Subversion Repositories HelenOS

Rev

Rev 2087 | Rev 2118 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 2087 Rev 2089
1
/*
1
/*
2
 * Copyright (c) 2001-2007 Jakub Jermar
2
 * Copyright (c) 2001-2007 Jakub Jermar
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/** @addtogroup genericproc
29
/** @addtogroup genericproc
30
 * @{
30
 * @{
31
 */
31
 */
32
 
32
 
33
/**
33
/**
34
 * @file
34
 * @file
35
 * @brief   Scheduler and load balancing.
35
 * @brief   Scheduler and load balancing.
36
 *
36
 *
37
 * This file contains the scheduler and kcpulb kernel thread which
37
 * This file contains the scheduler and kcpulb kernel thread which
38
 * performs load-balancing of per-CPU run queues.
38
 * performs load-balancing of per-CPU run queues.
39
 */
39
 */
40
 
40
 
41
#include <proc/scheduler.h>
41
#include <proc/scheduler.h>
42
#include <proc/thread.h>
42
#include <proc/thread.h>
43
#include <proc/task.h>
43
#include <proc/task.h>
44
#include <mm/frame.h>
44
#include <mm/frame.h>
45
#include <mm/page.h>
45
#include <mm/page.h>
46
#include <mm/as.h>
46
#include <mm/as.h>
-
 
47
#include <time/timeout.h>
47
#include <time/delay.h>
48
#include <time/delay.h>
48
#include <arch/asm.h>
49
#include <arch/asm.h>
49
#include <arch/faddr.h>
50
#include <arch/faddr.h>
50
#include <arch/cycle.h>
51
#include <arch/cycle.h>
51
#include <atomic.h>
52
#include <atomic.h>
52
#include <synch/spinlock.h>
53
#include <synch/spinlock.h>
53
#include <config.h>
54
#include <config.h>
54
#include <context.h>
55
#include <context.h>
-
 
56
#include <fpu_context.h>
55
#include <func.h>
57
#include <func.h>
56
#include <arch.h>
58
#include <arch.h>
57
#include <adt/list.h>
59
#include <adt/list.h>
58
#include <panic.h>
60
#include <panic.h>
59
#include <typedefs.h>
-
 
60
#include <cpu.h>
61
#include <cpu.h>
61
#include <print.h>
62
#include <print.h>
62
#include <debug.h>
63
#include <debug.h>
63
 
64
 
64
static void before_task_runs(void);
65
static void before_task_runs(void);
65
static void before_thread_runs(void);
66
static void before_thread_runs(void);
66
static void after_thread_ran(void);
67
static void after_thread_ran(void);
67
static void scheduler_separated_stack(void);
68
static void scheduler_separated_stack(void);
68
 
69
 
69
atomic_t nrdy;  /**< Number of ready threads in the system. */
70
atomic_t nrdy;  /**< Number of ready threads in the system. */
70
 
71
 
71
/** Carry out actions before new task runs. */
72
/** Carry out actions before new task runs. */
72
void before_task_runs(void)
73
void before_task_runs(void)
73
{
74
{
74
    before_task_runs_arch();
75
    before_task_runs_arch();
75
}
76
}
76
 
77
 
77
/** Take actions before new thread runs.
78
/** Take actions before new thread runs.
78
 *
79
 *
79
 * Perform actions that need to be
80
 * Perform actions that need to be
80
 * taken before the newly selected
81
 * taken before the newly selected
81
 * tread is passed control.
82
 * tread is passed control.
82
 *
83
 *
83
 * THREAD->lock is locked on entry
84
 * THREAD->lock is locked on entry
84
 *
85
 *
85
 */
86
 */
86
void before_thread_runs(void)
87
void before_thread_runs(void)
87
{
88
{
88
    before_thread_runs_arch();
89
    before_thread_runs_arch();
89
#ifdef CONFIG_FPU_LAZY
90
#ifdef CONFIG_FPU_LAZY
90
    if(THREAD == CPU->fpu_owner)
91
    if(THREAD == CPU->fpu_owner)
91
        fpu_enable();
92
        fpu_enable();
92
    else
93
    else
93
        fpu_disable();
94
        fpu_disable();
94
#else
95
#else
95
    fpu_enable();
96
    fpu_enable();
96
    if (THREAD->fpu_context_exists)
97
    if (THREAD->fpu_context_exists)
97
        fpu_context_restore(THREAD->saved_fpu_context);
98
        fpu_context_restore(THREAD->saved_fpu_context);
98
    else {
99
    else {
99
        fpu_init();
100
        fpu_init();
100
        THREAD->fpu_context_exists = 1;
101
        THREAD->fpu_context_exists = 1;
101
    }
102
    }
102
#endif
103
#endif
103
}
104
}
104
 
105
 
105
/** Take actions after THREAD had run.
106
/** Take actions after THREAD had run.
106
 *
107
 *
107
 * Perform actions that need to be
108
 * Perform actions that need to be
108
 * taken after the running thread
109
 * taken after the running thread
109
 * had been preempted by the scheduler.
110
 * had been preempted by the scheduler.
110
 *
111
 *
111
 * THREAD->lock is locked on entry
112
 * THREAD->lock is locked on entry
112
 *
113
 *
113
 */
114
 */
114
void after_thread_ran(void)
115
void after_thread_ran(void)
115
{
116
{
116
    after_thread_ran_arch();
117
    after_thread_ran_arch();
117
}
118
}
118
 
119
 
119
#ifdef CONFIG_FPU_LAZY
120
#ifdef CONFIG_FPU_LAZY
120
void scheduler_fpu_lazy_request(void)
121
void scheduler_fpu_lazy_request(void)
121
{
122
{
122
restart:
123
restart:
123
    fpu_enable();
124
    fpu_enable();
124
    spinlock_lock(&CPU->lock);
125
    spinlock_lock(&CPU->lock);
125
 
