one of the magazines to the
234
      list of full magazines. Similarily, when allocating from an empty
234
      list of full magazines. Similarily, when allocating from an empty
235
      processor magazine cache, the kernel will reload only one magazine from
235
      processor magazine cache, the kernel will reload only one magazine from
236
      the list of full magazines. In other words, the slab allocator tries to
236
      the list of full magazines. In other words, the slab allocator tries to
237
      keep the processor magazine cache only half-full in order to prevent
237
      keep the processor magazine cache only half-full in order to prevent
238
      thrashing when allocations and deallocations interleave on magazine
238
      thrashing when allocations and deallocations interleave on magazine
239
      boundaries. The advantage of this setup is that during most of the
239
      boundaries. The advantage of this setup is that during most of the
240
      allocations, no global spinlock needs to be held.</para>
240
      allocations, no global spinlock needs to be held.</para>
241
 
241
 
242
      <para>Should HelenOS run short of memory, it would start deallocating
242
      <para>Should HelenOS run short of memory, it would start deallocating
243
      objects from magazines, calling slab cache destructor on them and
243
      objects from magazines, calling slab cache destructor on them and
244
      putting them back into slabs. When a slab contanins no allocated object,
244
      putting them back into slabs. When a slab contains no allocated object,
245
      it is immediately freed.</para>
245
      it is immediately freed.</para>
246
 
246
 
247
      <para>
247
      <para>
248
        <figure float="1">
248
        <figure float="1">
249
          <mediaobject id="slab_alloc">
249
          <mediaobject id="slab_alloc">
250
            <imageobject role="pdf">
250
            <imageobject role="pdf">
251
              <imagedata fileref="images/slab_alloc.pdf" format="PDF" />
251
              <imagedata fileref="images/slab_alloc.pdf" format="PDF" />
252
            </imageobject>
252
            </imageobject>
253
 
253
 
254
            <imageobject role="html">
254
            <imageobject role="html">
255
              <imagedata fileref="images/slab_alloc.png" format="PNG" />
255
              <imagedata fileref="images/slab_alloc.png" format="PNG" />
256
            </imageobject>
256
            </imageobject>
257
 
257
 
258
            <imageobject role="fop">
258
            <imageobject role="fop">
259
              <imagedata fileref="images/slab_alloc.svg" format="SVG" />
259
              <imagedata fileref="images/slab_alloc.svg" format="SVG" />
260
            </imageobject>
260
            </imageobject>
261
          </mediaobject>
261
          </mediaobject>
262
 
262
 
263
          <title>Slab allocator scheme.</title>
263
          <title>Slab allocator scheme.</title>
264
        </figure>
264
        </figure>
265
      </para>
265
      </para>
266
 
266
 
267
      <section>
267
      <section>
268
        <title>Implementation</title>
268
        <title>Implementation</title>
269
 
269
 
270
        <para>The slab allocator is closely modelled after <xref
270
        <para>The slab allocator is closely modelled after <xref
271
        linkend="Bonwick01" /> with the following exceptions:<itemizedlist>
271
        linkend="Bonwick01" /> with the following exceptions:<itemizedlist>
272
            <listitem>
272
            <listitem>
273
              <para>empty slabs are immediately deallocated and</para>
273
              <para>empty slabs are immediately deallocated and</para>
274
            </listitem>
274
            </listitem>
275
 
275
 
276
            <listitem>
276
            <listitem>
277
              <para>empty magazines are deallocated when not needed.</para>
277
              <para>empty magazines are deallocated when not needed.</para>
278
            </listitem>
278
            </listitem>
279
          </itemizedlist>The following features are not currently supported
279
          </itemizedlist>The following features are not currently supported
280
        but would be easy to do: <itemizedlist>
280
        but would be easy to do: <itemizedlist>
281
            <listitem>cache coloring and</listitem>
281
            <listitem>cache coloring and</listitem>
282
 
282
 
283
            <listitem>dynamic magazine grow (different magazine sizes are
283
            <listitem>dynamic magazine grow (different magazine sizes are
284
            already supported, but the allocation strategy would need to be
284
            already supported, but the allocation strategy would need to be
285
            adjusted).</listitem>
285
            adjusted).</listitem>
286
          </itemizedlist></para>
286
          </itemizedlist></para>
287
 
287
 
288
        <section>
288
        <section>
289
          <title>Allocation/deallocation</title>
289
          <title>Allocation/deallocation</title>
290
 
290
 
291
          <para>The following two paragraphs summarize and complete the
291
          <para>The following two paragraphs summarize and complete the
292
          description of the slab allocator operation (i.e.
292
          description of the slab allocator operation (i.e.
293
          <code>slab_alloc()</code> and <code>slab_free()</code>
293
          <code>slab_alloc()</code> and <code>slab_free()</code>
294
          functions).</para>
294
          functions).</para>
295
 
295
 
296
          <formalpara>
296
          <formalpara>
297
            <title>Allocation</title>
297
            <title>Allocation</title>
298
 
298
 
299
            <para><emphasis>Step 1.</emphasis> When an allocation request
299
            <para><emphasis>Step 1.</emphasis> When an allocation request
300
            comes, the slab allocator checks availability of memory in the
300
            comes, the slab allocator checks availability of memory in the
301
            current magazine of the local processor magazine cache. If the
301
            current magazine of the local processor magazine cache. If the
302
            available memory is there, the allocator just pops the object from
302
            available memory is there, the allocator just pops the object from
303
            magazine and returns it.</para>
303
            magazine and returns it.</para>
304
 
304
 
305
            <para><emphasis>Step 2.</emphasis> If the current magazine in the
305
            <para><emphasis>Step 2.</emphasis> If the current magazine in the
306
            processor magazine cache is empty, the allocator will attempt to
306
            processor magazine cache is empty, the allocator will attempt to
307
            swap it with the last magazine from the cache and return to the
307
            swap it with the last magazine from the cache and return to the
308
            first step. If also the last magazine is empty, the algorithm will
308
            first step. If also the last magazine is empty, the algorithm will
309
            fall through to Step 3.</para>
309
            fall through to Step 3.</para>
310
 
310
 
311
            <para><emphasis>Step 3.</emphasis> Now the allocator is in the
311
            <para><emphasis>Step 3.</emphasis> Now the allocator is in the
312
            situation when both magazines in the processor magazine cache are
312
            situation when both magazines in the processor magazine cache are
313
            empty. The allocator reloads one magazine from the shared list of
313
            empty. The allocator reloads one magazine from the shared list of
314
            full magazines. If the reload is successful (i.e. there are full
314
            full magazines. If the reload is successful (i.e. there are full
315
            magazines in the list), the algorithm continues with Step
315
            magazines in the list), the algorithm continues with Step
316
            1.</para>
316
            1.</para>
317
 
