Subversion Repositories HelenOS

Rev

Rev 3222 | Rev 3383 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 3222 Rev 3240
1
/*
1
/*
2
 * Copyright (c) 2001-2006 Jakub Jermar
2
 * Copyright (c) 2001-2006 Jakub Jermar
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/** @addtogroup genericmm
29
/** @addtogroup genericmm
30
 * @{
30
 * @{
31
 */
31
 */
32
 
32
 
33
/**
33
/**
34
 * @file
34
 * @file
35
 * @brief   Address space related functions.
35
 * @brief   Address space related functions.
36
 *
36
 *
37
 * This file contains address space manipulation functions.
37
 * This file contains address space manipulation functions.
38
 * Roughly speaking, this is a higher-level client of
38
 * Roughly speaking, this is a higher-level client of
39
 * Virtual Address Translation (VAT) subsystem.
39
 * Virtual Address Translation (VAT) subsystem.
40
 *
40
 *
41
 * Functionality provided by this file allows one to
41
 * Functionality provided by this file allows one to
42
 * create address spaces and create, resize and share
42
 * create address spaces and create, resize and share
43
 * address space areas.
43
 * address space areas.
44
 *
44
 *
45
 * @see page.c
45
 * @see page.c
46
 *
46
 *
47
 */
47
 */
48
 
48
 
49
#include <mm/as.h>
49
#include <mm/as.h>
50
#include <arch/mm/as.h>
50
#include <arch/mm/as.h>
51
#include <mm/page.h>
51
#include <mm/page.h>
52
#include <mm/frame.h>
52
#include <mm/frame.h>
53
#include <mm/slab.h>
53
#include <mm/slab.h>
54
#include <mm/tlb.h>
54
#include <mm/tlb.h>
55
#include <arch/mm/page.h>
55
#include <arch/mm/page.h>
56
#include <genarch/mm/page_pt.h>
56
#include <genarch/mm/page_pt.h>
57
#include <genarch/mm/page_ht.h>
57
#include <genarch/mm/page_ht.h>
58
#include <mm/asid.h>
58
#include <mm/asid.h>
59
#include <arch/mm/asid.h>
59
#include <arch/mm/asid.h>
60
#include <preemption.h>
60
#include <preemption.h>
61
#include <synch/spinlock.h>
61
#include <synch/spinlock.h>
62
#include <synch/mutex.h>
62
#include <synch/mutex.h>
63
#include <adt/list.h>
63
#include <adt/list.h>
64
#include <adt/btree.h>
64
#include <adt/btree.h>
65
#include <proc/task.h>
65
#include <proc/task.h>
66
#include <proc/thread.h>
66
#include <proc/thread.h>
67
#include <arch/asm.h>
67
#include <arch/asm.h>
68
#include <panic.h>
68
#include <panic.h>
69
#include <debug.h>
69
#include <debug.h>
70
#include <print.h>
70
#include <print.h>
71
#include <memstr.h>
71
#include <memstr.h>
72
#include <macros.h>
72
#include <macros.h>
73
#include <arch.h>
73
#include <arch.h>
74
#include <errno.h>
74
#include <errno.h>
75
#include <config.h>
75
#include <config.h>
76
#include <align.h>
76
#include <align.h>
77
#include <arch/types.h>
77
#include <arch/types.h>
78
#include <syscall/copy.h>
78
#include <syscall/copy.h>
79
#include <arch/interrupt.h>
79
#include <arch/interrupt.h>
80
 
80
 
81
#ifdef CONFIG_VIRT_IDX_DCACHE
81
#ifdef CONFIG_VIRT_IDX_DCACHE
82
#include <arch/mm/cache.h>
82
#include <arch/mm/cache.h>
83
#endif /* CONFIG_VIRT_IDX_DCACHE */
83
#endif /* CONFIG_VIRT_IDX_DCACHE */
84
 
84
 
85
#ifndef __OBJC__
-
 
86
/**
85
/**
87
 * Each architecture decides what functions will be used to carry out
86
 * Each architecture decides what functions will be used to carry out
88
 * address space operations such as creating or locking page tables.
87
 * address space operations such as creating or locking page tables.
89
 */
88
 */
90
as_operations_t *as_operations = NULL;
89
as_operations_t *as_operations = NULL;
91
 
90
 
92
/**
91
/**
93
 * Slab for as_t objects.
92
 * Slab for as_t objects.
94
 */
93
 */
95
static slab_cache_t *as_slab;
94
static slab_cache_t *as_slab;
96
#endif
-
 
97
 
95
 
98
/**
96
/**
99
 * This lock serializes access to the ASID subsystem.
97
 * This lock serializes access to the ASID subsystem.
100
 * It protects:
98
 * It protects:
101
 * - inactive_as_with_asid_head list
99
 * - inactive_as_with_asid_head list
102
 * - as->asid for each as of the as_t type
100
 * - as->asid for each as of the as_t type
103
 * - asids_allocated counter
101
 * - asids_allocated counter
104
 */
102
 */
105
SPINLOCK_INITIALIZE(asidlock);
103
SPINLOCK_INITIALIZE(asidlock);
106
 
104
 
107
/**
105
/**
108
 * This list contains address spaces that are not active on any
106
 * This list contains address spaces that are not active on any
109
 * processor and that have valid ASID.
107
 * processor and that have valid ASID.
110
 */
108
 */
111
LIST_INITIALIZE(inactive_as_with_asid_head);
109
LIST_INITIALIZE(inactive_as_with_asid_head);
112
 
110
 
113
/** Kernel address space. */
111
/** Kernel address space. */
114
as_t *AS_KERNEL = NULL;
112
as_t *AS_KERNEL = NULL;
115
 
113
 
116
static int area_flags_to_page_flags(int aflags);
114
static int area_flags_to_page_flags(int aflags);
117
static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
115
static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
118
static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
116
static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
119
    as_area_t *avoid_area);
117
    as_area_t *avoid_area);
120
static void sh_info_remove_reference(share_info_t *sh_info);
118
static void sh_info_remove_reference(share_info_t *sh_info);
121
 
119
 
122
#ifndef __OBJC__
-
 
123
static int as_constructor(void *obj, int flags)
120
static int as_constructor(void *obj, int flags)
124
{
121
{
125
    as_t *as = (as_t *) obj;
122
    as_t *as = (as_t *) obj;
126
    int rc;
123
    int rc;
127
 
124
 
128
    link_initialize(&as->inactive_as_with_asid_link);
125
    link_initialize(&as->inactive_as_with_asid_link);
129
    mutex_initialize(&as->lock, MUTEX_PASSIVE);
126
    mutex_initialize(&as->lock, MUTEX_PASSIVE);
130
   
127
   
131
    rc = as_constructor_arch(as, flags);
128
    rc = as_constructor_arch(as, flags);
132
   
129
   
133
    return rc;
130
    return rc;
134
}
131
}
135
 
132
 
136
static int as_destructor(void *obj)
133
static int as_destructor(void *obj)
137
{
134
{
138
    as_t *as = (as_t *) obj;
135
    as_t *as = (as_t *) obj;
139
 
136
 
140
    return as_destructor_arch(as);
137
    return as_destructor_arch(as);
141
}
138
}
142
#endif
-
 
143
 
139
 
144
/** Initialize address space subsystem. */
140
/** Initialize address space subsystem. */
145
void as_init(void)
141
void as_init(void)
146
{
142
{
147
    as_arch_init();
143
    as_arch_init();
148
 
144
 
149
#ifndef __OBJC__
-
 
150
    as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
145
    as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
151
        as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
146
        as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
152
#endif
-
 
153
   
147
   
154
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
148
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
155
    if (!AS_KERNEL)
149
    if (!AS_KERNEL)
156
        panic("can't create kernel address space\n");
150
        panic("can't create kernel address space\n");
157
   
151
   
158
}
152
}
159
 
153
 
160
/** Create address space.
154
/** Create address space.
161
 *
155
 *
162
 * @param flags Flags that influence way in wich the address space is created.
156
 * @param flags Flags that influence way in wich the address space is created.
163
 */
157
 */
164
as_t *as_create(int flags)
158
as_t *as_create(int flags)
165
{
159
{
166
    as_t *as;
160
    as_t *as;
167
 
161
 
168
#ifdef __OBJC__
-
 
169
    as = [as_t new];
-
 
170
    link_initialize(&as->inactive_as_with_asid_link);
-
 
171
    mutex_initialize(&as->lock, MUTEX_PASSIVE);
-
 
172
    (void) as_constructor_arch(as, flags);
-
 
173
#else
-
 
174
    as = (as_t *) slab_alloc(as_slab, 0);
162
    as = (as_t *) slab_alloc(as_slab, 0);
175
#endif
-
 
176
    (void) as_create_arch(as, 0);
163
    (void) as_create_arch(as, 0);
177
   
164
   
178
    btree_create(&as->as_area_btree);
165
    btree_create(&as->as_area_btree);
179
   
166
   
180
    if (flags & FLAG_AS_KERNEL)
167
    if (flags & FLAG_AS_KERNEL)
181
        as->asid = ASID_KERNEL;
168
        as->asid = ASID_KERNEL;
182
    else
169
    else
183
        as->asid = ASID_INVALID;
170
        as->asid = ASID_INVALID;
184
   
171
   
185
    atomic_set(&as->refcount, 0);
172
    atomic_set(&as->refcount, 0);
186
    as->cpu_refcount = 0;
173
    as->cpu_refcount = 0;
187
#ifdef AS_PAGE_TABLE
174
#ifdef AS_PAGE_TABLE
188
    as->genarch.page_table = page_table_create(flags);
175
    as->genarch.page_table = page_table_create(flags);
189
#else
176
#else
190
    page_table_create(flags);
177
    page_table_create(flags);
191
#endif
178
#endif
192
 
179
 
193
    return as;
180
    return as;
194
}
181
}
195
 
182
 
196
/** Destroy adress space.
183
/** Destroy adress space.
197
 *
184
 *
198
 * When there are no tasks referencing this address space (i.e. its refcount is
185
 * When there are no tasks referencing this address space (i.e. its refcount is
199
 * zero), the address space can be destroyed.
186
 * zero), the address space can be destroyed.
200
 *
187
 *
201
 * We know that we don't hold any spinlock.
188
 * We know that we don't hold any spinlock.
202
 */
189
 */
203
void as_destroy(as_t *as)
190
void as_destroy(as_t *as)
204
{
191
{
205
    ipl_t ipl;
192
    ipl_t ipl;
206
    bool cond;
193
    bool cond;
207
    DEADLOCK_PROBE_INIT(p_asidlock);
194
    DEADLOCK_PROBE_INIT(p_asidlock);
208
 
195
 
209
    ASSERT(atomic_get(&as->refcount) == 0);
196
    ASSERT(atomic_get(&as->refcount) == 0);
210
   
197
   
211
    /*
198
    /*
212
     * Since there is no reference to this area,
199
     * Since there is no reference to this area,
213
     * it is safe not to lock its mutex.
200
     * it is safe not to lock its mutex.
214
     */
201
     */
215
 
202
 
216
    /*
203
    /*
217
     * We need to avoid deadlock between TLB shootdown and asidlock.
204
     * We need to avoid deadlock between TLB shootdown and asidlock.
218
     * We therefore try to take asid conditionally and if we don't succeed,
205
     * We therefore try to take asid conditionally and if we don't succeed,
219
     * we enable interrupts and try again. This is done while preemption is
206
     * we enable interrupts and try again. This is done while preemption is
220
     * disabled to prevent nested context switches. We also depend on the
207
     * disabled to prevent nested context switches. We also depend on the
221
     * fact that so far no spinlocks are held.
208
     * fact that so far no spinlocks are held.
222
     */
209
     */
223
    preemption_disable();
210
    preemption_disable();
224
    ipl = interrupts_read();
211
    ipl = interrupts_read();
225
retry:
212
retry:
226
    interrupts_disable();
213
    interrupts_disable();
227
    if (!spinlock_trylock(&asidlock)) {
214
    if (!spinlock_trylock(&asidlock)) {
228
        interrupts_enable();
215
        interrupts_enable();
229
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
216
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
230
        goto retry;
217
        goto retry;
231
    }
218
    }
232
    preemption_enable();    /* Interrupts disabled, enable preemption */
219
    preemption_enable();    /* Interrupts disabled, enable preemption */
233
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
220
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
234
        if (as != AS && as->cpu_refcount == 0)
221
        if (as != AS && as->cpu_refcount == 0)
235
            list_remove(&as->inactive_as_with_asid_link);
222
            list_remove(&as->inactive_as_with_asid_link);
236
        asid_put(as->asid);
223
        asid_put(as->asid);
237
    }
224
    }
238
    spinlock_unlock(&asidlock);
225
    spinlock_unlock(&asidlock);
239
 