126
 
126
    /* Save old context */
127
    /* Save old context */
127
    if (CPU->fpu_owner != NULL) {  
128
    if (CPU->fpu_owner != NULL) {  
128
        spinlock_lock(&CPU->fpu_owner->lock);
129
        spinlock_lock(&CPU->fpu_owner->lock);
129
        fpu_context_save(CPU->fpu_owner->saved_fpu_context);
130
        fpu_context_save(CPU->fpu_owner->saved_fpu_context);
130
        /* don't prevent migration */
131
        /* don't prevent migration */
131
        CPU->fpu_owner->fpu_context_engaged = 0;
132
        CPU->fpu_owner->fpu_context_engaged = 0;
132
        spinlock_unlock(&CPU->fpu_owner->lock);
133
        spinlock_unlock(&CPU->fpu_owner->lock);
133
        CPU->fpu_owner = NULL;
134
        CPU->fpu_owner = NULL;
134
    }
135
    }
135
 
136
 
136
    spinlock_lock(&THREAD->lock);
137
    spinlock_lock(&THREAD->lock);
137
    if (THREAD->fpu_context_exists) {
138
    if (THREAD->fpu_context_exists) {
138
        fpu_context_restore(THREAD->saved_fpu_context);
139
        fpu_context_restore(THREAD->saved_fpu_context);
139
    } else {
140
    } else {
140
        /* Allocate FPU context */
141
        /* Allocate FPU context */
141
        if (!THREAD->saved_fpu_context) {
142
        if (!THREAD->saved_fpu_context) {
142
            /* Might sleep */
143
            /* Might sleep */
143
            spinlock_unlock(&THREAD->lock);
144
            spinlock_unlock(&THREAD->lock);
144
            spinlock_unlock(&CPU->lock);
145
            spinlock_unlock(&CPU->lock);
145
            THREAD->saved_fpu_context =
146
            THREAD->saved_fpu_context =
146
                slab_alloc(fpu_context_slab, 0);
147
                slab_alloc(fpu_context_slab, 0);
147
            /* We may have switched CPUs during slab_alloc */
148
            /* We may have switched CPUs during slab_alloc */
148
            goto restart;
149
            goto restart;
149
        }
150
        }
150
        fpu_init();
151
        fpu_init();
151
        THREAD->fpu_context_exists = 1;
152
        THREAD->fpu_context_exists = 1;
152
    }
153
    }
153
    CPU->fpu_owner = THREAD;
154
    CPU->fpu_owner = THREAD;
154
    THREAD->fpu_context_engaged = 1;
155
    THREAD->fpu_context_engaged = 1;
155
    spinlock_unlock(&THREAD->lock);
156
    spinlock_unlock(&THREAD->lock);
156
 
157
 
157
    spinlock_unlock(&CPU->lock);
158
    spinlock_unlock(&CPU->lock);
158
}
159
}
159
#endif
160
#endif
160
 
161
 
161
/** Initialize scheduler
162
/** Initialize scheduler
162
 *
163
 *
163
 * Initialize kernel scheduler.
164
 * Initialize kernel scheduler.
164
 *
165
 *
165
 */
166
 */
166
void scheduler_init(void)
167
void scheduler_init(void)
167
{
168
{
168
}
169
}
169
 
170
 
170
/** Get thread to be scheduled
171
/** Get thread to be scheduled
171
 *
172
 *
172
 * Get the optimal thread to be scheduled
173
 * Get the optimal thread to be scheduled
173
 * according to thread accounting and scheduler
174
 * according to thread accounting and scheduler
174
 * policy.
175
 * policy.
175
 *
176
 *
176
 * @return Thread to be scheduled.
177
 * @return Thread to be scheduled.
177
 *
178
 *
178
 */
179
 */
179
static thread_t *find_best_thread(void)
180
static thread_t *find_best_thread(void)
180
{
181
{
181
    thread_t *t;
182
    thread_t *t;
182
    runq_t *r;
183
    runq_t *r;
183
    int i;
184
    int i;
184
 
185
 
185
    ASSERT(CPU != NULL);
186
    ASSERT(CPU != NULL);
186
 
187
 
187
loop:
188
loop:
188
    interrupts_enable();
189
    interrupts_enable();
189
   
190
   
190
    if (atomic_get(&CPU->nrdy) == 0) {
191
    if (atomic_get(&CPU->nrdy) == 0) {
191
        /*
192
        /*
192
         * For there was nothing to run, the CPU goes to sleep
193
         * For there was nothing to run, the CPU goes to sleep
193
         * until a hardware interrupt or an IPI comes.
194
         * until a hardware interrupt or an IPI comes.
194
         * This improves energy saving and hyperthreading.
195
         * This improves energy saving and hyperthreading.
195
         */
196
         */
196
 
197
 
197
        /*
198
        /*
198
         * An interrupt might occur right now and wake up a thread.
199
         * An interrupt might occur right now and wake up a thread.
199
         * In such case, the CPU will continue to go to sleep
200
         * In such case, the CPU will continue to go to sleep
200
         * even though there is a runnable thread.
201
         * even though there is a runnable thread.
201
         */
202
         */
202
 
203
 
203
         cpu_sleep();
204
         cpu_sleep();
204
         goto loop;
205
         goto loop;
205
    }
206
    }
206
 