317
 
318
            <para><emphasis>Step 4.</emphasis> In this fail-safe step, an
318
            <para><emphasis>Step 4.</emphasis> In this fail-safe step, an
319
            object is allocated from the conventional slab layer and a pointer
319
            object is allocated from the conventional slab layer and a pointer
320
            to it is returned. If also the last magazine is full,</para>
320
            to it is returned. If also the last magazine is full, a new slab
-
 
321
            is allocated.</para>
321
          </formalpara>
322
          </formalpara>
322
 
323
 
323
          <formalpara>
324
          <formalpara>
324
            <title>Deallocation</title>
325
            <title>Deallocation</title>
325
 
326
 
326
            <para><emphasis>Step 1.</emphasis> During a deallocation request,
327
            <para><emphasis>Step 1.</emphasis> During a deallocation request,
327
            the slab allocator checks if the current magazine of the local
328
            the slab allocator checks if the current magazine of the local
328
            processor magazine cache is not full. If it is, the pointer to the
329
            processor magazine cache is not full. If it is, the pointer to the
329
            objects is just pushed into the magazine and the algorithm
330
            objects is just pushed into the magazine and the algorithm
330
            returns.</para>
331
            returns.</para>
331
 
332
 
332
            <para><emphasis>Step 2.</emphasis> If the current magazine is
333
            <para><emphasis>Step 2.</emphasis> If the current magazine is
333
            full, the allocator will attempt to swap it with the last magazine
334
            full, the allocator will attempt to swap it with the last magazine
334
            from the cache and return to the first step. If also the last
335
            from the cache and return to the first step. If also the last
335
            magazine is empty, the algorithm will fall through to Step
336
            magazine is empty, the algorithm will fall through to Step
336
            3.</para>
337
            3.</para>
337
 
338
 
338
            <para><emphasis>Step 3.</emphasis> Now the allocator is in the
339
            <para><emphasis>Step 3.</emphasis> Now the allocator is in the
339
            situation when both magazines in the processor magazine cache are
340
            situation when both magazines in the processor magazine cache are
340
            full. The allocator tries to allocate a new empty magazine and
341
            full. The allocator tries to allocate a new empty magazine and
341
            flush one of the full magazines to the shared list of full
342
            flush one of the full magazines to the shared list of full
342
            magazines. If it is successfull, the algoritm continues with Step
343
            magazines. If it is successfull, the algoritm continues with Step
343
            1.</para>
344
            1.</para>
344
 
345
 
345
            <para><emphasis>Step 4. </emphasis>In case of low memory condition
346
            <para><emphasis>Step 4. </emphasis>In case of low memory condition
346
            when the allocation of empty magazine fails, the object is moved
347
            when the allocation of empty magazine fails, the object is moved
347
            directly into slab. In the worst case object deallocation does not
348
            directly into slab. In the worst case object deallocation does not
348
            need to allocate any additional memory.</para>
349
            need to allocate any additional memory.</para>
349
          </formalpara>
350
          </formalpara>
350
        </section>
351
        </section>
351
      </section>
352
      </section>
352
    </section>
353
    </section>
353
  </section>
354
  </section>
354
 
355
 
355
  <section>
356
  <section>
356
    <title>Virtual memory management</title>
357
    <title>Virtual memory management</title>
357
 
358
 
358
    <para>Virtual memory is essential for an operating system because it makes
359
    <para>Virtual memory is essential for an operating system because it makes
359
    several things possible. First, it helps to isolate tasks from each other
360
    several things possible. First, it helps to isolate tasks from each other
360
    by encapsulating them in their private address spaces. Second, virtual
361
    by encapsulating them in their private address spaces. Second, virtual
361
    memory can give tasks the feeling of more memory available than is
362
    memory can give tasks the feeling of more memory available than is
362
    actually possible. And third, by using virtual memory, there might be
363
    actually possible. And third, by using virtual memory, there might be
363
    multiple copies of the same program, linked to the same addresses, running
364
    multiple copies of the same program, linked to the same addresses, running
364
    in the system. There are at least two known mechanisms for implementing
365
    in the system. There are at least two known mechanisms for implementing
365
    virtual memory: segmentation and paging. Even though some processor
366
    virtual memory: segmentation and paging. Even though some processor
366
    architectures supported by HelenOS<footnote>
367
    architectures supported by HelenOS<footnote>
367
        <para>ia32 has full-fledged segmentation.</para>
368
        <para>ia32 has full-fledged segmentation.</para>
368
      </footnote> provide both mechanisms, the kernel makes use solely of
369
      </footnote> provide both mechanisms, the kernel makes use solely of
369
    paging.</para>
370
    paging.</para>
370
 
371
 
371
    <section id="paging">
372
    <section id="paging">
372
      <title>VAT subsystem</title>
373
      <title>VAT subsystem</title>
373
 
374
 
374
      <para>In a paged virtual memory, the entire virtual address space is
375
      <para>In a paged virtual memory, the entire virtual address space is
375
      divided into small power-of-two sized naturally aligned blocks called
376
      divided into small power-of-two sized naturally aligned blocks called
376
      pages. The processor implements a translation mechanism, that allows the
377
      pages. The processor implements a translation mechanism, that allows the
377
      operating system to manage mappings between set of pages and set of
378
      operating system to manage mappings between set of pages and set of
378
      identically sized and identically aligned pieces of physical memory
379
      identically sized and identically aligned pieces of physical memory
379
      called frames. In a result, references to continuous virtual memory
380
      called frames. In a result, references to continuous virtual memory
380
      areas don't necessarily need to reference continuos area of physical
381
      areas don't necessarily need to reference continuos area of physical
381
      memory. Supported page sizes usually range from several kilobytes to
382
      memory. Supported page sizes usually range from several kilobytes to
382
      several megabytes. Each page that takes part in the mapping is
383
      several megabytes. Each page that takes part in the mapping is
383
      associated with certain attributes that further desribe the mapping
384
      associated with certain attributes that further desribe the mapping
384
      (e.g. access rights, dirty and accessed bits and present bit).</para>
385
      (e.g. access rights, dirty and accessed bits and present bit).</para>
385
 