226
 
240
    /*
227
    /*
241
     * Destroy address space areas of the address space.
228
     * Destroy address space areas of the address space.
242
     * The B+tree must be walked carefully because it is
229
     * The B+tree must be walked carefully because it is
243
     * also being destroyed.
230
     * also being destroyed.
244
     */
231
     */
245
    for (cond = true; cond; ) {
232
    for (cond = true; cond; ) {
246
        btree_node_t *node;
233
        btree_node_t *node;
247
 
234
 
248
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
235
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
249
        node = list_get_instance(as->as_area_btree.leaf_head.next,
236
        node = list_get_instance(as->as_area_btree.leaf_head.next,
250
            btree_node_t, leaf_link);
237
            btree_node_t, leaf_link);
251
 
238
 
252
        if ((cond = node->keys)) {
239
        if ((cond = node->keys)) {
253
            as_area_destroy(as, node->key[0]);
240
            as_area_destroy(as, node->key[0]);
254
        }
241
        }
255
    }
242
    }
256
 
243
 
257
    btree_destroy(&as->as_area_btree);
244
    btree_destroy(&as->as_area_btree);
258
#ifdef AS_PAGE_TABLE
245
#ifdef AS_PAGE_TABLE
259
    page_table_destroy(as->genarch.page_table);
246
    page_table_destroy(as->genarch.page_table);
260
#else
247
#else
261
    page_table_destroy(NULL);
248
    page_table_destroy(NULL);
262
#endif
249
#endif
263
 
250
 
264
    interrupts_restore(ipl);
251
    interrupts_restore(ipl);
265
 
252
 
266
#ifdef __OBJC__
-
 
267
    [as free];
-
 
268
#else
-
 
269
    slab_free(as_slab, as);
253
    slab_free(as_slab, as);
270
#endif
-
 
271
}
254
}
272
 
255
 
273
/** Create address space area of common attributes.
256
/** Create address space area of common attributes.
274
 *
257
 *
275
 * The created address space area is added to the target address space.
258
 * The created address space area is added to the target address space.
276
 *
259
 *
277
 * @param as Target address space.
260
 * @param as Target address space.
278
 * @param flags Flags of the area memory.
261
 * @param flags Flags of the area memory.
279
 * @param size Size of area.
262
 * @param size Size of area.
280
 * @param base Base address of area.
263
 * @param base Base address of area.
281
 * @param attrs Attributes of the area.
264
 * @param attrs Attributes of the area.
282
 * @param backend Address space area backend. NULL if no backend is used.
265
 * @param backend Address space area backend. NULL if no backend is used.
283
 * @param backend_data NULL or a pointer to an array holding two void *.
266
 * @param backend_data NULL or a pointer to an array holding two void *.
284
 *
267
 *
285
 * @return Address space area on success or NULL on failure.
268
 * @return Address space area on success or NULL on failure.
286
 */
269
 */
287
as_area_t *
270
as_area_t *
288
as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
271
as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
289
           mem_backend_t *backend, mem_backend_data_t *backend_data)
272
           mem_backend_t *backend, mem_backend_data_t *backend_data)
290
{
273
{
291
    ipl_t ipl;
274
    ipl_t ipl;
292
    as_area_t *a;
275
    as_area_t *a;
293
   
276
   
294
    if (base % PAGE_SIZE)
277
    if (base % PAGE_SIZE)
295
        return NULL;
278
        return NULL;
296
 
279
 
297
    if (!size)
280
    if (!size)
298
        return NULL;
281
        return NULL;
299
 
282
 
300
    /* Writeable executable areas are not supported. */
283
    /* Writeable executable areas are not supported. */
301
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
284
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
302
        return NULL;
285
        return NULL;
303
   
286
   
304
    ipl = interrupts_disable();
287
    ipl = interrupts_disable();
305
    mutex_lock(&as->lock);
288
    mutex_lock(&as->lock);
306
   
289
   
307
    if (!check_area_conflicts(as, base, size, NULL)) {
290
    if (!check_area_conflicts(as, base, size, NULL)) {
308
        mutex_unlock(&as->lock);
291
        mutex_unlock(&as->lock);
309
        interrupts_restore(ipl);
292
        interrupts_restore(ipl);
310
        return NULL;
293
        return NULL;
311
    }
294
    }
312
   
295
   
313
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
296
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
314
 
297
 
315
    mutex_initialize(&a->lock, MUTEX_PASSIVE);
298
    mutex_initialize(&a->lock, MUTEX_PASSIVE);
316
   
299
   
317
    a->as = as;
300
    a->as = as;
318
    a->flags = flags;
301
    a->flags = flags;
319
    a->attributes = attrs;
302
    a->attributes = attrs;
320
    a->pages = SIZE2FRAMES(size);
303
    a->pages = SIZE2FRAMES(size);
321
    a->base = base;
304
    a->base = base;
322
    a->sh_info = NULL;
305
    a->sh_info = NULL;
323
    a->backend = backend;
306
    a->backend = backend;
324
    if (backend_data)
307
    if (backend_data)
325
        a->backend_data = *backend_data;
308
        a->backend_data = *backend_data;
326
    else
309
    else
327
        memsetb(&a->backend_data, sizeof(a->backend_data), 0);
310
        memsetb(&a->backend_data, sizeof(a->backend_data), 0);
328
 
311
 
329
    btree_create(&a->used_space);
312
    btree_create(&a->used_space);
330
   
313
   
331
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
314
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
332
 
315
 
333
    mutex_unlock(&as->lock);
316
    mutex_unlock(&as->lock);
334
    interrupts_restore(ipl);
317
    interrupts_restore(ipl);
335
 
318
 
336
    return a;
319
    return a;
337
}
320
}
338
 
321
 
339
/** Find address space area and change it.
322
/** Find address space area and change it.
340
 *
323
 *
341
 * @param as Address space.
324
 * @param as Address space.
342
 * @param address Virtual address belonging to the area to be changed. Must be
325
 * @param address Virtual address belonging to the area to be changed. Must be
343
 *     page-aligned.
326
 *     page-aligned.
344
 * @param size New size of the virtual memory block starting at address.
327
 * @param size New size of the virtual memory block starting at address.
345
 * @param flags Flags influencing the remap operation. Currently unused.
328
 * @param flags Flags influencing the remap operation. Currently unused.
346
 *
329
 *
347
 * @return Zero on success or a value from @ref errno.h otherwise.
330
 * @return Zero on success or a value from @ref errno.h otherwise.
348
 */
331
 */
349
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
332
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
350
{
333
{
351
    as_area_t *area;
334
    as_area_t *area;
352
    ipl_t ipl;
335
    ipl_t ipl;
353
    size_t pages;
336
    size_t pages;
354
   
337
   
355
    ipl = interrupts_disable();
338
    ipl = interrupts_disable();
356
    mutex_lock(&as->lock);
339
    mutex_lock(&as->lock);
357
   
340
   
358
    /*
341
    /*
359
     * Locate the area.
342
     * Locate the area.
360
     */
343
     */
361
    area = find_area_and_lock(as, address);
344
    area = find_area_and_lock(as, address);
362
    if (!area) {
345
    if (!area) {
363
        mutex_unlock(&as->lock);
346
        mutex_unlock(&as->lock);
364
        interrupts_restore(ipl);
347
        interrupts_restore(ipl);
365
        return ENOENT;
348
        return ENOENT;
366
    }
349
    }
367
 
350
 
368
    if (area->backend == &phys_backend) {
351
    if (area->backend == &phys_backend) {
369
        /*
352
        /*
370
         * Remapping of address space areas associated
353
         * Remapping of address space areas associated
371
         * with memory mapped devices is not supported.
354
         * with memory mapped devices is not supported.
372
         */
355
         */
373
        mutex_unlock(&area->lock);
356
        mutex_unlock(&area->lock);
374
        mutex_unlock(&as->lock);
357
        mutex_unlock(&as->lock);
375
        interrupts_restore(ipl);
358
        interrupts_restore(ipl);
376
        return ENOTSUP;
359
        return ENOTSUP;
377
    }
360
    }
378
    if (area->sh_info) {
361
    if (area->sh_info) {
379
        /*
362
        /*
380
         * Remapping of shared address space areas
363
         * Remapping of shared address space areas
381
         * is not supported.
364
         * is not supported.
382
         */
365
         */
383
        mutex_unlock(&area->lock);
366
        mutex_unlock(&area->lock);
384
        mutex_unlock(&as->lock);
367
        mutex_unlock(&as->lock);
385
        interrupts_restore(ipl);
368
        interrupts_restore(ipl);
386
        return ENOTSUP;
369
        return ENOTSUP;
387
    }
370
    }
388
 
371
 
389
    pages = SIZE2FRAMES((address - area->base) + size);
372
    pages = SIZE2FRAMES((address - area->base) + size);
390
    if (!pages) {
373
    if (!pages) {
391
        /*
374
        /*
392
         * Zero size address space areas are not allowed.
375
         * Zero size address space areas are not allowed.
393
         */
376
         */
394
        mutex_unlock(&area->lock);
377
        mutex_unlock(&area->lock);
395
        mutex_unlock(&as->lock);
378
        mutex_unlock(&as->lock);
396
        interrupts_restore(ipl);
379
        interrupts_restore(ipl);
397
        return EPERM;
380
        return EPERM;
398
    }
381
    }
399
   
382
   
400
    if (pages < area->pages) {
383
    if (pages < area->pages) {
401
        bool cond;
384
        bool cond;
402
        uintptr_t start_free = area->base + pages*PAGE_SIZE;
385
        uintptr_t start_free = area->base + pages*PAGE_SIZE;
403
 
386
 
404
        /*
387
        /*
405
         * Shrinking the area.
388
         * Shrinking the area.
406
         * No need to check for overlaps.
389
         * No need to check for overlaps.
407
         */
390
         */
408
 
391
 
409
        /*
392
        /*
410
         * Start TLB shootdown sequence.
393
         * Start TLB shootdown sequence.
411
         */
394
         */
412
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base +
395
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base +
413
            pages * PAGE_SIZE, area->pages - pages);
396
            pages * PAGE_SIZE, area->pages - pages);
414
 
397
 
415
        /*
398
        /*
416
         * Remove frames belonging to used space starting from
399
         * Remove frames belonging to used space starting from
417
         * the highest addresses downwards until an overlap with
400
         * the highest addresses downwards until an overlap with
418
         * the resized address space area is found. Note that this
401
         * the resized address space area is found. Note that this
419
         * is also the right way to remove part of the used_space
402
         * is also the right way to remove part of the used_space
420
         * B+tree leaf list.
403
         * B+tree leaf list.
421
         */    
404
         */    
422
        for (cond = true; cond;) {
405
        for (cond = true; cond;) {
423
            btree_node_t *node;
406
            btree_node_t *node;
424
       
407
       
425
            ASSERT(!list_empty(&area->used_space.leaf_head));
408
            ASSERT(!list_empty(&area->used_space.leaf_head));
426
            node =
409
            node =
427
                list_get_instance(area->used_space.leaf_head.prev,
410
                list_get_instance(area->used_space.leaf_head.prev,
428
                btree_node_t, leaf_link);
411
                btree_node_t, leaf_link);
429
            if ((cond = (bool) node->keys)) {
412
            if ((cond = (bool) node->keys)) {
430
                uintptr_t b = node->key[node->keys - 1];
413
                uintptr_t b = node->key[node->keys - 1];
431
                count_t c =
414
                count_t c =
432
                    (count_t) node->value[node->keys - 1];
415
                    (count_t) node->value[node->keys - 1];
433
                unsigned int i = 0;
416
                unsigned int i = 0;
434
           
417
           
435
                if (overlaps(b, c * PAGE_SIZE, area->base,
418
                if (overlaps(b, c * PAGE_SIZE, area->base,
436
                    pages * PAGE_SIZE)) {
419
                    pages * PAGE_SIZE)) {
437
                   