207
 
207
    interrupts_disable();
208
    interrupts_disable();
208
   
209
   
209
    for (i = 0; i<RQ_COUNT; i++) {
210
    for (i = 0; i<RQ_COUNT; i++) {
210
        r = &CPU->rq[i];
211
        r = &CPU->rq[i];
211
        spinlock_lock(&r->lock);
212
        spinlock_lock(&r->lock);
212
        if (r->n == 0) {
213
        if (r->n == 0) {
213
            /*
214
            /*
214
             * If this queue is empty, try a lower-priority queue.
215
             * If this queue is empty, try a lower-priority queue.
215
             */
216
             */
216
            spinlock_unlock(&r->lock);
217
            spinlock_unlock(&r->lock);
217
            continue;
218
            continue;
218
        }
219
        }
219
 
220
 
220
        atomic_dec(&CPU->nrdy);
221
        atomic_dec(&CPU->nrdy);
221
        atomic_dec(&nrdy);
222
        atomic_dec(&nrdy);
222
        r->n--;
223
        r->n--;
223
 
224
 
224
        /*
225
        /*
225
         * Take the first thread from the queue.
226
         * Take the first thread from the queue.
226
         */
227
         */
227
        t = list_get_instance(r->rq_head.next, thread_t, rq_link);
228
        t = list_get_instance(r->rq_head.next, thread_t, rq_link);
228
        list_remove(&t->rq_link);
229
        list_remove(&t->rq_link);
229
 
230
 
230
        spinlock_unlock(&r->lock);
231
        spinlock_unlock(&r->lock);
231
 
232
 
232
        spinlock_lock(&t->lock);
233
        spinlock_lock(&t->lock);
233
        t->cpu = CPU;
234
        t->cpu = CPU;
234
 
235
 
235
        t->ticks = us2ticks((i + 1) * 10000);
236
        t->ticks = us2ticks((i + 1) * 10000);
236
        t->priority = i;    /* correct rq index */
237
        t->priority = i;    /* correct rq index */
237
 
238
 
238
        /*
239
        /*
239
         * Clear the THREAD_FLAG_STOLEN flag so that t can be migrated
240
         * Clear the THREAD_FLAG_STOLEN flag so that t can be migrated
240
         * when load balancing needs emerge.
241
         * when load balancing needs emerge.
241
         */
242
         */
242
        t->flags &= ~THREAD_FLAG_STOLEN;
243
        t->flags &= ~THREAD_FLAG_STOLEN;
243
        spinlock_unlock(&t->lock);
244
        spinlock_unlock(&t->lock);
244
 
245
 
245
        return t;
246
        return t;
246
    }
247
    }
247
    goto loop;
248
    goto loop;
248
 
249
 
249
}
250
}
250
 
251
 
251
/** Prevent rq starvation
252
/** Prevent rq starvation
252
 *
253
 *
253
 * Prevent low priority threads from starving in rq's.
254
 * Prevent low priority threads from starving in rq's.
254
 *
255
 *
255
 * When the function decides to relink rq's, it reconnects
256
 * When the function decides to relink rq's, it reconnects
256
 * respective pointers so that in result threads with 'pri'
257
 * respective pointers so that in result threads with 'pri'
257
 * greater or equal start are moved to a higher-priority queue.
258
 * greater or equal start are moved to a higher-priority queue.
258
 *
259
 *
259
 * @param start Threshold priority.
260
 * @param start Threshold priority.
260
 *
261
 *
261
 */
262
 */
262
static void relink_rq(int start)
263
static void relink_rq(int start)
263
{
264
{
264
    link_t head;
265
    link_t head;
265
    runq_t *r;
266
    runq_t *r;
266
    int i, n;
267
    int i, n;
267
 
268
 
268
    list_initialize(&head);
269
    list_initialize(&head);
269
    spinlock_lock(&CPU->lock);
270
    spinlock_lock(&CPU->lock);
270
    if (CPU->needs_relink > NEEDS_RELINK_MAX) {
271
    if (CPU->needs_relink > NEEDS_RELINK_MAX) {
271
        for (i = start; i < RQ_COUNT - 1; i++) {
272
        for (i = start; i < RQ_COUNT - 1; i++) {
272
            /* remember and empty rq[i + 1] */
273
            /* remember and empty rq[i + 1] */
273
            r = &CPU->rq[i + 1];
274
            r = &CPU->rq[i + 1];
274
            spinlock_lock(&r->lock);
275
            spinlock_lock(&r->lock);
275
            list_concat(&head, &r->rq_head);
276
            list_concat(&head, &r->rq_head);
276
            n = r->n;
277
            n = r->n;
277
            r->n = 0;
278
            r->n = 0;
278
            spinlock_unlock(&r->lock);
279
            spinlock_unlock(&r->lock);
279
       
280
       
280
            /* append rq[i + 1] to rq[i] */
281
            /* append rq[i + 1] to rq[i] */
281
            r = &CPU->rq[i];
282
            r = &CPU->rq[i];
282
            spinlock_lock(&r->lock);
283
            spinlock_lock(&r->lock);
283
            list_concat(&r->rq_head, &head);
284
            list_concat(&r->rq_head, &head);
284
            r->n += n;
285
            r->n += n;
285
            spinlock_unlock(&r->lock);
286
            spinlock_unlock(&r->lock);
286
        }
287
        }
287
        CPU->needs_relink = 0;
288
        CPU->needs_relink = 0;
288
    }
289
    }
289
    spinlock_unlock(&CPU->lock);
290
    spinlock_unlock(&CPU->lock);
290
 
291
 
291
}
292
}
292
 
293
 
293
/** The scheduler
294
/** The scheduler
294
 *
295
 *
295
 * The thread scheduling procedure.
296
 * The thread scheduling procedure.
296
 * Passes control directly to
297
 * Passes control directly to
297
 * scheduler_separated_stack().
298
 * scheduler_separated_stack().
298
 *
299
 *
299
 */
300
 */
300
void scheduler(void)
301
void scheduler(void)
301
{
302
{
302
    volatile ipl_t ipl;
303
    volatile ipl_t ipl;
303
 