386
 
386
      <para>When the processor accesses a page that is not present (i.e. its
387
      <para>When the processor accesses a page that is not present (i.e. its
387
      present bit is not set), the operating system is notified through a
388
      present bit is not set), the operating system is notified through a
388
      special exception called page fault. It is then up to the operating
389
      special exception called page fault. It is then up to the operating
389
      system to service the page fault. In HelenOS, some page faults are fatal
390
      system to service the page fault. In HelenOS, some page faults are fatal
390
      and result in either task termination or, in the worse case, kernel
391
      and result in either task termination or, in the worse case, kernel
391
      panic<footnote>
392
      panic<footnote>
392
          <para>Such a condition would be either caused by a hardware failure
393
          <para>Such a condition would be either caused by a hardware failure
393
          or a bug in the kernel.</para>
394
          or a bug in the kernel.</para>
394
        </footnote>, while other page faults are used to load memory on demand
395
        </footnote>, while other page faults are used to load memory on demand
395
      or to notify the kernel about certain events.</para>
396
      or to notify the kernel about certain events.</para>
396
 
397
 
397
      <indexterm>
398
      <indexterm>
398
        <primary>page tables</primary>
399
        <primary>page tables</primary>
399
      </indexterm>
400
      </indexterm>
400
 
401
 
401
      <para>The set of all page mappings is stored in a memory structure
402
      <para>The set of all page mappings is stored in a memory structure
402
      called page tables. Some architectures have no hardware support for page
403
      called page tables. Some architectures have no hardware support for page
403
      tables<footnote>
404
      tables<footnote>
404
          <para>On mips32, TLB-only model is used and the operating system is
405
          <para>On mips32, TLB-only model is used and the operating system is
405
          responsible for managing software defined page tables.</para>
406
          responsible for managing software defined page tables.</para>
406
        </footnote> while other processor architectures<footnote>
407
        </footnote> while other processor architectures<footnote>
407
          <para>Like amd64 and ia32.</para>
408
          <para>Like amd64 and ia32.</para>
408
        </footnote> understand the whole memory format thereof. Despite all
409
        </footnote> understand the whole memory format thereof. Despite all
409
      the possible differences in page table formats, the HelenOS VAT
410
      the possible differences in page table formats, the HelenOS VAT
410
      subsystem<footnote>
411
      subsystem<footnote>
411
          <para>Virtual Address Translation subsystem.</para>
412
          <para>Virtual Address Translation subsystem.</para>
412
        </footnote> unifies the page table operations under one programming
413
        </footnote> unifies the page table operations under one programming
413
      interface. For all parts of the kernel, three basic functions are
414
      interface. For all parts of the kernel, three basic functions are
414
      provided:</para>
415
      provided:</para>
415
 
416
 
416
      <itemizedlist>
417
      <itemizedlist>
417
        <listitem>
418
        <listitem>
418
          <para><code>page_mapping_insert()</code>,</para>
419
          <para><code>page_mapping_insert()</code>,</para>
419
        </listitem>
420
        </listitem>
420
 
421
 
421
        <listitem>
422
        <listitem>
422
          <para><code>page_mapping_find()</code> and</para>
423
          <para><code>page_mapping_find()</code> and</para>
423
        </listitem>
424
        </listitem>
424
 
425
 
425
        <listitem>
426
        <listitem>
426
          <para><code>page_mapping_remove()</code>.</para>
427
          <para><code>page_mapping_remove()</code>.</para>
427
        </listitem>
428
        </listitem>
428
      </itemizedlist>
429
      </itemizedlist>
429
 
430
 
430
      <para>The <code>page_mapping_insert()</code> function is used to
431
      <para>The <code>page_mapping_insert()</code> function is used to
431
      introduce a mapping for one virtual memory page belonging to a
432
      introduce a mapping for one virtual memory page belonging to a
432
      particular address space into the page tables. Once the mapping is in
433
      particular address space into the page tables. Once the mapping is in
433
      the page tables, it can be searched by <code>page_mapping_find()</code>
434
      the page tables, it can be searched by <code>page_mapping_find()</code>
434
      and removed by <code>page_mapping_remove()</code>. All of these
435
      and removed by <code>page_mapping_remove()</code>. All of these
435
      functions internally select the page table mechanism specific functions
436
      functions internally select the page table mechanism specific functions
436
      that carry out the self operation.</para>
437
      that carry out the self operation.</para>
437
 
438
 
438
      <para>There are currently two supported mechanisms: generic 4-level
439
      <para>There are currently two supported mechanisms: generic 4-level
439
      hierarchical page tables and global page hash table. Both of the
440
      hierarchical page tables and global page hash table. Both of the
440
      mechanisms are generic as they cover several hardware platforms. For
441
      mechanisms are generic as they cover several hardware platforms. For
441
      instance, the 4-level hierarchical page table mechanism is used by
442
      instance, the 4-level hierarchical page table mechanism is used by
442
      amd64, ia32, mips32 and ppc32, respectively. These architectures have
443
      amd64, ia32, mips32 and ppc32, respectively. These architectures have
443
      the following page table format: 4-level, 2-level, TLB-only and hardware
444
      the following page table format: 4-level, 2-level, TLB-only and hardware
444
      hash table, respectively. On the other hand, the global page hash table
445
      hash table, respectively. On the other hand, the global page hash table
445
      is used on ia64 that can be TLB-only or use a hardware hash table.
446
      is used on ia64 that can be TLB-only or use a hardware hash table.
446
      Although only two mechanisms are currently implemented, other mechanisms
447
      Although only two mechanisms are currently implemented, other mechanisms
447
      (e.g. B+tree) can be easily added.</para>
448
      (e.g. B+tree) can be easily added.</para>
448
 
449
 
449
      <section id="page_tables">
450
      <section id="page_tables">
450
        <indexterm>
451
        <indexterm>
451
          <primary>page tables</primary>
452
          <primary>page tables</primary>
452
 
453
 
453
          <secondary>- hierarchical</secondary>
454
          <secondary>- hierarchical</secondary>
454
        </indexterm>
455
        </indexterm>
455
 
456
 
456
        <title>Hierarchical 4-level page tables</title>
457
        <title>Hierarchical 4-level page tables</title>
457
 