420
                   
438
                    if (b + c * PAGE_SIZE <= start_free) {
421
                    if (b + c * PAGE_SIZE <= start_free) {
439
                        /*
422
                        /*
440
                         * The whole interval fits
423
                         * The whole interval fits
441
                         * completely in the resized
424
                         * completely in the resized
442
                         * address space area.
425
                         * address space area.
443
                         */
426
                         */
444
                        break;
427
                        break;
445
                    }
428
                    }
446
       
429
       
447
                    /*
430
                    /*
448
                     * Part of the interval corresponding
431
                     * Part of the interval corresponding
449
                     * to b and c overlaps with the resized
432
                     * to b and c overlaps with the resized
450
                     * address space area.
433
                     * address space area.
451
                     */
434
                     */
452
       
435
       
453
                    cond = false;   /* we are almost done */
436
                    cond = false;   /* we are almost done */
454
                    i = (start_free - b) >> PAGE_WIDTH;
437
                    i = (start_free - b) >> PAGE_WIDTH;
455
                    if (!used_space_remove(area, start_free, c - i))
438
                    if (!used_space_remove(area, start_free, c - i))
456
                        panic("Could not remove used space.\n");
439
                        panic("Could not remove used space.\n");
457
                } else {
440
                } else {
458
                    /*
441
                    /*
459
                     * The interval of used space can be
442
                     * The interval of used space can be
460
                     * completely removed.
443
                     * completely removed.
461
                     */
444
                     */
462
                    if (!used_space_remove(area, b, c))
445
                    if (!used_space_remove(area, b, c))
463
                        panic("Could not remove used space.\n");
446
                        panic("Could not remove used space.\n");
464
                }
447
                }
465
           
448
           
466
                for (; i < c; i++) {
449
                for (; i < c; i++) {
467
                    pte_t *pte;
450
                    pte_t *pte;
468
           
451
           
469
                    page_table_lock(as, false);
452
                    page_table_lock(as, false);
470
                    pte = page_mapping_find(as, b +
453
                    pte = page_mapping_find(as, b +
471
                        i * PAGE_SIZE);
454
                        i * PAGE_SIZE);
472
                    ASSERT(pte && PTE_VALID(pte) &&
455
                    ASSERT(pte && PTE_VALID(pte) &&
473
                        PTE_PRESENT(pte));
456
                        PTE_PRESENT(pte));
474
                    if (area->backend &&
457
                    if (area->backend &&
475
                        area->backend->frame_free) {
458
                        area->backend->frame_free) {
476
                        area->backend->frame_free(area,
459
                        area->backend->frame_free(area,
477
                            b + i * PAGE_SIZE,
460
                            b + i * PAGE_SIZE,
478
                            PTE_GET_FRAME(pte));
461
                            PTE_GET_FRAME(pte));
479
                    }
462
                    }
480
                    page_mapping_remove(as, b +
463
                    page_mapping_remove(as, b +
481
                        i * PAGE_SIZE);
464
                        i * PAGE_SIZE);
482
                    page_table_unlock(as, false);
465
                    page_table_unlock(as, false);
483
                }
466
                }
484
            }
467
            }
485
        }
468
        }
486
 
469
 
487
        /*
470
        /*
488
         * Finish TLB shootdown sequence.
471
         * Finish TLB shootdown sequence.
489
         */
472
         */
490
 
473
 
491
        tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
474
        tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
492
            area->pages - pages);
475
            area->pages - pages);
493
        /*
476
        /*
494
         * Invalidate software translation caches (e.g. TSB on sparc64).
477
         * Invalidate software translation caches (e.g. TSB on sparc64).
495
         */
478
         */
496
        as_invalidate_translation_cache(as, area->base +
479
        as_invalidate_translation_cache(as, area->base +
497
            pages * PAGE_SIZE, area->pages - pages);
480
            pages * PAGE_SIZE, area->pages - pages);
498
        tlb_shootdown_finalize();
481
        tlb_shootdown_finalize();
499
       
482
       
500
    } else {
483
    } else {
501
        /*
484
        /*
502
         * Growing the area.
485
         * Growing the area.
503
         * Check for overlaps with other address space areas.
486
         * Check for overlaps with other address space areas.
504
         */
487
         */
505
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
488
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
506
            area)) {
489
            area)) {
507
            mutex_unlock(&area->lock);
490
            mutex_unlock(&area->lock);
508
            mutex_unlock(&as->lock);       
491
            mutex_unlock(&as->lock);       
509
            interrupts_restore(ipl);
492
            interrupts_restore(ipl);
510
            return EADDRNOTAVAIL;
493
            return EADDRNOTAVAIL;
511
        }
494
        }
512
    }
495
    }
513
 
496
 
514
    area->pages = pages;
497
    area->pages = pages;
515
   
498
   
516
    mutex_unlock(&area->lock);
499
    mutex_unlock(&area->lock);
517
    mutex_unlock(&as->lock);
500
    mutex_unlock(&as->lock);
518
    interrupts_restore(ipl);
501
    interrupts_restore(ipl);
519
 
502
 
520
    return 0;
503
    return 0;
521
}
504
}
522
 
505
 
523
/** Destroy address space area.
506
/** Destroy address space area.
524
 *
507
 *
525
 * @param as Address space.
508
 * @param as Address space.
526
 * @param address Address withing the area to be deleted.
509
 * @param address Address withing the area to be deleted.
527
 *
510
 *
528
 * @return Zero on success or a value from @ref errno.h on failure.
511
 * @return Zero on success or a value from @ref errno.h on failure.
529
 */
512
 */
530
int as_area_destroy(as_t *as, uintptr_t address)
513
int as_area_destroy(as_t *as, uintptr_t address)
531
{
514
{
532
    as_area_t *area;
515
    as_area_t *area;
533
    uintptr_t base;
516
    uintptr_t base;
534
    link_t *cur;
517
    link_t *cur;
535
    ipl_t ipl;
518
    ipl_t ipl;
536
 
519
 
537
    ipl = interrupts_disable();
520
    ipl = interrupts_disable();
538
    mutex_lock(&as->lock);
521
    mutex_lock(&as->lock);
539
 
522
 
540
    area = find_area_and_lock(as, address);
523
    area = find_area_and_lock(as, address);
541
    if (!area) {
524
    if (!area) {
542
        mutex_unlock(&as->lock);
525
        mutex_unlock(&as->lock);
543
        interrupts_restore(ipl);
526
        interrupts_restore(ipl);
544
        return ENOENT;
527
        return ENOENT;
545
    }
528
    }
546
 
529
 
547
    base = area->base;
530
    base = area->base;
548
 
531
 
549
    /*
532
    /*
550
     * Start TLB shootdown sequence.
533
     * Start TLB shootdown sequence.
551
     */
534
     */
552
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
535
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
553
 
536
 
554
    /*
537
    /*
555
     * Visit only the pages mapped by used_space B+tree.
538
     * Visit only the pages mapped by used_space B+tree.
556
     */
539
     */
557
    for (cur = area->used_space.leaf_head.next;
540
    for (cur = area->used_space.leaf_head.next;
558
        cur != &area->used_space.leaf_head; cur = cur->next) {
541
        cur != &area->used_space.leaf_head; cur = cur->next) {
559
        btree_node_t *node;
542
        btree_node_t *node;
560
        unsigned int i;
543
        unsigned int i;
561
       
544
       
562
        node = list_get_instance(cur, btree_node_t, leaf_link);
545
        node = list_get_instance(cur, btree_node_t, leaf_link);
563
        for (i = 0; i < node->keys; i++) {
546
        for (i = 0; i < node->keys; i++) {
564
            uintptr_t b = node->key[i];
547
            uintptr_t b = node->key[i];
565
            count_t j;
548
            count_t j;
566
            pte_t *pte;
549
            pte_t *pte;
567
           
550
           
568
            for (j = 0; j < (count_t) node->value[i]; j++) {
551
            for (j = 0; j < (count_t) node->value[i]; j++) {
569
                page_table_lock(as, false);
552
                page_table_lock(as, false);
570
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
553
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
571
                ASSERT(pte && PTE_VALID(pte) &&
554
                ASSERT(pte && PTE_VALID(pte) &&
572
                    PTE_PRESENT(pte));
555
                    PTE_PRESENT(pte));
573
                if (area->backend &&
556
                if (area->backend &&
574
                    area->backend->frame_free) {
557
                    area->backend->frame_free) {
575
                    area->backend->frame_free(area, b +
558
                    area->backend->frame_free(area, b +
576
                        j * PAGE_SIZE, PTE_GET_FRAME(pte));
559
                        j * PAGE_SIZE, PTE_GET_FRAME(pte));
577
                }
560
                }
578
                page_mapping_remove(as, b + j * PAGE_SIZE);            
561
                page_mapping_remove(as, b + j * PAGE_SIZE);            
579
                page_table_unlock(as, false);
562
                page_table_unlock(as, false);
580
            }
563
            }
581
        }
564
        }
582
    }
565
    }
583
 
566
 
584
    /*
567
    /*
585
     * Finish TLB shootdown sequence.
568
     * Finish TLB shootdown sequence.
586
     */
569
     */
587
 
570
 
588
    tlb_invalidate_pages(as->asid, area->base, area->pages);
571
    tlb_invalidate_pages(as->asid, area->base, area->pages);
589
    /*
572
    /*
590
     * Invalidate potential software translation caches (e.g. TSB on
573
     * Invalidate potential software translation caches (e.g. TSB on
591
     * sparc64).
574
     * sparc64).
592
     */
575
     */
593
    as_invalidate_translation_cache(as, area->base, area->pages);
576
    as_invalidate_translation_cache(as, area->base, area->pages);
594
    tlb_shootdown_finalize();
577
    tlb_shootdown_finalize();
595
   
578
   
596
    btree_destroy(&area->used_space);
579
    btree_destroy(&area->used_space);
597
 
580
 
598
    area->attributes |= AS_AREA_ATTR_PARTIAL;
581
    area->attributes |= AS_AREA_ATTR_PARTIAL;
599
   
582
   
600
    if (area->sh_info)
583
    if (area->sh_info)
601
        sh_info_remove_reference(area->sh_info);
584
        sh_info_remove_reference(area->sh_info);
602
       
585
       
603
    mutex_unlock(&area->lock);
586
    mutex_unlock(&area->lock);
604
 
587
 
605
    /*
588
    /*
606
     * Remove the empty area from address space.
589
     * Remove the empty area from address space.
607
     */
590
     */
608
    btree_remove(&as->as_area_btree, base, NULL);
591
    btree_remove(&as->as_area_btree, base, NULL);
609
   
592
   
610
    free(area);
593
    free(area);
611
   
594
   
612
    mutex_unlock(&as->lock);
595
    mutex_unlock(&as->lock);
613
    interrupts_restore(ipl);
596
    interrupts_restore(ipl);
614
    return 0;
597
    return 0;
615
}
598
}
616
 
599
 
617
/** Share address space area with another or the same address space.
600
/** Share address space area with another or the same address space.
618
 *
601
 *
619
 * Address space area mapping is shared with a new address space area.
602
 * Address space area mapping is shared with a new address space area.
620
 * If the source address space area has not been shared so far,
603
 * If the source address space area has not been shared so far,
621
 * a new sh_info is created. The new address space area simply gets the
604
 * a new sh_info is created. The new address space area simply gets the
622
 * sh_info of the source area. The process of duplicating the
605
 * sh_info of the source area. The process of duplicating the
623
 * mapping is done through the backend share function.
606
 * mapping is done through the backend share function.
624
 *
607
 *
625
 * @param src_as Pointer to source address space.
608
 * @param src_as Pointer to source address space.
626
 * @param src_base Base address of the source address space area.
609
 * @param src_base Base address of the source address space area.
627
 * @param acc_size Expected size of the source area.
610
 * @param acc_size Expected size of the source area.
628
 * @param dst_as Pointer to destination address space.
611
 * @param dst_as Pointer to destination address space.
629
 * @param dst_base Target base address.
612
 * @param dst_base Target base address.
630
 * @param dst_flags_mask Destination address space area flags mask.
613
 * @param dst_flags_mask Destination address space area flags mask.
631
 *
614
 *
632
 * @return Zero on success or ENOENT if there is no such task or if there is no
615
 * @return Zero on success or ENOENT if there is no such task or if there is no
633
 * such address space area, EPERM if there was a problem in accepting the area
616
 * such address space area, EPERM if there was a problem in accepting the area
634
 * or ENOMEM if there was a problem in allocating destination address space
617
 * or ENOMEM if there was a problem in allocating destination address space
635
 * area. ENOTSUP is returned if the address space area backend does not support
618
 * area. ENOTSUP is returned if the address space area backend does not support
636
 * sharing.
619
 * sharing.
637
 */
620
 */
638
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
621
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
639
    as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
622
    as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
640
{
623
{
641
    ipl_t ipl;
624
    ipl_t ipl;
642
    int src_flags;
625
    int src_flags;
643
    size_t src_size;
626
    size_t src_size;
644
    as_area_t *src_area, *dst_area;
627
    as_area_t *src_area, *dst_area;
645
    share_info_t *sh_info;
628
    share_info_t *sh_info;
646
    mem_backend_t *src_backend;
629
    mem_backend_t *src_backend;
647
    mem_backend_data_t src_backend_data;
630
    mem_backend_data_t src_backend_data;
648
   