304
 
304
    ASSERT(CPU != NULL);
305
    ASSERT(CPU != NULL);
305
 
306
 
306
    ipl = interrupts_disable();
307
    ipl = interrupts_disable();
307
 
308
 
308
    if (atomic_get(&haltstate))
309
    if (atomic_get(&haltstate))
309
        halt();
310
        halt();
310
   
311
   
311
    if (THREAD) {
312
    if (THREAD) {
312
        spinlock_lock(&THREAD->lock);
313
        spinlock_lock(&THREAD->lock);
313
       
314
       
314
        /* Update thread accounting */
315
        /* Update thread accounting */
315
        THREAD->cycles += get_cycle() - THREAD->last_cycle;
316
        THREAD->cycles += get_cycle() - THREAD->last_cycle;
316
       
317
       
317
#ifndef CONFIG_FPU_LAZY
318
#ifndef CONFIG_FPU_LAZY
318
        fpu_context_save(THREAD->saved_fpu_context);
319
        fpu_context_save(THREAD->saved_fpu_context);
319
#endif
320
#endif
320
        if (!context_save(&THREAD->saved_context)) {
321
        if (!context_save(&THREAD->saved_context)) {
321
            /*
322
            /*
322
             * This is the place where threads leave scheduler();
323
             * This is the place where threads leave scheduler();
323
             */
324
             */
324
           
325
           
325
            /* Save current CPU cycle */
326
            /* Save current CPU cycle */
326
            THREAD->last_cycle = get_cycle();
327
            THREAD->last_cycle = get_cycle();
327
           
328
           
328
            spinlock_unlock(&THREAD->lock);
329
            spinlock_unlock(&THREAD->lock);
329
            interrupts_restore(THREAD->saved_context.ipl);
330
            interrupts_restore(THREAD->saved_context.ipl);
330
           
331
           
331
            return;
332
            return;
332
        }
333
        }
333
 
334
 
334
        /*
335
        /*
335
         * Interrupt priority level of preempted thread is recorded
336
         * Interrupt priority level of preempted thread is recorded
336
         * here to facilitate scheduler() invocations from
337
         * here to facilitate scheduler() invocations from
337
         * interrupts_disable()'d code (e.g. waitq_sleep_timeout()).
338
         * interrupts_disable()'d code (e.g. waitq_sleep_timeout()).
338
         */
339
         */
339
        THREAD->saved_context.ipl = ipl;
340
        THREAD->saved_context.ipl = ipl;
340
    }
341
    }
341
 
342
 
342
    /*
343
    /*
343
     * Through the 'THE' structure, we keep track of THREAD, TASK, CPU, VM
344
     * Through the 'THE' structure, we keep track of THREAD, TASK, CPU, VM
344
     * and preemption counter. At this point THE could be coming either
345
     * and preemption counter. At this point THE could be coming either
345
     * from THREAD's or CPU's stack.
346
     * from THREAD's or CPU's stack.
346
     */
347
     */
347
    the_copy(THE, (the_t *) CPU->stack);
348
    the_copy(THE, (the_t *) CPU->stack);
348
 
349
 
349
    /*
350
    /*
350
     * We may not keep the old stack.
351
     * We may not keep the old stack.
351
     * Reason: If we kept the old stack and got blocked, for instance, in
352
     * Reason: If we kept the old stack and got blocked, for instance, in
352
     * find_best_thread(), the old thread could get rescheduled by another
353
     * find_best_thread(), the old thread could get rescheduled by another
353
     * CPU and overwrite the part of its own stack that was also used by
354
     * CPU and overwrite the part of its own stack that was also used by
354
     * the scheduler on this CPU.
355
     * the scheduler on this CPU.
355
     *
356
     *
356
     * Moreover, we have to bypass the compiler-generated POP sequence
357
     * Moreover, we have to bypass the compiler-generated POP sequence
357
     * which is fooled by SP being set to the very top of the stack.
358
     * which is fooled by SP being set to the very top of the stack.
358
     * Therefore the scheduler() function continues in
359
     * Therefore the scheduler() function continues in
359
     * scheduler_separated_stack().
360
     * scheduler_separated_stack().
360
     */
361
     */
361
    context_save(&CPU->saved_context);
362
    context_save(&CPU->saved_context);
362
    context_set(&CPU->saved_context, FADDR(scheduler_separated_stack),
363
    context_set(&CPU->saved_context, FADDR(scheduler_separated_stack),
363
        (uintptr_t) CPU->stack, CPU_STACK_SIZE);
364
        (uintptr_t) CPU->stack, CPU_STACK_SIZE);
364
    context_restore(&CPU->saved_context);
365
    context_restore(&CPU->saved_context);
365
    /* not reached */
366
    /* not reached */
366
}
367
}
367
 
368
 
368
/** Scheduler stack switch wrapper
369
/** Scheduler stack switch wrapper
369
 *
370
 *
370
 * Second part of the scheduler() function
371
 * Second part of the scheduler() function
371
 * using new stack. Handling the actual context
372
 * using new stack. Handling the actual context
372
 * switch to a new thread.
373
 * switch to a new thread.
373
 *
374
 *
374
 * Assume THREAD->lock is held.
375
 * Assume THREAD->lock is held.
375
 */
376
 */
376
void scheduler_separated_stack(void)
377
void scheduler_separated_stack(void)
377
{
378
{
378
    int priority;
379
    int priority;
379
   