458
 
458
        <para>Hierarchical 4-level page tables are generalization of the
459
        <para>Hierarchical 4-level page tables are generalization of the
459
        frequently used hierarchical model of page tables. In this mechanism,
460
        frequently used hierarchical model of page tables. In this mechanism,
460
        each address space has its own page tables. To avoid confusion in
461
        each address space has its own page tables. To avoid confusion in
461
        terminology used by hardware vendors, in HelenOS, the root level page
462
        terminology used by hardware vendors, in HelenOS, the root level page
462
        table is called PTL0, the two middle levels are called PTL1 and PTL2,
463
        table is called PTL0, the two middle levels are called PTL1 and PTL2,
463
        and, finally, the leaf level is called PTL3. All architectures using
464
        and, finally, the leaf level is called PTL3. All architectures using
464
        this mechanism are required to use PTL0 and PTL3. However, the middle
465
        this mechanism are required to use PTL0 and PTL3. However, the middle
465
        levels can be left out, depending on the hardware hierarchy or
466
        levels can be left out, depending on the hardware hierarchy or
466
        structure of software-only page tables. The genericity is achieved
467
        structure of software-only page tables. The genericity is achieved
467
        through a set of macros that define transitions from one level to
468
        through a set of macros that define transitions from one level to
468
        another. Unused levels are optimised out by the compiler.
469
        another. Unused levels are optimised out by the compiler.
469
    <figure float="1">
470
    <figure float="1">
470
          <mediaobject id="mm_pt">
471
          <mediaobject id="mm_pt">
471
            <imageobject role="pdf">
472
            <imageobject role="pdf">
472
              <imagedata fileref="images/mm_pt.pdf" format="PDF" />
473
              <imagedata fileref="images/mm_pt.pdf" format="PDF" />
473
            </imageobject>
474
            </imageobject>
474
 
475
 
475
            <imageobject role="html">
476
            <imageobject role="html">
476
              <imagedata fileref="images/mm_pt.png" format="PNG" />
477
              <imagedata fileref="images/mm_pt.png" format="PNG" />
477
            </imageobject>
478
            </imageobject>
478
 
479
 
479
            <imageobject role="fop">
480
            <imageobject role="fop">
480
              <imagedata fileref="images/mm_pt.svg" format="SVG" />
481
              <imagedata fileref="images/mm_pt.svg" format="SVG" />
481
            </imageobject>
482
            </imageobject>
482
          </mediaobject>
483
          </mediaobject>
483
 
484
 
484
          <title>Hierarchical 4-level page tables.</title>
485
          <title>Hierarchical 4-level page tables.</title>
485
        </figure>
486
        </figure>
486
    </para>
487
    </para>
487
      </section>
488
      </section>
488
 
489
 
489
      <section>
490
      <section>
490
        <indexterm>
491
        <indexterm>
491
          <primary>page tables</primary>
492
          <primary>page tables</primary>
492
 
493
 
493
          <secondary>- hashing</secondary>
494
          <secondary>- hashing</secondary>
494
        </indexterm>
495
        </indexterm>
495
 
496
 
496
        <title>Global page hash table</title>
497
        <title>Global page hash table</title>
497
 
498
 
498
        <para>Implementation of the global page hash table was encouraged by
499
        <para>Implementation of the global page hash table was encouraged by
499
        64-bit architectures that can have rather sparse address spaces. The
500
        64-bit architectures that can have rather sparse address spaces. The
500
        hash table contains valid mappings only. Each entry of the hash table
501
        hash table contains valid mappings only. Each entry of the hash table
501
        contains an address space pointer, virtual memory page number (VPN),
502
        contains an address space pointer, virtual memory page number (VPN),
502
        physical memory frame number (PFN) and a set of flags. The pair of the
503
        physical memory frame number (PFN) and a set of flags. The pair of the
503
        address space pointer and the virtual memory page number is used as a
504
        address space pointer and the virtual memory page number is used as a
504
        key for the hash table. One of the major differences between the
505
        key for the hash table. One of the major differences between the
505
        global page hash table and hierarchical 4-level page tables is that
506
        global page hash table and hierarchical 4-level page tables is that
506
        there is only a single global page hash table in the system while
507
        there is only a single global page hash table in the system while
507
        hierarchical page tables exist per address space. Thus, the global
508
        hierarchical page tables exist per address space. Thus, the global
508
        page hash table contains information about mappings of all address
509
        page hash table contains information about mappings of all address
509
        spaces in the system.
510
        spaces in the system.
510
        <figure float="1">
511
        <figure float="1">
511
          <mediaobject id="mm_hash">
512
          <mediaobject id="mm_hash">
512
            <imageobject role="pdf">
513
            <imageobject role="pdf">
513
              <imagedata fileref="images/mm_hash.pdf" format="PDF" />
514
              <imagedata fileref="images/mm_hash.pdf" format="PDF" />
514
            </imageobject>
515
            </imageobject>
515
 
516
 
516
            <imageobject role="html">
517
            <imageobject role="html">
517
              <imagedata fileref="images/mm_hash.png" format="PNG" />
518
              <imagedata fileref="images/mm_hash.png" format="PNG" />
518
            </imageobject>
519
            </imageobject>
519
 
520
 
520
            <imageobject role="fop">
521
            <imageobject role="fop">
521
              <imagedata fileref="images/mm_hash.svg" format="SVG" />
522
              <imagedata fileref="images/mm_hash.svg" format="SVG" />
522
            </imageobject>
523
            </imageobject>
523
          </mediaobject>
524
          </mediaobject>
524
 
525
 
525
          <title>Global page hash table.</title>
526
          <title>Global page hash table.</title>
526
        </figure>
527
        </figure>
527
</para>
528
</para>
528
 
529
 
529
        <para>The global page hash table mechanism uses the generic hash table
530
        <para>The global page hash table mechanism uses the generic hash table
530
        type as described in the chapter dedicated to <link
531
        type as described in the chapter dedicated to <link
531
        linkend="hashtables">data structures</link> earlier in this
532
        linkend="hashtables">data structures</link> earlier in this
532
        book.</para>
533
        book.</para>
533
      </section>
534
      </section>
534
    </section>
535
    </section>
535
  </section>
536
  </section>
536
 
537
 
537
  <section id="tlb">
538
  <section id="tlb">
538
    <indexterm>
539
    <indexterm>
539
      <primary>TLB</primary>
540
      <primary>TLB</primary>
540
    </indexterm>
541
    </indexterm>
541
 
542
 
542
    <title>Translation Lookaside buffer</title>
543
    <title>Translation Lookaside buffer</title>
543
 