631
   
649
    ipl = interrupts_disable();
632
    ipl = interrupts_disable();
650
    mutex_lock(&src_as->lock);
633
    mutex_lock(&src_as->lock);
651
    src_area = find_area_and_lock(src_as, src_base);
634
    src_area = find_area_and_lock(src_as, src_base);
652
    if (!src_area) {
635
    if (!src_area) {
653
        /*
636
        /*
654
         * Could not find the source address space area.
637
         * Could not find the source address space area.
655
         */
638
         */
656
        mutex_unlock(&src_as->lock);
639
        mutex_unlock(&src_as->lock);
657
        interrupts_restore(ipl);
640
        interrupts_restore(ipl);
658
        return ENOENT;
641
        return ENOENT;
659
    }
642
    }
660
 
643
 
661
    if (!src_area->backend || !src_area->backend->share) {
644
    if (!src_area->backend || !src_area->backend->share) {
662
        /*
645
        /*
663
         * There is no backend or the backend does not
646
         * There is no backend or the backend does not
664
         * know how to share the area.
647
         * know how to share the area.
665
         */
648
         */
666
        mutex_unlock(&src_area->lock);
649
        mutex_unlock(&src_area->lock);
667
        mutex_unlock(&src_as->lock);
650
        mutex_unlock(&src_as->lock);
668
        interrupts_restore(ipl);
651
        interrupts_restore(ipl);
669
        return ENOTSUP;
652
        return ENOTSUP;
670
    }
653
    }
671
   
654
   
672
    src_size = src_area->pages * PAGE_SIZE;
655
    src_size = src_area->pages * PAGE_SIZE;
673
    src_flags = src_area->flags;
656
    src_flags = src_area->flags;
674
    src_backend = src_area->backend;
657
    src_backend = src_area->backend;
675
    src_backend_data = src_area->backend_data;
658
    src_backend_data = src_area->backend_data;
676
 
659
 
677
    /* Share the cacheable flag from the original mapping */
660
    /* Share the cacheable flag from the original mapping */
678
    if (src_flags & AS_AREA_CACHEABLE)
661
    if (src_flags & AS_AREA_CACHEABLE)
679
        dst_flags_mask |= AS_AREA_CACHEABLE;
662
        dst_flags_mask |= AS_AREA_CACHEABLE;
680
 
663
 
681
    if (src_size != acc_size ||
664
    if (src_size != acc_size ||
682
        (src_flags & dst_flags_mask) != dst_flags_mask) {
665
        (src_flags & dst_flags_mask) != dst_flags_mask) {
683
        mutex_unlock(&src_area->lock);
666
        mutex_unlock(&src_area->lock);
684
        mutex_unlock(&src_as->lock);
667
        mutex_unlock(&src_as->lock);
685
        interrupts_restore(ipl);
668
        interrupts_restore(ipl);
686
        return EPERM;
669
        return EPERM;
687
    }
670
    }
688
 
671
 
689
    /*
672
    /*
690
     * Now we are committed to sharing the area.
673
     * Now we are committed to sharing the area.
691
     * First, prepare the area for sharing.
674
     * First, prepare the area for sharing.
692
     * Then it will be safe to unlock it.
675
     * Then it will be safe to unlock it.
693
     */
676
     */
694
    sh_info = src_area->sh_info;
677
    sh_info = src_area->sh_info;
695
    if (!sh_info) {
678
    if (!sh_info) {
696
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
679
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
697
        mutex_initialize(&sh_info->lock, MUTEX_PASSIVE);
680
        mutex_initialize(&sh_info->lock, MUTEX_PASSIVE);
698
        sh_info->refcount = 2;
681
        sh_info->refcount = 2;
699
        btree_create(&sh_info->pagemap);
682
        btree_create(&sh_info->pagemap);
700
        src_area->sh_info = sh_info;
683
        src_area->sh_info = sh_info;
701
        /*
684
        /*
702
         * Call the backend to setup sharing.
685
         * Call the backend to setup sharing.
703
         */
686
         */
704
        src_area->backend->share(src_area);
687
        src_area->backend->share(src_area);
705
    } else {
688
    } else {
706
        mutex_lock(&sh_info->lock);
689
        mutex_lock(&sh_info->lock);
707
        sh_info->refcount++;
690
        sh_info->refcount++;
708
        mutex_unlock(&sh_info->lock);
691
        mutex_unlock(&sh_info->lock);
709
    }
692
    }
710
 
693
 
711
    mutex_unlock(&src_area->lock);
694
    mutex_unlock(&src_area->lock);
712
    mutex_unlock(&src_as->lock);
695
    mutex_unlock(&src_as->lock);
713
 
696
 
714
    /*
697
    /*
715
     * Create copy of the source address space area.
698
     * Create copy of the source address space area.
716
     * The destination area is created with AS_AREA_ATTR_PARTIAL
699
     * The destination area is created with AS_AREA_ATTR_PARTIAL
717
     * attribute set which prevents race condition with
700
     * attribute set which prevents race condition with
718
     * preliminary as_page_fault() calls.
701
     * preliminary as_page_fault() calls.
719
     * The flags of the source area are masked against dst_flags_mask
702
     * The flags of the source area are masked against dst_flags_mask
720
     * to support sharing in less privileged mode.
703
     * to support sharing in less privileged mode.
721
     */
704
     */
722
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
705
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
723
        AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
706
        AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
724
    if (!dst_area) {
707
    if (!dst_area) {
725
        /*
708
        /*
726
         * Destination address space area could not be created.
709
         * Destination address space area could not be created.
727
         */
710
         */
728
        sh_info_remove_reference(sh_info);
711
        sh_info_remove_reference(sh_info);
729
       
712
       
730
        interrupts_restore(ipl);
713
        interrupts_restore(ipl);
731
        return ENOMEM;
714
        return ENOMEM;
732
    }
715
    }
733
 
716
 
734
    /*
717
    /*
735
     * Now the destination address space area has been
718
     * Now the destination address space area has been
736
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
719
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
737
     * attribute and set the sh_info.
720
     * attribute and set the sh_info.
738
     */
721
     */
739
    mutex_lock(&dst_as->lock); 
722
    mutex_lock(&dst_as->lock); 
740
    mutex_lock(&dst_area->lock);
723
    mutex_lock(&dst_area->lock);
741
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
724
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
742
    dst_area->sh_info = sh_info;
725
    dst_area->sh_info = sh_info;
743
    mutex_unlock(&dst_area->lock);
726
    mutex_unlock(&dst_area->lock);
744
    mutex_unlock(&dst_as->lock);   
727
    mutex_unlock(&dst_as->lock);   
745
 
728
 
746
    interrupts_restore(ipl);
729
    interrupts_restore(ipl);
747
   
730
   
748
    return 0;
731
    return 0;
749
}
732
}
750
 
733
 
751
/** Check access mode for address space area.
734
/** Check access mode for address space area.
752
 *
735
 *
753
 * The address space area must be locked prior to this call.
736
 * The address space area must be locked prior to this call.
754
 *
737
 *
755
 * @param area Address space area.
738
 * @param area Address space area.
756
 * @param access Access mode.
739
 * @param access Access mode.
757
 *
740
 *
758
 * @return False if access violates area's permissions, true otherwise.
741
 * @return False if access violates area's permissions, true otherwise.
759
 */
742
 */
760
bool as_area_check_access(as_area_t *area, pf_access_t access)
743
bool as_area_check_access(as_area_t *area, pf_access_t access)
761
{
744
{
762
    int flagmap[] = {
745
    int flagmap[] = {
763
        [PF_ACCESS_READ] = AS_AREA_READ,
746
        [PF_ACCESS_READ] = AS_AREA_READ,
764
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
747
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
765
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
748
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
766
    };
749
    };
767
 
750
 
768
    if (!(area->flags & flagmap[access]))
751
    if (!(area->flags & flagmap[access]))
769
        return false;
752
        return false;
770
   
753
   
771
    return true;
754
    return true;
772
}
755
}
773
 
756
 
774
/** Change adress area flags.
757
/** Change adress area flags.
775
 *
758
 *
776
 * The idea is to have the same data, but with a different access mode.
759
 * The idea is to have the same data, but with a different access mode.
777
 * This is needed e.g. for writing code into memory and then executing it.
760
 * This is needed e.g. for writing code into memory and then executing it.
778
 * In order for this to work properly, this may copy the data
761
 * In order for this to work properly, this may copy the data
779
 * into private anonymous memory (unless it's already there).
762
 * into private anonymous memory (unless it's already there).
780
 *
763
 *
781
 * @param as Address space.
764
 * @param as Address space.
782
 * @param flags Flags of the area memory.
765
 * @param flags Flags of the area memory.
783
 * @param address Address withing the area to be changed.
766
 * @param address Address withing the area to be changed.
784
 *
767
 *
785
 * @return Zero on success or a value from @ref errno.h on failure.
768
 * @return Zero on success or a value from @ref errno.h on failure.
786
 */
769
 */
787
int as_area_change_flags(as_t *as, int flags, uintptr_t address)
770
int as_area_change_flags(as_t *as, int flags, uintptr_t address)
788
{
771
{
789
    as_area_t *area;
772
    as_area_t *area;
790
    uintptr_t base;
773
    uintptr_t base;
791
    link_t *cur;
774
    link_t *cur;
792
    ipl_t ipl;
775
    ipl_t ipl;
793
    int page_flags;
776
    int page_flags;
794
    uintptr_t *old_frame;
777
    uintptr_t *old_frame;
795
    index_t frame_idx;
778
    index_t frame_idx;
796
    count_t used_pages;
779
    count_t used_pages;
797
 
780
 
798
    /* Flags for the new memory mapping */
781
    /* Flags for the new memory mapping */
799
    page_flags = area_flags_to_page_flags(flags);
782
    page_flags = area_flags_to_page_flags(flags);
800
 
783
 
801
    ipl = interrupts_disable();
784
    ipl = interrupts_disable();
802
    mutex_lock(&as->lock);
785
    mutex_lock(&as->lock);
803
 
786
 
804
    area = find_area_and_lock(as, address);
787
    area = find_area_and_lock(as, address);
805
    if (!area) {
788
    if (!area) {
806
        mutex_unlock(&as->lock);
789
        mutex_unlock(&as->lock);
807
        interrupts_restore(ipl);
790
        interrupts_restore(ipl);
808
        return ENOENT;
791
        return ENOENT;
809
    }
792
    }
810
 
793
 
811
    if (area->sh_info || area->backend != &anon_backend) {
794
    if (area->sh_info || area->backend != &anon_backend) {
812
        /* Copying shared areas not supported yet */
795
        /* Copying shared areas not supported yet */
813
        /* Copying non-anonymous memory not supported yet */
796
        /* Copying non-anonymous memory not supported yet */
814
        mutex_unlock(&area->lock);
797
        mutex_unlock(&area->lock);
815
        mutex_unlock(&as->lock);
798
        mutex_unlock(&as->lock);
816
        interrupts_restore(ipl);
799
        interrupts_restore(ipl);
817
        return ENOTSUP;
800
        return ENOTSUP;
818
    }
801
    }
819
 
802
 
820
    base = area->base;
803
    base = area->base;
821
 
804
 
822
    /*
805
    /*
823
     * Compute total number of used pages in the used_space B+tree
806
     * Compute total number of used pages in the used_space B+tree
824
     */
807
     */
825
    used_pages = 0;
808
    used_pages = 0;
826
 