380
   
380
    ASSERT(CPU != NULL);
381
    ASSERT(CPU != NULL);
381
   
382
   
382
    if (THREAD) {
383
    if (THREAD) {
383
        /* must be run after the switch to scheduler stack */
384
        /* must be run after the switch to scheduler stack */
384
        after_thread_ran();
385
        after_thread_ran();
385
 
386
 
386
        switch (THREAD->state) {
387
        switch (THREAD->state) {
387
        case Running:
388
        case Running:
388
            spinlock_unlock(&THREAD->lock);
389
            spinlock_unlock(&THREAD->lock);
389
            thread_ready(THREAD);
390
            thread_ready(THREAD);
390
            break;
391
            break;
391
 
392
 
392
        case Exiting:
393
        case Exiting:
393
repeat:
394
repeat:
394
            if (THREAD->detached) {
395
            if (THREAD->detached) {
395
                thread_destroy(THREAD);
396
                thread_destroy(THREAD);
396
            } else {
397
            } else {
397
                /*
398
                /*
398
                 * The thread structure is kept allocated until
399
                 * The thread structure is kept allocated until
399
                 * somebody calls thread_detach() on it.
400
                 * somebody calls thread_detach() on it.
400
                 */
401
                 */
401
                if (!spinlock_trylock(&THREAD->join_wq.lock)) {
402
                if (!spinlock_trylock(&THREAD->join_wq.lock)) {
402
                    /*
403
                    /*
403
                     * Avoid deadlock.
404
                     * Avoid deadlock.
404
                     */
405
                     */
405
                    spinlock_unlock(&THREAD->lock);
406
                    spinlock_unlock(&THREAD->lock);
406
                    delay(10);
407
                    delay(10);
407
                    spinlock_lock(&THREAD->lock);
408
                    spinlock_lock(&THREAD->lock);
408
                    goto repeat;
409
                    goto repeat;
409
                }
410
                }
410
                _waitq_wakeup_unsafe(&THREAD->join_wq, false);
411
                _waitq_wakeup_unsafe(&THREAD->join_wq, false);
411
                spinlock_unlock(&THREAD->join_wq.lock);
412
                spinlock_unlock(&THREAD->join_wq.lock);
412
               
413
               
413
                THREAD->state = Undead;
414
                THREAD->state = Undead;
414
                spinlock_unlock(&THREAD->lock);
415
                spinlock_unlock(&THREAD->lock);
415
            }
416
            }
416
            break;
417
            break;
417
           
418
           
418
        case Sleeping:
419
        case Sleeping:
419
            /*
420
            /*
420
             * Prefer the thread after it's woken up.
421
             * Prefer the thread after it's woken up.
421
             */
422
             */
422
            THREAD->priority = -1;
423
            THREAD->priority = -1;
423
 
424
 
424
            /*
425
            /*
425
             * We need to release wq->lock which we locked in
426
             * We need to release wq->lock which we locked in
426
             * waitq_sleep(). Address of wq->lock is kept in
427
             * waitq_sleep(). Address of wq->lock is kept in
427
             * THREAD->sleep_queue.
428
             * THREAD->sleep_queue.
428
             */
429
             */
429
            spinlock_unlock(&THREAD->sleep_queue->lock);
430
            spinlock_unlock(&THREAD->sleep_queue->lock);
430
 
431
 
431
            /*
432
            /*
432
             * Check for possible requests for out-of-context
433
             * Check for possible requests for out-of-context
433
             * invocation.
434
             * invocation.
434
             */
435
             */
435
            if (THREAD->call_me) {
436
            if (THREAD->call_me) {
436
                THREAD->call_me(THREAD->call_me_with);
437
                THREAD->call_me(THREAD->call_me_with);
437
                THREAD->call_me = NULL;
438
                THREAD->call_me = NULL;
438
                THREAD->call_me_with = NULL;
439
                THREAD->call_me_with = NULL;
439
            }
440
            }
440
 
441
 
441
            spinlock_unlock(&THREAD->lock);
442
            spinlock_unlock(&THREAD->lock);
442
 
443
 
443
            break;
444
            break;
444
 
445
 
445
        default:
446
        default:
446
            /*
447
            /*
447
             * Entering state is unexpected.
448
             * Entering state is unexpected.
448
             */
449
             */
449
            panic("tid%d: unexpected state %s\n", THREAD->tid,
450
            panic("tid%d: unexpected state %s\n", THREAD->tid,
450
                thread_states[THREAD->state]);
451
                thread_states[THREAD->state]);
451
            break;
452
            break;
452
        }
453
        }
453
 
454
 
454
        THREAD = NULL;
455
        THREAD = NULL;
455
    }
456
    }
456
 
457
 
457
    THREAD = find_best_thread();
458
    THREAD = find_best_thread();
458
   
459
   
459
    spinlock_lock(&THREAD->lock);
460
    spinlock_lock(&THREAD->lock);
460
    priority = THREAD->priority;
461
    priority = THREAD->priority;
461
    spinlock_unlock(&THREAD->lock);
462
    spinlock_unlock(&THREAD->lock);
462
 
463
 
463
    relink_rq(priority);       
464
    relink_rq(priority);       
464
 
465
 
465
    /*
466
    /*
466
     * If both the old and the new task are the same, lots of work is
467
     * If both the old and the new task are the same, lots of work is
467
     * avoided.
468
     * avoided.
468
     */
469
     */
469
    if (TASK != THREAD->task) {
470
    if (TASK != THREAD->task) {
470
        as_t *as1 = NULL;
471
        as_t *as1 = NULL;
471
        as_t *as2;
472
        as_t *as2;
472
 