544
 
544
    <para>Due to the extensive overhead of several extra memory accesses
545
    <para>Due to the extensive overhead of several extra memory accesses
545
    during page table lookup that are necessary on every instruction, modern
546
    during page table lookup that are necessary on every instruction, modern
546
    architectures deploy fast assotiative cache of recelntly used page
547
    architectures deploy fast assotiative cache of recelntly used page
547
    mappings. This cache is called TLB - Translation Lookaside Buffer - and is
548
    mappings. This cache is called TLB - Translation Lookaside Buffer - and is
548
    present on every processor in the system. As it has been already pointed
549
    present on every processor in the system. As it has been already pointed
549
    out, TLB is the only page translation mechanism for some
550
    out, TLB is the only page translation mechanism for some
550
    architectures.</para>
551
    architectures.</para>
551
 
552
 
552
    <section id="tlb_shootdown">
553
    <section id="tlb_shootdown">
553
      <indexterm>
554
      <indexterm>
554
        <primary>TLB</primary>
555
        <primary>TLB</primary>
555
 
556
 
556
        <secondary>- TLB shootdown</secondary>
557
        <secondary>- TLB shootdown</secondary>
557
      </indexterm>
558
      </indexterm>
558
 
559
 
559
      <title>TLB consistency</title>
560
      <title>TLB consistency</title>
560
 
561
 
561
      <para>The operating system is responsible for keeping TLB consistent
562
      <para>The operating system is responsible for keeping TLB consistent
562
      with the page tables. Whenever mappings are modified or purged from the
563
      with the page tables. Whenever mappings are modified or purged from the
563
      page tables, or when an address space identifier is reused, the kernel
564
      page tables, or when an address space identifier is reused, the kernel
564
      needs to invalidate the respective contents of TLB. Some TLB types
565
      needs to invalidate the respective contents of TLB. Some TLB types
565
      support partial invalidation of their content (e.g. ranges of pages or
566
      support partial invalidation of their content (e.g. ranges of pages or
566
      address spaces) while other types can be invalidated only entirely. The
567
      address spaces) while other types can be invalidated only entirely. The
567
      invalidation must be done on all processors for there is one TLB per
568
      invalidation must be done on all processors for there is one TLB per
568
      processor. Maintaining TLB consistency on multiprocessor configurations
569
      processor. Maintaining TLB consistency on multiprocessor configurations
569
      is not as trivial as it might look from the first glance.</para>
570
      is not as trivial as it might look from the first glance.</para>
570
 
571
 
571
      <para>The remote TLB invalidation is called TLB shootdown. HelenOS uses
572
      <para>The remote TLB invalidation is called TLB shootdown. HelenOS uses
572
      a simplified variant of the algorithm described in <xref
573
      a simplified variant of the algorithm described in <xref
573
      linkend="Black89" />.</para>
574
      linkend="Black89" />.</para>
574
 
575
 
575
      <para>TLB shootdown is performed in three phases.</para>
576
      <para>TLB shootdown is performed in three phases.</para>
576
 
577
 
577
      <formalpara>
578
      <formalpara>
578
        <title>Phase 1.</title>
579
        <title>Phase 1.</title>
579
 
580
 
580
        <para>The initiator clears its TLB flag and locks the global TLB
581
        <para>The initiator clears its TLB flag and locks the global TLB
581
        spinlock. The request is then enqueued into all other processors' TLB
582
        spinlock. The request is then enqueued into all other processors' TLB
582
        shootdown message queues. When the TLB shootdown message queue is full
583
        shootdown message queues. When the TLB shootdown message queue is full
583
        on any processor, the queue is purged and a single request to
584
        on any processor, the queue is purged and a single request to
584
        invalidate the entire TLB is stored there. Once all the TLB shootdown
585
        invalidate the entire TLB is stored there. Once all the TLB shootdown
585
        messages were dispatched, the initiator sends all other processors an
586
        messages were dispatched, the initiator sends all other processors an
586
        interrupt to notify them about the incoming TLB shootdown message. It
587
        interrupt to notify them about the incoming TLB shootdown message. It
587
        then spins until all processors accept the interrupt and clear their
588
        then spins until all processors accept the interrupt and clear their
588
        TLB flags.</para>
589
        TLB flags.</para>
589
      </formalpara>
590
      </formalpara>
590
 
591
 
591
      <formalpara>
592
      <formalpara>
592
        <title>Phase 2.</title>
593
        <title>Phase 2.</title>
593
 
594
 
594
        <para>Except for the initiator, all other processors are spining on
595
        <para>Except for the initiator, all other processors are spining on
595
        the TLB spinlock. The initiator is now free to modify the page tables
596
        the TLB spinlock. The initiator is now free to modify the page tables
596
        and purge its own TLB. The initiator then unlocks the global TLB
597
        and purge its own TLB. The initiator then unlocks the global TLB
597
        spinlock and sets its TLB flag.</para>
598
        spinlock and sets its TLB flag.</para>
598
      </formalpara>
599
      </formalpara>
599
 
600
 
600
      <formalpara>
601
      <formalpara>
601
        <title>Phase 3.</title>
602
        <title>Phase 3.</title>
602
 
603
 
603
        <para>When the spinlock is unlocked by the initiator, other processors
604
        <para>When the spinlock is unlocked by the initiator, other processors
604
        are sequentially granted the spinlock. However, once they manage to
605
        are sequentially granted the spinlock. However, once they manage to
605
        lock it, they immediately release it. Each processor invalidates its
606
        lock it, they immediately release it. Each processor invalidates its
606
        TLB according to messages found in its TLB shootdown message queue. In
607
        TLB according to messages found in its TLB shootdown message queue. In
607
        the end, each processor sets its TLB flag and resumes its previous
608
        the end, each processor sets its TLB flag and resumes its previous
608
        operation.</para>
609
        operation.</para>
609
      </formalpara>
610
      </formalpara>
610
    </section>
611
    </section>
611
  </section>
612
  </section>
612
 
613
 
613
  <section>
614
  <section>
614
    <title>Address spaces</title>
615
    <title>Address spaces</title>
615
 
616
 
616
    <para>In HelenOS, address spaces are objects that encapsulate the
617
    <para>In HelenOS, address spaces are objects that encapsulate the
617
    following items:</para>
618
    following items:</para>
618
 
619
 
619
    <itemizedlist>
620
    <itemizedlist>
620
      <listitem>
621
      <listitem>
621
        <para>address space identifier,</para>
622
        <para>address space identifier,</para>
622
      </listitem>
623
      </listitem>
623
 
624
 
624
      <listitem>
625
      <listitem>
625
        <para>page table PTL0 pointer and</para>
626
        <para>page table PTL0 pointer and</para>
626
      </listitem>
627
      </listitem>
627
 