809
 
827
    for (cur = area->used_space.leaf_head.next;
810
    for (cur = area->used_space.leaf_head.next;
828
        cur != &area->used_space.leaf_head; cur = cur->next) {
811
        cur != &area->used_space.leaf_head; cur = cur->next) {
829
        btree_node_t *node;
812
        btree_node_t *node;
830
        unsigned int i;
813
        unsigned int i;
831
       
814
       
832
        node = list_get_instance(cur, btree_node_t, leaf_link);
815
        node = list_get_instance(cur, btree_node_t, leaf_link);
833
        for (i = 0; i < node->keys; i++) {
816
        for (i = 0; i < node->keys; i++) {
834
            used_pages += (count_t) node->value[i];
817
            used_pages += (count_t) node->value[i];
835
        }
818
        }
836
    }
819
    }
837
 
820
 
838
    /* An array for storing frame numbers */
821
    /* An array for storing frame numbers */
839
    old_frame = malloc(used_pages * sizeof(uintptr_t), 0);
822
    old_frame = malloc(used_pages * sizeof(uintptr_t), 0);
840
 
823
 
841
    /*
824
    /*
842
     * Start TLB shootdown sequence.
825
     * Start TLB shootdown sequence.
843
     */
826
     */
844
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
827
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
845
 
828
 
846
    /*
829
    /*
847
     * Remove used pages from page tables and remember their frame
830
     * Remove used pages from page tables and remember their frame
848
     * numbers.
831
     * numbers.
849
     */
832
     */
850
    frame_idx = 0;
833
    frame_idx = 0;
851
 
834
 
852
    for (cur = area->used_space.leaf_head.next;
835
    for (cur = area->used_space.leaf_head.next;
853
        cur != &area->used_space.leaf_head; cur = cur->next) {
836
        cur != &area->used_space.leaf_head; cur = cur->next) {
854
        btree_node_t *node;
837
        btree_node_t *node;
855
        unsigned int i;
838
        unsigned int i;
856
       
839
       
857
        node = list_get_instance(cur, btree_node_t, leaf_link);
840
        node = list_get_instance(cur, btree_node_t, leaf_link);
858
        for (i = 0; i < node->keys; i++) {
841
        for (i = 0; i < node->keys; i++) {
859
            uintptr_t b = node->key[i];
842
            uintptr_t b = node->key[i];
860
            count_t j;
843
            count_t j;
861
            pte_t *pte;
844
            pte_t *pte;
862
           
845
           
863
            for (j = 0; j < (count_t) node->value[i]; j++) {
846
            for (j = 0; j < (count_t) node->value[i]; j++) {
864
                page_table_lock(as, false);
847
                page_table_lock(as, false);
865
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
848
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
866
                ASSERT(pte && PTE_VALID(pte) &&
849
                ASSERT(pte && PTE_VALID(pte) &&
867
                    PTE_PRESENT(pte));
850
                    PTE_PRESENT(pte));
868
                old_frame[frame_idx++] = PTE_GET_FRAME(pte);
851
                old_frame[frame_idx++] = PTE_GET_FRAME(pte);
869
 
852
 
870
                /* Remove old mapping */
853
                /* Remove old mapping */
871
                page_mapping_remove(as, b + j * PAGE_SIZE);
854
                page_mapping_remove(as, b + j * PAGE_SIZE);
872
                page_table_unlock(as, false);
855
                page_table_unlock(as, false);
873
            }
856
            }
874
        }
857
        }
875
    }
858
    }
876
 
859
 
877
    /*
860
    /*
878
     * Finish TLB shootdown sequence.
861
     * Finish TLB shootdown sequence.
879
     */
862
     */
880
 
863
 
881
    tlb_invalidate_pages(as->asid, area->base, area->pages);
864
    tlb_invalidate_pages(as->asid, area->base, area->pages);
882
    /*
865
    /*
883
     * Invalidate potential software translation caches (e.g. TSB on
866
     * Invalidate potential software translation caches (e.g. TSB on
884
     * sparc64).
867
     * sparc64).
885
     */
868
     */
886
    as_invalidate_translation_cache(as, area->base, area->pages);
869
    as_invalidate_translation_cache(as, area->base, area->pages);
887
    tlb_shootdown_finalize();
870
    tlb_shootdown_finalize();
888
 
871
 
889
    /*
872
    /*
890
     * Map pages back in with new flags. This step is kept separate
873
     * Map pages back in with new flags. This step is kept separate
891
     * so that there's no instant when the memory area could be
874
     * so that there's no instant when the memory area could be
892
     * accesed with both the old and the new flags at once.
875
     * accesed with both the old and the new flags at once.
893
     */
876
     */
894
    frame_idx = 0;
877
    frame_idx = 0;
895
 
878
 
896
    for (cur = area->used_space.leaf_head.next;
879
    for (cur = area->used_space.leaf_head.next;
897
        cur != &area->used_space.leaf_head; cur = cur->next) {
880
        cur != &area->used_space.leaf_head; cur = cur->next) {
898
        btree_node_t *node;
881
        btree_node_t *node;
899
        unsigned int i;
882
        unsigned int i;
900
       
883
       
901
        node = list_get_instance(cur, btree_node_t, leaf_link);
884
        node = list_get_instance(cur, btree_node_t, leaf_link);
902
        for (i = 0; i < node->keys; i++) {
885
        for (i = 0; i < node->keys; i++) {
903
            uintptr_t b = node->key[i];
886
            uintptr_t b = node->key[i];
904
            count_t j;
887
            count_t j;
905
           
888
           
906
            for (j = 0; j < (count_t) node->value[i]; j++) {
889
            for (j = 0; j < (count_t) node->value[i]; j++) {
907
                page_table_lock(as, false);
890
                page_table_lock(as, false);
908
 
891
 
909
                /* Insert the new mapping */
892
                /* Insert the new mapping */
910
                page_mapping_insert(as, b + j * PAGE_SIZE,
893
                page_mapping_insert(as, b + j * PAGE_SIZE,
911
                    old_frame[frame_idx++], page_flags);
894
                    old_frame[frame_idx++], page_flags);
912
 
895
 
913
                page_table_unlock(as, false);
896
                page_table_unlock(as, false);
914
            }
897
            }
915
        }
898
        }
916
    }
899
    }
917
 
900
 
918
    free(old_frame);
901
    free(old_frame);
919
 
902
 
920
    mutex_unlock(&area->lock);
903
    mutex_unlock(&area->lock);
921
    mutex_unlock(&as->lock);
904
    mutex_unlock(&as->lock);
922
    interrupts_restore(ipl);
905
    interrupts_restore(ipl);
923
 
906
 
924
    return 0;
907
    return 0;
925
}
908
}
926
 
909
 
927
 
910
 
928
/** Handle page fault within the current address space.
911
/** Handle page fault within the current address space.
929
 *
912
 *
930
 * This is the high-level page fault handler. It decides
913
 * This is the high-level page fault handler. It decides
931
 * whether the page fault can be resolved by any backend
914
 * whether the page fault can be resolved by any backend
932
 * and if so, it invokes the backend to resolve the page
915
 * and if so, it invokes the backend to resolve the page
933
 * fault.
916
 * fault.
934
 *
917
 *
935
 * Interrupts are assumed disabled.
918
 * Interrupts are assumed disabled.
936
 *
919
 *
937
 * @param page Faulting page.
920
 * @param page Faulting page.
938
 * @param access Access mode that caused the fault (i.e. read/write/exec).
921
 * @param access Access mode that caused the fault (i.e. read/write/exec).
939
 * @param istate Pointer to interrupted state.
922
 * @param istate Pointer to interrupted state.
940
 *
923
 *
941
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
924
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
942
 *     fault was caused by copy_to_uspace() or copy_from_uspace().
925
 *     fault was caused by copy_to_uspace() or copy_from_uspace().
943
 */
926
 */
944
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
927
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
945
{
928
{
946
    pte_t *pte;
929
    pte_t *pte;
947
    as_area_t *area;
930
    as_area_t *area;
948
   
931
   
949
    if (!THREAD)
932
    if (!THREAD)
950
        return AS_PF_FAULT;
933
        return AS_PF_FAULT;
951
       
934
       
952
    ASSERT(AS);
935
    ASSERT(AS);
953
 
936
 
954
    mutex_lock(&AS->lock);
937
    mutex_lock(&AS->lock);
955
    area = find_area_and_lock(AS, page);   
938
    area = find_area_and_lock(AS, page);   
956
    if (!area) {
939
    if (!area) {
957
        /*
940
        /*
958
         * No area contained mapping for 'page'.
941
         * No area contained mapping for 'page'.
959
         * Signal page fault to low-level handler.
942
         * Signal page fault to low-level handler.
960
         */
943
         */
961
        mutex_unlock(&AS->lock);
944
        mutex_unlock(&AS->lock);
962
        goto page_fault;
945
        goto page_fault;
963
    }
946
    }
964
 
947
 
965
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
948
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
966
        /*
949
        /*
967
         * The address space area is not fully initialized.
950
         * The address space area is not fully initialized.
968
         * Avoid possible race by returning error.
951
         * Avoid possible race by returning error.
969
         */
952
         */
970
        mutex_unlock(&area->lock);
953
        mutex_unlock(&area->lock);
971
        mutex_unlock(&AS->lock);
954
        mutex_unlock(&AS->lock);
972
        goto page_fault;       
955
        goto page_fault;       
973
    }
956
    }
974
 
957
 
975
    if (!area->backend || !area->backend->page_fault) {
958
    if (!area->backend || !area->backend->page_fault) {
976
        /*
959
        /*
977
         * The address space area is not backed by any backend
960
         * The address space area is not backed by any backend
978
         * or the backend cannot handle page faults.
961
         * or the backend cannot handle page faults.
979
         */
962
         */
980
        mutex_unlock(&area->lock);
963
        mutex_unlock(&area->lock);
981
        mutex_unlock(&AS->lock);
964
        mutex_unlock(&AS->lock);
982
        goto page_fault;       
965
        goto page_fault;       
983
    }
966
    }
984
 
967
 
985
    page_table_lock(AS, false);
968
    page_table_lock(AS, false);
986
   
969
   
987
    /*
970
    /*
988
     * To avoid race condition between two page faults
971
     * To avoid race condition between two page faults
989
     * on the same address, we need to make sure
972
     * on the same address, we need to make sure
990
     * the mapping has not been already inserted.
973
     * the mapping has not been already inserted.
991
     */
974
     */
992
    if ((pte = page_mapping_find(AS, page))) {
975
    if ((pte = page_mapping_find(AS, page))) {
993
        if (PTE_PRESENT(pte)) {
976
        if (PTE_PRESENT(pte)) {
994
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
977
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
995
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
978
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
996
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
979
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
997
                page_table_unlock(AS, false);
980
                page_table_unlock(AS, false);
998
                mutex_unlock(&area->lock);
981
                mutex_unlock(&area->lock);
999
                mutex_unlock(&AS->lock);
982
                mutex_unlock(&AS->lock);
1000
                return AS_PF_OK;
983
                return AS_PF_OK;
1001
            }
984
            }
1002
        }
985
        }
1003
    }
986
    }
1004
   
987
   
1005
    /*
988
    /*
1006
     * Resort to the backend page fault handler.
989
     * Resort to the backend page fault handler.
1007
     */
990
     */
1008
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
991
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
1009
        page_table_unlock(AS, false);
992
        page_table_unlock(AS, false);
1010
        mutex_unlock(&area->lock);
993
        mutex_unlock(&area->lock);
1011
        mutex_unlock(&AS->lock);
994
        mutex_unlock(&AS->lock);
1012
        goto page_fault;
995
        goto page_fault;
1013
    }
996
    }
1014
   
997
   
1015
    page_table_unlock(AS, false);
998
    page_table_unlock(AS, false);
1016
    mutex_unlock(&area->lock);
999
    mutex_unlock(&area->lock);
1017
    mutex_unlock(&AS->lock);
1000
    mutex_unlock(&AS->lock);
1018
    return AS_PF_OK;
1001
    return AS_PF_OK;
1019
 