473
 
473
        if (TASK) {
474
        if (TASK) {
474
            spinlock_lock(&TASK->lock);
475
            spinlock_lock(&TASK->lock);
475
            as1 = TASK->as;
476
            as1 = TASK->as;
476
            spinlock_unlock(&TASK->lock);
477
            spinlock_unlock(&TASK->lock);
477
        }
478
        }
478
 
479
 
479
        spinlock_lock(&THREAD->task->lock);
480
        spinlock_lock(&THREAD->task->lock);
480
        as2 = THREAD->task->as;
481
        as2 = THREAD->task->as;
481
        spinlock_unlock(&THREAD->task->lock);
482
        spinlock_unlock(&THREAD->task->lock);
482
       
483
       
483
        /*
484
        /*
484
         * Note that it is possible for two tasks to share one address
485
         * Note that it is possible for two tasks to share one address
485
         * space.
486
         * space.
486
         */
487
         */
487
        if (as1 != as2) {
488
        if (as1 != as2) {
488
            /*
489
            /*
489
             * Both tasks and address spaces are different.
490
             * Both tasks and address spaces are different.
490
             * Replace the old one with the new one.
491
             * Replace the old one with the new one.
491
             */
492
             */
492
            as_switch(as1, as2);
493
            as_switch(as1, as2);
493
        }
494
        }
494
        TASK = THREAD->task;
495
        TASK = THREAD->task;
495
        before_task_runs();
496
        before_task_runs();
496
    }
497
    }
497
 
498
 
498
    spinlock_lock(&THREAD->lock);  
499
    spinlock_lock(&THREAD->lock);  
499
    THREAD->state = Running;
500
    THREAD->state = Running;
500
 
501
 
501
#ifdef SCHEDULER_VERBOSE
502
#ifdef SCHEDULER_VERBOSE
502
    printf("cpu%d: tid %d (priority=%d, ticks=%lld, nrdy=%ld)\n",
503
    printf("cpu%d: tid %d (priority=%d, ticks=%lld, nrdy=%ld)\n",
503
        CPU->id, THREAD->tid, THREAD->priority, THREAD->ticks,
504
        CPU->id, THREAD->tid, THREAD->priority, THREAD->ticks,
504
        atomic_get(&CPU->nrdy));
505
        atomic_get(&CPU->nrdy));
505
#endif  
506
#endif  
506
 
507
 
507
    /*
508
    /*
508
     * Some architectures provide late kernel PA2KA(identity)
509
     * Some architectures provide late kernel PA2KA(identity)
509
     * mapping in a page fault handler. However, the page fault
510
     * mapping in a page fault handler. However, the page fault
510
     * handler uses the kernel stack of the running thread and
511
     * handler uses the kernel stack of the running thread and
511
     * therefore cannot be used to map it. The kernel stack, if
512
     * therefore cannot be used to map it. The kernel stack, if
512
     * necessary, is to be mapped in before_thread_runs(). This
513
     * necessary, is to be mapped in before_thread_runs(). This
513
     * function must be executed before the switch to the new stack.
514
     * function must be executed before the switch to the new stack.
514
     */
515
     */
515
    before_thread_runs();
516
    before_thread_runs();
516
 
517
 
517
    /*
518
    /*
518
     * Copy the knowledge of CPU, TASK, THREAD and preemption counter to
519
     * Copy the knowledge of CPU, TASK, THREAD and preemption counter to
519
     * thread's stack.
520
     * thread's stack.
520
     */
521
     */
521
    the_copy(THE, (the_t *) THREAD->kstack);
522
    the_copy(THE, (the_t *) THREAD->kstack);
522
   
523
   
523
    context_restore(&THREAD->saved_context);
524
    context_restore(&THREAD->saved_context);
524
    /* not reached */
525
    /* not reached */
525
}
526
}
526
 
527
 
527
#ifdef CONFIG_SMP
528
#ifdef CONFIG_SMP
528
/** Load balancing thread
529
/** Load balancing thread
529
 *
530
 *
530
 * SMP load balancing thread, supervising thread supplies
531
 * SMP load balancing thread, supervising thread supplies
531
 * for the CPU it's wired to.
532
 * for the CPU it's wired to.
532
 *
533
 *
533
 * @param arg Generic thread argument (unused).
534
 * @param arg Generic thread argument (unused).
534
 *
535
 *
535
 */
536
 */
536
void kcpulb(void *arg)
537
void kcpulb(void *arg)
537
{
538
{
538
    thread_t *t;
539
    thread_t *t;
539
    int count, average, i, j, k = 0;
540
    int count, average, i, j, k = 0;
540
    ipl_t ipl;
541
    ipl_t ipl;
541
 
542
 
542
    /*
543
    /*
543
     * Detach kcpulb as nobody will call thread_join_timeout() on it.
544
     * Detach kcpulb as nobody will call thread_join_timeout() on it.
544
     */
545
     */
545
    thread_detach(THREAD);
546
    thread_detach(THREAD);
546
   
547
   
547
loop:
548
loop:
548
    /*
549
    /*
549
     * Work in 1s intervals.
550
     * Work in 1s intervals.
550
     */
551
     */
551
    thread_sleep(1);
552
    thread_sleep(1);
552
 
553
 
553
not_satisfied:
554
not_satisfied:
554
    /*
555
    /*
555
     * Calculate the number of threads that will be migrated/stolen from
556
     * Calculate the number of threads that will be migrated/stolen from
556
     * other CPU's. Note that situation can have changed between two
557
     * other CPU's. Note that situation can have changed between two
557
     * passes. Each time get the most up to date counts.
558
     * passes. Each time get the most up to date counts.
558
     */
559
     */
559
    average = atomic_get(&nrdy) / config.cpu_active + 1;
560
    average = atomic_get(&nrdy) / config.cpu_active + 1;
560
    count = average - atomic_get(&CPU->nrdy);
561
    count = average - atomic_get(&CPU->nrdy);
561
 