628
 
628
      <listitem>
629
      <listitem>
629
        <para>a set of mutually disjunctive address space areas.</para>
630
        <para>a set of mutually disjunctive address space areas.</para>
630
      </listitem>
631
      </listitem>
631
    </itemizedlist>
632
    </itemizedlist>
632
 
633
 
633
    <para>Address space identifiers will be discussed later in this section.
634
    <para>Address space identifiers will be discussed later in this section.
634
    The address space contains a pointer to PTL0, provided that the
635
    The address space contains a pointer to PTL0, provided that the
635
    architecture uses per address space page tables such as the hierarchical
636
    architecture uses per address space page tables such as the hierarchical
636
    4-level page tables. The most interesting component is the B+tree of
637
    4-level page tables. The most interesting component is the B+tree of
637
    address space areas belonging to the address space.</para>
638
    address space areas belonging to the address space.</para>
638
 
639
 
639
    <section>
640
    <section>
640
      <title>Address space areas</title>
641
      <title>Address space areas</title>
641
 
642
 
642
      <para>Because an address space can be composed of heterogenous mappings
643
      <para>Because an address space can be composed of heterogenous mappings
643
      such as userspace code, data, read-only data and kernel memory, it is
644
      such as userspace code, data, read-only data and kernel memory, it is
644
      further broken down into smaller homogenous units called address space
645
      further broken down into smaller homogenous units called address space
645
      areas. An address space area represents a continuous piece of userspace
646
      areas. An address space area represents a continuous piece of userspace
646
      virtual memory associated with common flags. Kernel memory mappings do
647
      virtual memory associated with common flags. Kernel memory mappings do
647
      not take part in address space areas because they are hardwired either
648
      not take part in address space areas because they are hardwired either
648
      into TLBs or page tables and are thus shared by all address spaces. The
649
      into TLBs or page tables and are thus shared by all address spaces. The
649
      flags are a combination of:</para>
650
      flags are a combination of:</para>
650
 
651
 
651
      <itemizedlist>
652
      <itemizedlist>
652
        <listitem>
653
        <listitem>
653
          <para><constant>AS_AREA_READ</constant>,</para>
654
          <para><constant>AS_AREA_READ</constant>,</para>
654
        </listitem>
655
        </listitem>
655
 
656
 
656
        <listitem>
657
        <listitem>
657
          <para><constant>AS_AREA_WRITE</constant>,</para>
658
          <para><constant>AS_AREA_WRITE</constant>,</para>
658
        </listitem>
659
        </listitem>
659
 
660
 
660
        <listitem>
661
        <listitem>
661
          <para><constant>AS_AREA_EXEC</constant> and</para>
662
          <para><constant>AS_AREA_EXEC</constant> and</para>
662
        </listitem>
663
        </listitem>
663
 
664
 
664
        <listitem>
665
        <listitem>
665
          <para><constant>AS_AREA_CACHEABLE</constant>.</para>
666
          <para><constant>AS_AREA_CACHEABLE</constant>.</para>
666
        </listitem>
667
        </listitem>
667
      </itemizedlist>
668
      </itemizedlist>
668
 
669
 
669
      <para>The <constant>AS_AREA_READ</constant> flag is implicit and cannot
670
      <para>The <constant>AS_AREA_READ</constant> flag is implicit and cannot
670
      be removed. The <constant>AS_AREA_WRITE</constant> flag denotes a
671
      be removed. The <constant>AS_AREA_WRITE</constant> flag denotes a
671
      writable address space area and the <constant>AS_AREA_EXEC</constant> is
672
      writable address space area and the <constant>AS_AREA_EXEC</constant> is
672
      used for areas containing code. The combination of
673
      used for areas containing code. The combination of
673
      <constant>AS_AREA_WRITE</constant> and <constant>AS_AREA_EXEC</constant>
674
      <constant>AS_AREA_WRITE</constant> and <constant>AS_AREA_EXEC</constant>
674
      is not allowed. Some architectures don't differentiate between
675
      is not allowed. Some architectures don't differentiate between
675
      executable and non-executable mappings. In that case, the
676
      executable and non-executable mappings. In that case, the
676
      <constant>AS_AREA_EXEC</constant> has no effect on mappings created for
677
      <constant>AS_AREA_EXEC</constant> has no effect on mappings created for
677
      the address space area in the page tables. If the flags don't have
678
      the address space area in the page tables. If the flags don't have
678
      <constant>AS_AREA_CACHEABLE</constant> set, the page tables content of
679
      <constant>AS_AREA_CACHEABLE</constant> set, the page tables content of
679
      the area is created with caching disabled. This is useful for address
680
      the area is created with caching disabled. This is useful for address
680
      space areas containing memory of some memory mapped device.</para>
681
      space areas containing memory of some memory mapped device.</para>
681
 
682
 
682
      <para>Address space areas can be backed by a backend that provides
683
      <para>Address space areas can be backed by a backend that provides
683
      virtual functions for servicing page faults that occur within the
684
      virtual functions for servicing page faults that occur within the
684
      address space area, releasing memory allocated by the area and sharing
685
      address space area, releasing memory allocated by the area and sharing
685
      the area. Currently, there are three backends supported by HelenOS:
686
      the area. Currently, there are three backends supported by HelenOS:
686
      anonymous memory backend, ELF image backend and physical memory
687
      anonymous memory backend, ELF image backend and physical memory
687
      backend.</para>
688
      backend.</para>
688
 
689
 
689
      <formalpara>
690
      <formalpara>
690
        <title>Anonymous memory backend</title>
691
        <title>Anonymous memory backend</title>
691
 
692
 
692
        <para>Anonymous memory is memory that has no predefined contents such
693
        <para>Anonymous memory is memory that has no predefined contents such
693
        as userspace stack or heap. Anonymous address space areas are backed
694
        as userspace stack or heap. Anonymous address space areas are backed
694
        by memory allocated from the frame allocator. Areas backed by this
695
        by memory allocated from the frame allocator. Areas backed by this
695
        backend can be resized as long as they are not shared.</para>
696
        backend can be resized as long as they are not shared.</para>
696
      </formalpara>
697
      </formalpara>
697
 
698
 
698
      <formalpara>
699
      <formalpara>
699
        <title>ELF image backend</title>
700
        <title>ELF image backend</title>
700
 