1002
 
1020
page_fault:
1003
page_fault:
1021
    if (THREAD->in_copy_from_uspace) {
1004
    if (THREAD->in_copy_from_uspace) {
1022
        THREAD->in_copy_from_uspace = false;
1005
        THREAD->in_copy_from_uspace = false;
1023
        istate_set_retaddr(istate,
1006
        istate_set_retaddr(istate,
1024
            (uintptr_t) &memcpy_from_uspace_failover_address);
1007
            (uintptr_t) &memcpy_from_uspace_failover_address);
1025
    } else if (THREAD->in_copy_to_uspace) {
1008
    } else if (THREAD->in_copy_to_uspace) {
1026
        THREAD->in_copy_to_uspace = false;
1009
        THREAD->in_copy_to_uspace = false;
1027
        istate_set_retaddr(istate,
1010
        istate_set_retaddr(istate,
1028
            (uintptr_t) &memcpy_to_uspace_failover_address);
1011
            (uintptr_t) &memcpy_to_uspace_failover_address);
1029
    } else {
1012
    } else {
1030
        return AS_PF_FAULT;
1013
        return AS_PF_FAULT;
1031
    }
1014
    }
1032
 
1015
 
1033
    return AS_PF_DEFER;
1016
    return AS_PF_DEFER;
1034
}
1017
}
1035
 
1018
 
1036
/** Switch address spaces.
1019
/** Switch address spaces.
1037
 *
1020
 *
1038
 * Note that this function cannot sleep as it is essentially a part of
1021
 * Note that this function cannot sleep as it is essentially a part of
1039
 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
1022
 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
1040
 * thing which is forbidden in this context is locking the address space.
1023
 * thing which is forbidden in this context is locking the address space.
1041
 *
1024
 *
1042
 * When this function is enetered, no spinlocks may be held.
1025
 * When this function is enetered, no spinlocks may be held.
1043
 *
1026
 *
1044
 * @param old Old address space or NULL.
1027
 * @param old Old address space or NULL.
1045
 * @param new New address space.
1028
 * @param new New address space.
1046
 */
1029
 */
1047
void as_switch(as_t *old_as, as_t *new_as)
1030
void as_switch(as_t *old_as, as_t *new_as)
1048
{
1031
{
1049
    DEADLOCK_PROBE_INIT(p_asidlock);
1032
    DEADLOCK_PROBE_INIT(p_asidlock);
1050
    preemption_disable();
1033
    preemption_disable();
1051
retry:
1034
retry:
1052
    (void) interrupts_disable();
1035
    (void) interrupts_disable();
1053
    if (!spinlock_trylock(&asidlock)) {
1036
    if (!spinlock_trylock(&asidlock)) {
1054
        /*
1037
        /*
1055
         * Avoid deadlock with TLB shootdown.
1038
         * Avoid deadlock with TLB shootdown.
1056
         * We can enable interrupts here because
1039
         * We can enable interrupts here because
1057
         * preemption is disabled. We should not be
1040
         * preemption is disabled. We should not be
1058
         * holding any other lock.
1041
         * holding any other lock.
1059
         */
1042
         */
1060
        (void) interrupts_enable();
1043
        (void) interrupts_enable();
1061
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
1044
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
1062
        goto retry;
1045
        goto retry;
1063
    }
1046
    }
1064
    preemption_enable();
1047
    preemption_enable();
1065
 
1048
 
1066
    /*
1049
    /*
1067
     * First, take care of the old address space.
1050
     * First, take care of the old address space.
1068
     */
1051
     */
1069
    if (old_as) {
1052
    if (old_as) {
1070
        ASSERT(old_as->cpu_refcount);
1053
        ASSERT(old_as->cpu_refcount);
1071
        if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
1054
        if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
1072
            /*
1055
            /*
1073
             * The old address space is no longer active on
1056
             * The old address space is no longer active on
1074
             * any processor. It can be appended to the
1057
             * any processor. It can be appended to the
1075
             * list of inactive address spaces with assigned
1058
             * list of inactive address spaces with assigned
1076
             * ASID.
1059
             * ASID.
1077
             */
1060
             */
1078
            ASSERT(old_as->asid != ASID_INVALID);
1061
            ASSERT(old_as->asid != ASID_INVALID);
1079
            list_append(&old_as->inactive_as_with_asid_link,
1062
            list_append(&old_as->inactive_as_with_asid_link,
1080
                &inactive_as_with_asid_head);
1063
                &inactive_as_with_asid_head);
1081
        }
1064
        }
1082
 
1065
 
1083
        /*
1066
        /*
1084
         * Perform architecture-specific tasks when the address space
1067
         * Perform architecture-specific tasks when the address space
1085
         * is being removed from the CPU.
1068
         * is being removed from the CPU.
1086
         */
1069
         */
1087
        as_deinstall_arch(old_as);
1070
        as_deinstall_arch(old_as);
1088
    }
1071
    }
1089
 
1072
 
1090
    /*
1073
    /*
1091
     * Second, prepare the new address space.
1074
     * Second, prepare the new address space.
1092
     */
1075
     */
1093
    if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
1076
    if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
1094
        if (new_as->asid != ASID_INVALID)
1077
        if (new_as->asid != ASID_INVALID)
1095
            list_remove(&new_as->inactive_as_with_asid_link);
1078
            list_remove(&new_as->inactive_as_with_asid_link);
1096
        else
1079
        else
1097
            new_as->asid = asid_get();
1080
            new_as->asid = asid_get();
1098
    }
1081
    }
1099
#ifdef AS_PAGE_TABLE
1082
#ifdef AS_PAGE_TABLE
1100
    SET_PTL0_ADDRESS(new_as->genarch.page_table);
1083
    SET_PTL0_ADDRESS(new_as->genarch.page_table);
1101
#endif
1084
#endif
1102
   
1085
   
1103
    /*
1086
    /*
1104
     * Perform architecture-specific steps.
1087
     * Perform architecture-specific steps.
1105
     * (e.g. write ASID to hardware register etc.)
1088
     * (e.g. write ASID to hardware register etc.)
1106
     */
1089
     */
1107
    as_install_arch(new_as);
1090
    as_install_arch(new_as);
1108
 
1091
 
1109
    spinlock_unlock(&asidlock);
1092
    spinlock_unlock(&asidlock);
1110
   
1093
   
1111
    AS = new_as;
1094
    AS = new_as;
1112
}
1095
}
1113
 
1096
 
1114
/** Convert address space area flags to page flags.
1097
/** Convert address space area flags to page flags.
1115
 *
1098
 *
1116
 * @param aflags Flags of some address space area.
1099
 * @param aflags Flags of some address space area.
1117
 *
1100
 *
1118
 * @return Flags to be passed to page_mapping_insert().
1101
 * @return Flags to be passed to page_mapping_insert().
1119
 */
1102
 */
1120
int area_flags_to_page_flags(int aflags)
1103
int area_flags_to_page_flags(int aflags)
1121
{
1104
{
1122
    int flags;
1105
    int flags;
1123
 
1106
 
1124
    flags = PAGE_USER | PAGE_PRESENT;
1107
    flags = PAGE_USER | PAGE_PRESENT;
1125
   
1108
   
1126
    if (aflags & AS_AREA_READ)
1109
    if (aflags & AS_AREA_READ)
1127
        flags |= PAGE_READ;
1110
        flags |= PAGE_READ;
1128
       
1111
       
1129
    if (aflags & AS_AREA_WRITE)
1112
    if (aflags & AS_AREA_WRITE)
1130
        flags |= PAGE_WRITE;
1113
        flags |= PAGE_WRITE;
1131
   
1114
   
1132
    if (aflags & AS_AREA_EXEC)
1115
    if (aflags & AS_AREA_EXEC)
1133
        flags |= PAGE_EXEC;
1116
        flags |= PAGE_EXEC;
1134
   
1117
   
1135
    if (aflags & AS_AREA_CACHEABLE)
1118
    if (aflags & AS_AREA_CACHEABLE)
1136
        flags |= PAGE_CACHEABLE;
1119
        flags |= PAGE_CACHEABLE;
1137
       
1120
       
1138
    return flags;
1121
    return flags;
1139
}
1122
}
1140
 
1123
 
1141
/** Compute flags for virtual address translation subsytem.
1124
/** Compute flags for virtual address translation subsytem.
1142
 *
1125
 *
1143
 * The address space area must be locked.
1126
 * The address space area must be locked.
1144
 * Interrupts must be disabled.
1127
 * Interrupts must be disabled.
1145
 *
1128
 *
1146
 * @param a Address space area.
1129
 * @param a Address space area.
1147
 *
1130
 *
1148
 * @return Flags to be used in page_mapping_insert().
1131
 * @return Flags to be used in page_mapping_insert().
1149
 */
1132
 */
1150
int as_area_get_flags(as_area_t *a)
1133
int as_area_get_flags(as_area_t *a)
1151
{
1134
{
1152
    return area_flags_to_page_flags(a->flags);
1135
    return area_flags_to_page_flags(a->flags);
1153
}
1136
}
1154
 
1137
 
1155
/** Create page table.
1138
/** Create page table.
1156
 *
1139
 *
1157
 * Depending on architecture, create either address space
1140
 * Depending on architecture, create either address space
1158
 * private or global page table.
1141
 * private or global page table.
1159
 *
1142
 *
1160
 * @param flags Flags saying whether the page table is for kernel address space.
1143
 * @param flags Flags saying whether the page table is for kernel address space.
1161
 *
1144
 *
1162
 * @return First entry of the page table.
1145
 * @return First entry of the page table.
1163
 */
1146
 */
1164
pte_t *page_table_create(int flags)
1147
pte_t *page_table_create(int flags)
1165
{
1148
{
1166
#ifdef __OBJC__
-
 
1167
    return [as_t page_table_create: flags];
-
 
1168
#else
-
 
1169
    ASSERT(as_operations);
1149
    ASSERT(as_operations);
1170
    ASSERT(as_operations->page_table_create);
1150
    ASSERT(as_operations->page_table_create);
1171
   
1151
   
1172
    return as_operations->page_table_create(flags);
1152
    return as_operations->page_table_create(flags);
1173
#endif
-
 
1174
}
1153
}
1175
 
1154
 
1176
/** Destroy page table.
1155
/** Destroy page table.
1177
 *
1156
 *
1178
 * Destroy page table in architecture specific way.
1157
 * Destroy page table in architecture specific way.
1179
 *
1158
 *
1180
 * @param page_table Physical address of PTL0.
1159
 * @param page_table Physical address of PTL0.
1181
 */
1160
 */
1182
void page_table_destroy(pte_t *page_table)
1161
void page_table_destroy(pte_t *page_table)
1183
{
1162
{
1184
#ifdef __OBJC__
-
 
1185
    return [as_t page_table_destroy: page_table];
-
 
1186
#else
-
 
1187
    ASSERT(as_operations);
1163
    ASSERT(as_operations);
1188
    ASSERT(as_operations->page_table_destroy);
1164
    ASSERT(as_operations->page_table_destroy);
1189
   
1165
   
1190
    as_operations->page_table_destroy(page_table);
1166
    as_operations->page_table_destroy(page_table);
1191
#endif
-
 
1192
}
1167
}
1193
 
1168
 
1194
/** Lock page table.
1169
/** Lock page table.
1195
 *
1170
 *
1196
 * This function should be called before any page_mapping_insert(),
1171
 * This function should be called before any page_mapping_insert(),
1197
 * page_mapping_remove() and page_mapping_find().
1172
 * page_mapping_remove() and page_mapping_find().
1198
 *
1173
 *
1199
 * Locking order is such that address space areas must be locked
1174
 * Locking order is such that address space areas must be locked
1200
 * prior to this call. Address space can be locked prior to this
1175
 * prior to this call. Address space can be locked prior to this
1201
 * call in which case the lock argument is false.
1176
 * call in which case the lock argument is false.
1202
 *
1177
 *
1203
 * @param as Address space.
1178
 * @param as Address space.
1204
 * @param lock If false, do not attempt to lock as->lock.
1179
 * @param lock If false, do not attempt to lock as->lock.
1205
 */
1180
 */
1206
void page_table_lock(as_t *as, bool lock)
1181
void page_table_lock(as_t *as, bool lock)
1207
{
1182
{
1208
#ifdef __OBJC__
-
 
1209
    [as page_table_lock: lock];
-
 
1210
#else
-
 
1211
    ASSERT(as_operations);
1183
    ASSERT(as_operations);
1212
    ASSERT(as_operations->page_table_lock);
1184
    ASSERT(as_operations->page_table_lock);
1213
   