562
 
562
    if (count <= 0)
563
    if (count <= 0)
563
        goto satisfied;
564
        goto satisfied;
564
 
565
 
565
    /*
566
    /*
566
     * Searching least priority queues on all CPU's first and most priority
567
     * Searching least priority queues on all CPU's first and most priority
567
     * queues on all CPU's last.
568
     * queues on all CPU's last.
568
     */
569
     */
569
    for (j= RQ_COUNT - 1; j >= 0; j--) {
570
    for (j= RQ_COUNT - 1; j >= 0; j--) {
570
        for (i = 0; i < config.cpu_active; i++) {
571
        for (i = 0; i < config.cpu_active; i++) {
571
            link_t *l;
572
            link_t *l;
572
            runq_t *r;
573
            runq_t *r;
573
            cpu_t *cpu;
574
            cpu_t *cpu;
574
 
575
 
575
            cpu = &cpus[(i + k) % config.cpu_active];
576
            cpu = &cpus[(i + k) % config.cpu_active];
576
 
577
 
577
            /*
578
            /*
578
             * Not interested in ourselves.
579
             * Not interested in ourselves.
579
             * Doesn't require interrupt disabling for kcpulb has
580
             * Doesn't require interrupt disabling for kcpulb has
580
             * THREAD_FLAG_WIRED.
581
             * THREAD_FLAG_WIRED.
581
             */
582
             */
582
            if (CPU == cpu)
583
            if (CPU == cpu)
583
                continue;
584
                continue;
584
            if (atomic_get(&cpu->nrdy) <= average)
585
            if (atomic_get(&cpu->nrdy) <= average)
585
                continue;
586
                continue;
586
 
587
 
587
            ipl = interrupts_disable();
588
            ipl = interrupts_disable();
588
            r = &cpu->rq[j];
589
            r = &cpu->rq[j];
589
            spinlock_lock(&r->lock);
590
            spinlock_lock(&r->lock);
590
            if (r->n == 0) {
591
            if (r->n == 0) {
591
                spinlock_unlock(&r->lock);
592
                spinlock_unlock(&r->lock);
592
                interrupts_restore(ipl);
593
                interrupts_restore(ipl);
593
                continue;
594
                continue;
594
            }
595
            }
595
       
596
       
596
            t = NULL;
597
            t = NULL;
597
            l = r->rq_head.prev;    /* search rq from the back */
598
            l = r->rq_head.prev;    /* search rq from the back */
598
            while (l != &r->rq_head) {
599
            while (l != &r->rq_head) {
599
                t = list_get_instance(l, thread_t, rq_link);
600
                t = list_get_instance(l, thread_t, rq_link);
600
                /*
601
                /*
601
                 * We don't want to steal CPU-wired threads
602
                 * We don't want to steal CPU-wired threads
602
                 * neither threads already stolen. The latter
603
                 * neither threads already stolen. The latter
603
                 * prevents threads from migrating between CPU's
604
                 * prevents threads from migrating between CPU's
604
                 * without ever being run. We don't want to
605
                 * without ever being run. We don't want to
605
                 * steal threads whose FPU context is still in
606
                 * steal threads whose FPU context is still in
606
                 * CPU.
607
                 * CPU.
607
                 */
608
                 */
608
                spinlock_lock(&t->lock);
609
                spinlock_lock(&t->lock);
609
                if ((!(t->flags & (THREAD_FLAG_WIRED |
610
                if ((!(t->flags & (THREAD_FLAG_WIRED |
610
                    THREAD_FLAG_STOLEN))) &&
611
                    THREAD_FLAG_STOLEN))) &&
611
                    (!(t->fpu_context_engaged)) ) {
612
                    (!(t->fpu_context_engaged)) ) {
612
                    /*
613
                    /*
613
                     * Remove t from r.
614
                     * Remove t from r.
614
                     */
615
                     */
615
                    spinlock_unlock(&t->lock);
616
                    spinlock_unlock(&t->lock);
616
                   
617
                   
617
                    atomic_dec(&cpu->nrdy);
618
                    atomic_dec(&cpu->nrdy);
618
                    atomic_dec(&nrdy);
619
                    atomic_dec(&nrdy);
619
 
620
 
620
                    r->n--;
621
                    r->n--;
621
                    list_remove(&t->rq_link);
622
                    list_remove(&t->rq_link);
622
 
623
 
623
                    break;
624
                    break;
624
                }
625
                }
625
                spinlock_unlock(&t->lock);
626
                spinlock_unlock(&t->lock);
626
                l = l->prev;
627
                l = l->prev;
627
                t = NULL;
628
                t = NULL;
628
            }
629
            }
629
            spinlock_unlock(&r->lock);
630
            spinlock_unlock(&r->lock);
630
 
631
 
631
            if (t) {
632
            if (t) {
632
                /*
633
                /*
633
                 * Ready t on local CPU
634
                 * Ready t on local CPU
634
                 */
635
                 */
635
                spinlock_lock(&t->lock);
636
                spinlock_lock(&t->lock);
636
#ifdef KCPULB_VERBOSE
637
#ifdef KCPULB_VERBOSE
637
                printf("kcpulb%d: TID %d -> cpu%d, nrdy=%ld, "
638
                printf("kcpulb%d: TID %d -> cpu%d, nrdy=%ld, "
638
                    "avg=%nd\n", CPU->id, t->tid, CPU->id,
639
                    "avg=%nd\n", CPU->id, t->tid, CPU->id,
639
                    atomic_get(&CPU->nrdy),
640
                    atomic_get(&CPU->nrdy),
640
                    atomic_get(&nrdy) / config.cpu_active);
641
                    atomic_get(&nrdy) / config.cpu_active);
641
#endif
642
#endif
642
                t->flags |= THREAD_FLAG_STOLEN;
643
                t->flags |= THREAD_FLAG_STOLEN;
643
                t->state = Entering;
644
                t->state = Entering;
644
                spinlock_unlock(&t->lock);
645
                spinlock_unlock(&t->lock);
645
   