701
 
701
        <para>Areas backed by the ELF backend are composed of memory that can
702
        <para>Areas backed by the ELF backend are composed of memory that can
702
        be either initialized, partially initialized or completely anonymous.
703
        be either initialized, partially initialized or completely anonymous.
703
        Initialized portions of ELF backend address space areas are those that
704
        Initialized portions of ELF backend address space areas are those that
704
        are entirely physically present in the executable image (e.g. code and
705
        are entirely physically present in the executable image (e.g. code and
705
        initialized data). Anonymous portions are those pages of the
706
        initialized data). Anonymous portions are those pages of the
706
        <emphasis>bss</emphasis> section that exist entirely outside the
707
        <emphasis>bss</emphasis> section that exist entirely outside the
707
        executable image. Lastly, pages that don't fit into the previous two
708
        executable image. Lastly, pages that don't fit into the previous two
708
        categories are partially initialized as they are both part of the
709
        categories are partially initialized as they are both part of the
709
        image and the <emphasis>bss</emphasis> section. The initialized
710
        image and the <emphasis>bss</emphasis> section. The initialized
710
        portion does not need any memory from the allocator unless it is
711
        portion does not need any memory from the allocator unless it is
711
        writable. In that case, pages are duplicated on demand during page
712
        writable. In that case, pages are duplicated on demand during page
712
        fault and memory for the copy is allocated from the frame allocator.
713
        fault and memory for the copy is allocated from the frame allocator.
713
        The remaining two parts of the ELF always require memory from the
714
        The remaining two parts of the ELF always require memory from the
714
        frame allocator. Non-shared address space areas backed by the ELF
715
        frame allocator. Non-shared address space areas backed by the ELF
715
        image backend can be resized.</para>
716
        image backend can be resized.</para>
716
      </formalpara>
717
      </formalpara>
717
 
718
 
718
      <formalpara>
719
      <formalpara>
719
        <title>Physical memory backend</title>
720
        <title>Physical memory backend</title>
720
 
721
 
721
        <para>Physical memory backend is used by the device drivers to access
722
        <para>Physical memory backend is used by the device drivers to access
722
        physical memory. No additional memory needs to be allocated on a page
723
        physical memory. No additional memory needs to be allocated on a page
723
        fault in this area and when sharing this area. Areas backed by this
724
        fault in this area and when sharing this area. Areas backed by this
724
        backend cannot be resized.</para>
725
        backend cannot be resized.</para>
725
      </formalpara>
726
      </formalpara>
726
 
727
 
727
      <section>
728
      <section>
728
        <title>Memory sharing</title>
729
        <title>Memory sharing</title>
729
 
730
 
730
        <para>Address space areas can be shared provided that their backend
731
        <para>Address space areas can be shared provided that their backend
731
        supports sharing<footnote>
732
        supports sharing<footnote>
732
            <para>Which is the case for all currently supported
733
            <para>Which is the case for all currently supported
733
            backends.</para>
734
            backends.</para>
734
          </footnote>. When the kernel calls <code>as_area_share()</code>, a
735
          </footnote>. When the kernel calls <code>as_area_share()</code>, a
735
        check is made to see whether the area is already being shared. If the
736
        check is made to see whether the area is already being shared. If the
736
        area is already shared, it contains a pointer to the share info
737
        area is already shared, it contains a pointer to the share info
737
        structure. The pointer is then simply copied into the new address
738
        structure. The pointer is then simply copied into the new address
738
        space area and a reference count in the share info structure is
739
        space area and a reference count in the share info structure is
739
        incremented. Otherwise a new address space share info structure needs
740
        incremented. Otherwise a new address space share info structure needs
740
        to be created. The backend is then called to duplicate the mapping of
741
        to be created. The backend is then called to duplicate the mapping of
741
        pages for which a frame is allocated. The duplicated mapping is stored
742
        pages for which a frame is allocated. The duplicated mapping is stored
742
        in the share info structure B+tree called <varname>pagemap</varname>.
743
        in the share info structure B+tree called <varname>pagemap</varname>.
743
        Note that the reference count of the frames put into the
744
        Note that the reference count of the frames put into the
744
        <varname>pagemap</varname> must be incremented in order to avoid a race condition.
745
        <varname>pagemap</varname> must be incremented in order to avoid a race condition.
745
    If the originating address space area had been destroyed before the <varname>pagemap</varname>
746
    If the originating address space area had been destroyed before the <varname>pagemap</varname>
746
    information made it to the page tables of other address spaces that take part in
747
    information made it to the page tables of other address spaces that take part in
747
    the sharing, the reference count of the respective frames
748
    the sharing, the reference count of the respective frames
748
    would have dropped to zero and some of them could have been allocated again.</para>
749
    would have dropped to zero and some of them could have been allocated again.</para>
749
      </section>
750
      </section>
750
 
751
 
751
      <section>
752
      <section>
752
        <title>Page faults</title>
753
        <title>Page faults</title>
753
 
754
 
754
        <para>When a page fault is encountered in the address space area, the
755
        <para>When a page fault is encountered in the address space area, the
755
        address space page fault handler, <code>as_page_fault()</code>,
756
        address space page fault handler, <code>as_page_fault()</code>,
756
        invokes the corresponding backend page fault handler to resolve the
757
        invokes the corresponding backend page fault handler to resolve the
757
        situation. The backend might either confirm the page fault or perform
758
        situation. The backend might either confirm the page fault or perform
758
        a remedy. In the non-shared case, depending on the backend, the page
759
        a remedy. In the non-shared case, depending on the backend, the page
759
        fault can be remedied usually by allocating some memory on demand or
760
        fault can be remedied usually by allocating some memory on demand or
760
        by looking up the frame for the faulting translation in the ELF
761
        by looking up the frame for the faulting translation in the ELF
761
        image.</para>
762
        image.</para>
762
 
763
 
763
        <para>Shared address space areas need to consider the
764
        <para>Shared address space areas need to consider the
764
        <varname>pagemap</varname> B+tree. First they need to make sure
765
        <varname>pagemap</varname> B+tree. First they need to make sure
765
        whether the mapping is not present in the <varname>pagemap</varname>.
766
        whether the mapping is not present in the <varname>pagemap</varname>.
766
        If it is there, then the frame reference count is increased and the
767
        If it is there, then the frame reference count is increased and the
767
        page fault is resolved. Otherwise the handler proceeds similarily to
768
        page fault is resolved. Otherwise the handler proceeds similarily to
768
        the non-shared case. If it allocates a physical memory frame, it must
769
        the non-shared case. If it allocates a physical memory frame, it must
769
        increment its reference count and add it to the
770
        increment its reference count and add it to the
770
        <varname>pagemap</varname>.</para>
771
        <varname>pagemap</varname>.</para>
771
      </section>
772
      </section>
772
    </section>
773
    </section>
773
 