1185
   
1214
    as_operations->page_table_lock(as, lock);
1186
    as_operations->page_table_lock(as, lock);
1215
#endif
-
 
1216
}
1187
}
1217
 
1188
 
1218
/** Unlock page table.
1189
/** Unlock page table.
1219
 *
1190
 *
1220
 * @param as Address space.
1191
 * @param as Address space.
1221
 * @param unlock If false, do not attempt to unlock as->lock.
1192
 * @param unlock If false, do not attempt to unlock as->lock.
1222
 */
1193
 */
1223
void page_table_unlock(as_t *as, bool unlock)
1194
void page_table_unlock(as_t *as, bool unlock)
1224
{
1195
{
1225
#ifdef __OBJC__
-
 
1226
    [as page_table_unlock: unlock];
-
 
1227
#else
-
 
1228
    ASSERT(as_operations);
1196
    ASSERT(as_operations);
1229
    ASSERT(as_operations->page_table_unlock);
1197
    ASSERT(as_operations->page_table_unlock);
1230
   
1198
   
1231
    as_operations->page_table_unlock(as, unlock);
1199
    as_operations->page_table_unlock(as, unlock);
1232
#endif
-
 
1233
}
1200
}
1234
 
1201
 
1235
 
1202
 
1236
/** Find address space area and lock it.
1203
/** Find address space area and lock it.
1237
 *
1204
 *
1238
 * The address space must be locked and interrupts must be disabled.
1205
 * The address space must be locked and interrupts must be disabled.
1239
 *
1206
 *
1240
 * @param as Address space.
1207
 * @param as Address space.
1241
 * @param va Virtual address.
1208
 * @param va Virtual address.
1242
 *
1209
 *
1243
 * @return Locked address space area containing va on success or NULL on
1210
 * @return Locked address space area containing va on success or NULL on
1244
 *     failure.
1211
 *     failure.
1245
 */
1212
 */
1246
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1213
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1247
{
1214
{
1248
    as_area_t *a;
1215
    as_area_t *a;
1249
    btree_node_t *leaf, *lnode;
1216
    btree_node_t *leaf, *lnode;
1250
    unsigned int i;
1217
    unsigned int i;
1251
   
1218
   
1252
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1219
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1253
    if (a) {
1220
    if (a) {
1254
        /* va is the base address of an address space area */
1221
        /* va is the base address of an address space area */
1255
        mutex_lock(&a->lock);
1222
        mutex_lock(&a->lock);
1256
        return a;
1223
        return a;
1257
    }
1224
    }
1258
   
1225
   
1259
    /*
1226
    /*
1260
     * Search the leaf node and the righmost record of its left neighbour
1227
     * Search the leaf node and the righmost record of its left neighbour
1261
     * to find out whether this is a miss or va belongs to an address
1228
     * to find out whether this is a miss or va belongs to an address
1262
     * space area found there.
1229
     * space area found there.
1263
     */
1230
     */
1264
   
1231
   
1265
    /* First, search the leaf node itself. */
1232
    /* First, search the leaf node itself. */
1266
    for (i = 0; i < leaf->keys; i++) {
1233
    for (i = 0; i < leaf->keys; i++) {
1267
        a = (as_area_t *) leaf->value[i];
1234
        a = (as_area_t *) leaf->value[i];
1268
        mutex_lock(&a->lock);
1235
        mutex_lock(&a->lock);
1269
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1236
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1270
            return a;
1237
            return a;
1271
        }
1238
        }
1272
        mutex_unlock(&a->lock);
1239
        mutex_unlock(&a->lock);
1273
    }
1240
    }
1274
 
1241
 
1275
    /*
1242
    /*
1276
     * Second, locate the left neighbour and test its last record.
1243
     * Second, locate the left neighbour and test its last record.
1277
     * Because of its position in the B+tree, it must have base < va.
1244
     * Because of its position in the B+tree, it must have base < va.
1278
     */
1245
     */
1279
    lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1246
    lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1280
    if (lnode) {
1247
    if (lnode) {
1281
        a = (as_area_t *) lnode->value[lnode->keys - 1];
1248
        a = (as_area_t *) lnode->value[lnode->keys - 1];
1282
        mutex_lock(&a->lock);
1249
        mutex_lock(&a->lock);
1283
        if (va < a->base + a->pages * PAGE_SIZE) {
1250
        if (va < a->base + a->pages * PAGE_SIZE) {
1284
            return a;
1251
            return a;
1285
        }
1252
        }
1286
        mutex_unlock(&a->lock);
1253
        mutex_unlock(&a->lock);
1287
    }
1254
    }
1288
 
1255
 
1289
    return NULL;
1256
    return NULL;
1290
}
1257
}
1291
 
1258
 
1292
/** Check area conflicts with other areas.
1259
/** Check area conflicts with other areas.
1293
 *
1260
 *
1294
 * The address space must be locked and interrupts must be disabled.
1261
 * The address space must be locked and interrupts must be disabled.
1295
 *
1262
 *
1296
 * @param as Address space.
1263
 * @param as Address space.
1297
 * @param va Starting virtual address of the area being tested.
1264
 * @param va Starting virtual address of the area being tested.
1298
 * @param size Size of the area being tested.
1265
 * @param size Size of the area being tested.
1299
 * @param avoid_area Do not touch this area.
1266
 * @param avoid_area Do not touch this area.
1300
 *
1267
 *
1301
 * @return True if there is no conflict, false otherwise.
1268
 * @return True if there is no conflict, false otherwise.
1302
 */
1269
 */
1303
bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
1270
bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
1304
              as_area_t *avoid_area)
1271
              as_area_t *avoid_area)
1305
{
1272
{
1306
    as_area_t *a;
1273
    as_area_t *a;
1307
    btree_node_t *leaf, *node;
1274
    btree_node_t *leaf, *node;
1308
    unsigned int i;
1275
    unsigned int i;
1309
   
1276
   
1310
    /*
1277
    /*
1311
     * We don't want any area to have conflicts with NULL page.
1278
     * We don't want any area to have conflicts with NULL page.
1312
     */
1279
     */
1313
    if (overlaps(va, size, NULL, PAGE_SIZE))
1280
    if (overlaps(va, size, NULL, PAGE_SIZE))
1314
        return false;
1281
        return false;
1315
   
1282
   
1316
    /*
1283
    /*
1317
     * The leaf node is found in O(log n), where n is proportional to
1284
     * The leaf node is found in O(log n), where n is proportional to
1318
     * the number of address space areas belonging to as.
1285
     * the number of address space areas belonging to as.
1319
     * The check for conflicts is then attempted on the rightmost
1286
     * The check for conflicts is then attempted on the rightmost
1320
     * record in the left neighbour, the leftmost record in the right
1287
     * record in the left neighbour, the leftmost record in the right
1321
     * neighbour and all records in the leaf node itself.
1288
     * neighbour and all records in the leaf node itself.
1322
     */
1289
     */
1323
   
1290
   
1324
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1291
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1325
        if (a != avoid_area)
1292
        if (a != avoid_area)
1326
            return false;
1293
            return false;
1327
    }
1294
    }
1328
   
1295
   
1329
    /* First, check the two border cases. */
1296
    /* First, check the two border cases. */
1330
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1297
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1331
        a = (as_area_t *) node->value[node->keys - 1];
1298
        a = (as_area_t *) node->value[node->keys - 1];
1332
        mutex_lock(&a->lock);
1299
        mutex_lock(&a->lock);
1333
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1300
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1334
            mutex_unlock(&a->lock);
1301
            mutex_unlock(&a->lock);
1335
            return false;
1302
            return false;
1336
        }
1303
        }
1337
        mutex_unlock(&a->lock);
1304
        mutex_unlock(&a->lock);
1338
    }
1305
    }
1339
    node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1306
    node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1340
    if (node) {
1307
    if (node) {
1341
        a = (as_area_t *) node->value[0];
1308
        a = (as_area_t *) node->value[0];
1342
        mutex_lock(&a->lock);
1309
        mutex_lock(&a->lock);
1343
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1310
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1344
            mutex_unlock(&a->lock);
1311
            mutex_unlock(&a->lock);
1345
            return false;
1312
            return false;
1346
        }
1313
        }
1347
        mutex_unlock(&a->lock);
1314
        mutex_unlock(&a->lock);
1348
    }
1315
    }
1349
   
1316
   
1350
    /* Second, check the leaf node. */
1317
    /* Second, check the leaf node. */
1351
    for (i = 0; i < leaf->keys; i++) {
1318
    for (i = 0; i < leaf->keys; i++) {
1352
        a = (as_area_t *) leaf->value[i];
1319
        a = (as_area_t *) leaf->value[i];
1353
   
1320
   
1354
        if (a == avoid_area)
1321
        if (a == avoid_area)
1355
            continue;
1322
            continue;
1356
   
1323
   
1357
        mutex_lock(&a->lock);
1324
        mutex_lock(&a->lock);
1358
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1325
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1359
            mutex_unlock(&a->lock);
1326
            mutex_unlock(&a->lock);
1360
            return false;
1327
            return false;
1361
        }
1328
        }
1362
        mutex_unlock(&a->lock);
1329
        mutex_unlock(&a->lock);
1363
    }
1330
    }
1364
 
1331
 
1365
    /*
1332
    /*
1366
     * So far, the area does not conflict with other areas.
1333
     * So far, the area does not conflict with other areas.
1367
     * Check if it doesn't conflict with kernel address space.
1334
     * Check if it doesn't conflict with kernel address space.
1368
     */  
1335
     */  
1369
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1336
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1370
        return !overlaps(va, size,
1337
        return !overlaps(va, size,
1371
            KERNEL_ADDRESS_SPACE_START,
1338
            KERNEL_ADDRESS_SPACE_START,
1372
            KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1339
            KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1373
    }
1340
    }
1374
 
1341
 
1375
    return true;
1342
    return true;
1376
}
1343
}
1377
 
1344
 
1378
/** Return size of the address space area with given base.
1345
/** Return size of the address space area with given base.
1379
 *
1346
 *
1380
 * @param base      Arbitrary address insede the address space area.
1347
 * @param base      Arbitrary address insede the address space area.
1381
 *
1348
 *
1382
 * @return      Size of the address space area in bytes or zero if it
1349
 * @return      Size of the address space area in bytes or zero if it
1383
 *          does not exist.
1350
 *          does not exist.
1384
 */
1351
 */
1385
size_t as_area_get_size(uintptr_t base)
1352
size_t as_area_get_size(uintptr_t base)
1386
{
1353
{
1387
    ipl_t ipl;
1354
    ipl_t ipl;
1388
    as_area_t *src_area;
1355
    as_area_t *src_area;
1389
    size_t size;
1356
    size_t size;
1390
 
1357
 
1391
    ipl = interrupts_disable();
1358
    ipl = interrupts_disable();
1392
    src_area = find_area_and_lock(AS, base);
1359
    src_area = find_area_and_lock(AS, base);
1393
    if (src_area){
1360
    if (src_area){
1394
        size = src_area->pages * PAGE_SIZE;
1361
        size = src_area->pages * PAGE_SIZE;
1395
        mutex_unlock(&src_area->lock);
1362
        mutex_unlock(&src_area->lock);
1396
    } else {
1363
    } else {
1397
        size = 0;
1364
        size = 0;
1398
    }
1365
    }
1399
    interrupts_restore(ipl);
1366
    interrupts_restore(ipl);
1400
    return size;
1367
    return size;
1401
}
1368
}
1402
 
1369
 
1403
/** Mark portion of address space area as used.
1370
/** Mark portion of address space area as used.
1404
 *
1371
 *
1405
 * The address space area must be already locked.
1372
 * The address space area must be already locked.
1406
 *
1373
 *
1407
 * @param a Address space area.
1374
 * @param a Address space area.
1408
 * @param page First page to be marked.
1375
 * @param page First page to be marked.
1409
 * @param count Number of page to be marked.
1376
 * @param count Number of page to be marked.
1410
 *
1377
 *
1411
 * @return 0 on failure and 1 on success.
1378
 * @return 0 on failure and 1 on success.
1412
 */
1379
 */
1413
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1380
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1414
{
1381
{
1415
    btree_node_t *leaf, *node;
1382
    btree_node_t *leaf, *node;
1416
    count_t pages;
1383
    count_t pages;
1417
    unsigned int i;
1384
    unsigned int i;
1418
 
1385
 
1419
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1386
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1420
    ASSERT(count);
1387
    ASSERT(count);
1421
 