646
   
646
                thread_ready(t);
647
                thread_ready(t);
647
 
648
 
648
                interrupts_restore(ipl);
649
                interrupts_restore(ipl);
649
   
650
   
650
                if (--count == 0)
651
                if (--count == 0)
651
                    goto satisfied;
652
                    goto satisfied;
652
                   
653
                   
653
                /*
654
                /*
654
                 * We are not satisfied yet, focus on another
655
                 * We are not satisfied yet, focus on another
655
                 * CPU next time.
656
                 * CPU next time.
656
                 */
657
                 */
657
                k++;
658
                k++;
658
               
659
               
659
                continue;
660
                continue;
660
            }
661
            }
661
            interrupts_restore(ipl);
662
            interrupts_restore(ipl);
662
        }
663
        }
663
    }
664
    }
664
 
665
 
665
    if (atomic_get(&CPU->nrdy)) {
666
    if (atomic_get(&CPU->nrdy)) {
666
        /*
667
        /*
667
         * Be a little bit light-weight and let migrated threads run.
668
         * Be a little bit light-weight and let migrated threads run.
668
         */
669
         */
669
        scheduler();
670
        scheduler();
670
    } else {
671
    } else {
671
        /*
672
        /*
672
         * We failed to migrate a single thread.
673
         * We failed to migrate a single thread.
673
         * Give up this turn.
674
         * Give up this turn.
674
         */
675
         */
675
        goto loop;
676
        goto loop;
676
    }
677
    }
677
       
678
       
678
    goto not_satisfied;
679
    goto not_satisfied;
679
 
680
 
680
satisfied:
681
satisfied:
681
    goto loop;
682
    goto loop;
682
}
683
}
683
 
684
 
684
#endif /* CONFIG_SMP */
685
#endif /* CONFIG_SMP */
685
 
686
 
686
 
687
 
687
/** Print information about threads & scheduler queues */
688
/** Print information about threads & scheduler queues */
688
void sched_print_list(void)
689
void sched_print_list(void)
689
{
690
{
690
    ipl_t ipl;
691
    ipl_t ipl;
691
    int cpu,i;
692
    int cpu,i;
692
    runq_t *r;
693
    runq_t *r;
693
    thread_t *t;
694
    thread_t *t;
694
    link_t *cur;
695
    link_t *cur;
695
 
696
 
696
    /* We are going to mess with scheduler structures,
697
    /* We are going to mess with scheduler structures,
697
     * let's not be interrupted */
698
     * let's not be interrupted */
698
    ipl = interrupts_disable();
699
    ipl = interrupts_disable();
699
    for (cpu=0;cpu < config.cpu_count; cpu++) {
700
    for (cpu=0;cpu < config.cpu_count; cpu++) {
700
 
701
 
701
        if (!cpus[cpu].active)
702
        if (!cpus[cpu].active)
702
            continue;
703
            continue;
703
 
704
 
704
        spinlock_lock(&cpus[cpu].lock);
705
        spinlock_lock(&cpus[cpu].lock);
705
        printf("cpu%d: address=%p, nrdy=%ld, needs_relink=%ld\n",
706
        printf("cpu%d: address=%p, nrdy=%ld, needs_relink=%ld\n",
706
            cpus[cpu].id, &cpus[cpu], atomic_get(&cpus[cpu].nrdy),
707
            cpus[cpu].id, &cpus[cpu], atomic_get(&cpus[cpu].nrdy),
707
            cpus[cpu].needs_relink);
708
            cpus[cpu].needs_relink);
708
       
709
       
709
        for (i = 0; i < RQ_COUNT; i++) {
710
        for (i = 0; i < RQ_COUNT; i++) {
710
            r = &cpus[cpu].rq[i];
711
            r = &cpus[cpu].rq[i];
711
            spinlock_lock(&r->lock);
712
            spinlock_lock(&r->lock);
712
            if (!r->n) {
713
            if (!r->n) {
713
                spinlock_unlock(&r->lock);
714
                spinlock_unlock(&r->lock);
714
                continue;
715
                continue;
715
            }
716
            }
716
            printf("\trq[%d]: ", i);
717
            printf("\trq[%d]: ", i);
717
            for (cur = r->rq_head.next; cur != &r->rq_head;
718
            for (cur = r->rq_head.next; cur != &r->rq_head;
718
                cur = cur->next) {
719
                cur = cur->next) {
719
                t = list_get_instance(cur, thread_t, rq_link);
720
                t = list_get_instance(cur, thread_t, rq_link);
720
                printf("%d(%s) ", t->tid,
721
                printf("%d(%s) ", t->tid,
721
                    thread_states[t->state]);
722
                    thread_states[t->state]);
722
            }
723
            }
723
            printf("\n");
724
            printf("\n");
724
            spinlock_unlock(&r->lock);
725
            spinlock_unlock(&r->lock);
725
        }
726
        }
726
        spinlock_unlock(&cpus[cpu].lock);
727
        spinlock_unlock(&cpus[cpu].lock);
727
    }
728
    }
728
   
729
   
729
    interrupts_restore(ipl);
730
    interrupts_restore(ipl);
730
}
731
}
731
 
732
 
732
/** @}
733
/** @}
733
 */
734
 */
734
 
735