774
 
774
    <section>
775
    <section>
775
      <indexterm>
776
      <indexterm>
776
        <primary>address space</primary>
777
        <primary>address space</primary>
777
 
778
 
778
        <secondary>- ASID</secondary>
779
        <secondary>- ASID</secondary>
779
      </indexterm>
780
      </indexterm>
780
 
781
 
781
      <title>Address Space ID (ASID)</title>
782
      <title>Address Space ID (ASID)</title>
782
 
783
 
783
      <para>Modern processor architectures optimize TLB utilization by
784
      <para>Modern processor architectures optimize TLB utilization by
784
      associating TLB entries with address spaces through assigning
785
      associating TLB entries with address spaces through assigning
785
      identification numbers to them. In HelenOS, the term ASID, originally
786
      identification numbers to them. In HelenOS, the term ASID, originally
786
      taken from the mips32 terminology, is used to refer to the address space
787
      taken from the mips32 terminology, is used to refer to the address space
787
      identification number. The advantage of having ASIDs is that TLB does
788
      identification number. The advantage of having ASIDs is that TLB does
788
      not have to be invalidated on thread context switch as long as ASIDs are
789
      not have to be invalidated on thread context switch as long as ASIDs are
789
      unique. Unfortunately, architectures supported by HelenOS use all
790
      unique. Unfortunately, architectures supported by HelenOS use all
790
      different widths of ASID numbers<footnote>
791
      different widths of ASID numbers<footnote>
791
          <para>amd64 and ia32 don't use similar abstraction at all, mips32
792
          <para>amd64 and ia32 don't use similar abstraction at all, mips32
792
          has 8-bit ASIDs and ia64 can have ASIDs between 18 to 24 bits
793
          has 8-bit ASIDs and ia64 can have ASIDs between 18 to 24 bits
793
          wide.</para>
794
          wide.</para>
794
        </footnote> out of which none is sufficient. The amd64 and ia32
795
        </footnote> out of which none is sufficient. The amd64 and ia32
795
      architectures cannot make use of ASIDs as their TLB doesn't recognize
796
      architectures cannot make use of ASIDs as their TLB doesn't recognize
796
      such an abstraction. Other architectures have support for ASIDs, but for
797
      such an abstraction. Other architectures have support for ASIDs, but for
797
      instance ppc32 doesn't make use of them in the current version of
798
      instance ppc32 doesn't make use of them in the current version of
798
      HelenOS. The rest of the architectures does use ASIDs. However, even on
799
      HelenOS. The rest of the architectures does use ASIDs. However, even on
799
      the ia64 architecture, the minimal supported width of ASID<footnote>
800
      the ia64 architecture, the minimal supported width of ASID<footnote>
800
          <para>RID in ia64 terminology.</para>
801
          <para>RID in ia64 terminology.</para>
801
        </footnote> is insufficient to provide a unique integer identifier to
802
        </footnote> is insufficient to provide a unique integer identifier to
802
      all address spaces that might hypothetically coexist in the running
803
      all address spaces that might hypothetically coexist in the running
803
      system. The situation on mips32 is even worse: the architecture has only
804
      system. The situation on mips32 is even worse: the architecture has only
804
      256 unique identifiers.</para>
805
      256 unique identifiers.</para>
805
 
806
 
806
      <indexterm>
807
      <indexterm>
807
        <primary>address space</primary>
808
        <primary>address space</primary>
808
 
809
 
809
        <secondary>- ASID stealing</secondary>
810
        <secondary>- ASID stealing</secondary>
810
      </indexterm>
811
      </indexterm>
811
 
812
 
812
      <para>To mitigate the shortage of ASIDs, HelenOS uses the following
813
      <para>To mitigate the shortage of ASIDs, HelenOS uses the following
813
      strategy. When the system initializes, a FIFO queue<footnote>
814
      strategy. When the system initializes, a FIFO queue<footnote>
814
          <para>Note that architecture-specific measures are taken to avoid
815
          <para>Note that architecture-specific measures are taken to avoid
815
          too large FIFO queue. For instance, seven consecutive ia64 RIDs are
816
          too large FIFO queue. For instance, seven consecutive ia64 RIDs are
816
          grouped to form one HelenOS ASID.</para>
817
          grouped to form one HelenOS ASID.</para>
817
        </footnote> is created and filled with all available ASIDs. Moreover,
818
        </footnote> is created and filled with all available ASIDs. Moreover,
818
      every address space remembers the number of processors on which it is
819
      every address space remembers the number of processors on which it is
819
      active. Address spaces that have a valid ASID and that are not active on
820
      active. Address spaces that have a valid ASID and that are not active on
820
      any processor are appended to the list of inactive address spaces with
821
      any processor are appended to the list of inactive address spaces with
821
      valid ASID. When an address space needs to be assigned a valid ASID, it
822
      valid ASID. When an address space needs to be assigned a valid ASID, it
822
      first checks the FIFO queue. If it contains at least one ASID, the ASID
823
      first checks the FIFO queue. If it contains at least one ASID, the ASID
823
      is allocated. If the queue is empty, an ASID is simply stolen from the
824
      is allocated. If the queue is empty, an ASID is simply stolen from the
824
      first address space in the list. In that case, the address space that
825
      first address space in the list. In that case, the address space that
825
      loses the ASID in favor of another address space, is removed from the
826
      loses the ASID in favor of another address space, is removed from the
826
      list. After the new ASID is purged from all TLBs, it can be used by the
827
      list. After the new ASID is purged from all TLBs, it can be used by the
827
      address space. Note that this approach works due to the fact that the
828
      address space. Note that this approach works due to the fact that the
828
      number of ASIDs is greater than the maximal number of processors
829
      number of ASIDs is greater than the maximal number of processors
829
      supported by HelenOS and that there can be only one active address space
830
      supported by HelenOS and that there can be only one active address space
830
      per processor. In other words, when the FIFO queue is empty, there must
831
      per processor. In other words, when the FIFO queue is empty, there must
831
      be address spaces that are not active on any processor.</para>
832
      be address spaces that are not active on any processor.</para>
832
    </section>
833
    </section>
833
  </section>
834
  </section>
834
</chapter>
-
 
835
835
</chapter>
-
 
836