1388
 
1422
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1389
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1423
    if (pages) {
1390
    if (pages) {
1424
        /*
1391
        /*
1425
         * We hit the beginning of some used space.
1392
         * We hit the beginning of some used space.
1426
         */
1393
         */
1427
        return 0;
1394
        return 0;
1428
    }
1395
    }
1429
 
1396
 
1430
    if (!leaf->keys) {
1397
    if (!leaf->keys) {
1431
        btree_insert(&a->used_space, page, (void *) count, leaf);
1398
        btree_insert(&a->used_space, page, (void *) count, leaf);
1432
        return 1;
1399
        return 1;
1433
    }
1400
    }
1434
 
1401
 
1435
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1402
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1436
    if (node) {
1403
    if (node) {
1437
        uintptr_t left_pg = node->key[node->keys - 1];
1404
        uintptr_t left_pg = node->key[node->keys - 1];
1438
        uintptr_t right_pg = leaf->key[0];
1405
        uintptr_t right_pg = leaf->key[0];
1439
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1406
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1440
        count_t right_cnt = (count_t) leaf->value[0];
1407
        count_t right_cnt = (count_t) leaf->value[0];
1441
       
1408
       
1442
        /*
1409
        /*
1443
         * Examine the possibility that the interval fits
1410
         * Examine the possibility that the interval fits
1444
         * somewhere between the rightmost interval of
1411
         * somewhere between the rightmost interval of
1445
         * the left neigbour and the first interval of the leaf.
1412
         * the left neigbour and the first interval of the leaf.
1446
         */
1413
         */
1447
         
1414
         
1448
        if (page >= right_pg) {
1415
        if (page >= right_pg) {
1449
            /* Do nothing. */
1416
            /* Do nothing. */
1450
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1417
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1451
            left_cnt * PAGE_SIZE)) {
1418
            left_cnt * PAGE_SIZE)) {
1452
            /* The interval intersects with the left interval. */
1419
            /* The interval intersects with the left interval. */
1453
            return 0;
1420
            return 0;
1454
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1421
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1455
            right_cnt * PAGE_SIZE)) {
1422
            right_cnt * PAGE_SIZE)) {
1456
            /* The interval intersects with the right interval. */
1423
            /* The interval intersects with the right interval. */
1457
            return 0;          
1424
            return 0;          
1458
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1425
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1459
            (page + count * PAGE_SIZE == right_pg)) {
1426
            (page + count * PAGE_SIZE == right_pg)) {
1460
            /*
1427
            /*
1461
             * The interval can be added by merging the two already
1428
             * The interval can be added by merging the two already
1462
             * present intervals.
1429
             * present intervals.
1463
             */
1430
             */
1464
            node->value[node->keys - 1] += count + right_cnt;
1431
            node->value[node->keys - 1] += count + right_cnt;
1465
            btree_remove(&a->used_space, right_pg, leaf);
1432
            btree_remove(&a->used_space, right_pg, leaf);
1466
            return 1;
1433
            return 1;
1467
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1434
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1468
            /*
1435
            /*
1469
             * The interval can be added by simply growing the left
1436
             * The interval can be added by simply growing the left
1470
             * interval.
1437
             * interval.
1471
             */
1438
             */
1472
            node->value[node->keys - 1] += count;
1439
            node->value[node->keys - 1] += count;
1473
            return 1;
1440
            return 1;
1474
        } else if (page + count * PAGE_SIZE == right_pg) {
1441
        } else if (page + count * PAGE_SIZE == right_pg) {
1475
            /*
1442
            /*
1476
             * The interval can be addded by simply moving base of
1443
             * The interval can be addded by simply moving base of
1477
             * the right interval down and increasing its size
1444
             * the right interval down and increasing its size
1478
             * accordingly.
1445
             * accordingly.
1479
             */
1446
             */
1480
            leaf->value[0] += count;
1447
            leaf->value[0] += count;
1481
            leaf->key[0] = page;
1448
            leaf->key[0] = page;
1482
            return 1;
1449
            return 1;
1483
        } else {
1450
        } else {
1484
            /*
1451
            /*
1485
             * The interval is between both neigbouring intervals,
1452
             * The interval is between both neigbouring intervals,
1486
             * but cannot be merged with any of them.
1453
             * but cannot be merged with any of them.
1487
             */
1454
             */
1488
            btree_insert(&a->used_space, page, (void *) count,
1455
            btree_insert(&a->used_space, page, (void *) count,
1489
                leaf);
1456
                leaf);
1490
            return 1;
1457
            return 1;
1491
        }
1458
        }
1492
    } else if (page < leaf->key[0]) {
1459
    } else if (page < leaf->key[0]) {
1493
        uintptr_t right_pg = leaf->key[0];
1460
        uintptr_t right_pg = leaf->key[0];
1494
        count_t right_cnt = (count_t) leaf->value[0];
1461
        count_t right_cnt = (count_t) leaf->value[0];
1495
   
1462
   
1496
        /*
1463
        /*
1497
         * Investigate the border case in which the left neighbour does
1464
         * Investigate the border case in which the left neighbour does
1498
         * not exist but the interval fits from the left.
1465
         * not exist but the interval fits from the left.
1499
         */
1466
         */
1500
         
1467
         
1501
        if (overlaps(page, count * PAGE_SIZE, right_pg,
1468
        if (overlaps(page, count * PAGE_SIZE, right_pg,
1502
            right_cnt * PAGE_SIZE)) {
1469
            right_cnt * PAGE_SIZE)) {
1503
            /* The interval intersects with the right interval. */
1470
            /* The interval intersects with the right interval. */
1504
            return 0;
1471
            return 0;
1505
        } else if (page + count * PAGE_SIZE == right_pg) {
1472
        } else if (page + count * PAGE_SIZE == right_pg) {
1506
            /*
1473
            /*
1507
             * The interval can be added by moving the base of the
1474
             * The interval can be added by moving the base of the
1508
             * right interval down and increasing its size
1475
             * right interval down and increasing its size
1509
             * accordingly.
1476
             * accordingly.
1510
             */
1477
             */
1511
            leaf->key[0] = page;
1478
            leaf->key[0] = page;
1512
            leaf->value[0] += count;
1479
            leaf->value[0] += count;
1513
            return 1;
1480
            return 1;
1514
        } else {
1481
        } else {
1515
            /*
1482
            /*
1516
             * The interval doesn't adjoin with the right interval.
1483
             * The interval doesn't adjoin with the right interval.
1517
             * It must be added individually.
1484
             * It must be added individually.
1518
             */
1485
             */
1519
            btree_insert(&a->used_space, page, (void *) count,
1486
            btree_insert(&a->used_space, page, (void *) count,
1520
                leaf);
1487
                leaf);
1521
            return 1;
1488
            return 1;
1522
        }
1489
        }
1523
    }
1490
    }
1524
 
1491
 
1525
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1492
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1526
    if (node) {
1493
    if (node) {
1527
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1494
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1528
        uintptr_t right_pg = node->key[0];
1495
        uintptr_t right_pg = node->key[0];
1529
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1496
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1530
        count_t right_cnt = (count_t) node->value[0];
1497
        count_t right_cnt = (count_t) node->value[0];
1531
       
1498
       
1532
        /*
1499
        /*
1533
         * Examine the possibility that the interval fits
1500
         * Examine the possibility that the interval fits
1534
         * somewhere between the leftmost interval of
1501
         * somewhere between the leftmost interval of
1535
         * the right neigbour and the last interval of the leaf.
1502
         * the right neigbour and the last interval of the leaf.
1536
         */
1503
         */
1537
 
1504
 
1538
        if (page < left_pg) {
1505
        if (page < left_pg) {
1539
            /* Do nothing. */
1506
            /* Do nothing. */
1540
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1507
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1541
            left_cnt * PAGE_SIZE)) {
1508
            left_cnt * PAGE_SIZE)) {
1542
            /* The interval intersects with the left interval. */
1509
            /* The interval intersects with the left interval. */
1543
            return 0;
1510
            return 0;
1544
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1511
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1545
            right_cnt * PAGE_SIZE)) {
1512
            right_cnt * PAGE_SIZE)) {
1546
            /* The interval intersects with the right interval. */
1513
            /* The interval intersects with the right interval. */
1547
            return 0;          
1514
            return 0;          
1548
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1515
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1549
            (page + count * PAGE_SIZE == right_pg)) {
1516
            (page + count * PAGE_SIZE == right_pg)) {
1550
            /*
1517
            /*
1551
             * The interval can be added by merging the two already
1518
             * The interval can be added by merging the two already
1552
             * present intervals.
1519
             * present intervals.
1553
             * */
1520
             * */
1554
            leaf->value[leaf->keys - 1] += count + right_cnt;
1521
            leaf->value[leaf->keys - 1] += count + right_cnt;
1555
            btree_remove(&a->used_space, right_pg, node);
1522
            btree_remove(&a->used_space, right_pg, node);
1556
            return 1;
1523
            return 1;
1557
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1524
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1558
            /*
1525
            /*
1559
             * The interval can be added by simply growing the left
1526
             * The interval can be added by simply growing the left
1560
             * interval.
1527
             * interval.
1561
             * */
1528
             * */
1562
            leaf->value[leaf->keys - 1] +=  count;
1529
            leaf->value[leaf->keys - 1] +=  count;
1563
            return 1;
1530
            return 1;
1564
        } else if (page + count * PAGE_SIZE == right_pg) {
1531
        } else if (page + count * PAGE_SIZE == right_pg) {
1565
            /*
1532
            /*
1566
             * The interval can be addded by simply moving base of
1533
             * The interval can be addded by simply moving base of
1567
             * the right interval down and increasing its size
1534
             * the right interval down and increasing its size
1568
             * accordingly.
1535
             * accordingly.
1569
             */
1536
             */
1570
            node->value[0] += count;
1537
            node->value[0] += count;
1571
            node->key[0] = page;
1538
            node->key[0] = page;
1572
            return 1;
1539
            return 1;
1573
        } else {
1540
        } else {
1574
            /*
1541
            /*
1575
             * The interval is between both neigbouring intervals,
1542
             * The interval is between both neigbouring intervals,
1576
             * but cannot be merged with any of them.
1543
             * but cannot be merged with any of them.
1577
             */
1544
             */
1578
            btree_insert(&a->used_space, page, (void *) count,
1545
            btree_insert(&a->used_space, page, (void *) count,
1579
                leaf);
1546
                leaf);
1580
            return 1;
1547
            return 1;
1581
        }
1548
        }
1582
    } else if (page >= leaf->key[leaf->keys - 1]) {
1549
    } else if (page >= leaf->key[leaf->keys - 1]) {
1583
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1550
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1584
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1551
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1585
   
1552
   
1586
        /*
1553
        /*
1587
         * Investigate the border case in which the right neighbour
1554
         * Investigate the border case in which the right neighbour
1588
         * does not exist but the interval fits from the right.
1555
         * does not exist but the interval fits from the right.
1589
         */
1556
         */
1590
         
1557
         
1591
        if (overlaps(page, count * PAGE_SIZE, left_pg,
1558
        if (overlaps(page, count * PAGE_SIZE, left_pg,
1592
            left_cnt * PAGE_SIZE)) {
1559
            left_cnt * PAGE_SIZE)) {
1593
            /* The interval intersects with the left interval. */
1560
            /* The interval intersects with the left interval. */
1594
            return 0;
1561
            return 0;
1595
        } else if (left_pg + left_cnt * PAGE_SIZE == page) {
1562
        } else if (left_pg + left_cnt * PAGE_SIZE == page) {
1596
            /*
1563
            /*
1597
             * The interval can be added by growing the left
1564
             * The interval can be added by growing the left
1598
             * interval.
1565
             * interval.
1599
             */
1566
             */
1600
            leaf->value[leaf->keys - 1] += count;
1567
            leaf->value[leaf->keys - 1] += count;
1601
            return 1;
1568
            return 1;
1602
        } else {
1569
        } else {
1603
            /*
1570
            /*
1604
             * The interval doesn't adjoin with the left interval.
1571
             * The interval doesn't adjoin with the left interval.
1605
             * It must be added individually.
1572
             * It must be added individually.
1606
             */
1573
             */
1607
            btree_insert(&a->used_space, page, (void *) count,
1574
            btree_insert(&a->used_space, page, (void *) count,
1608
                leaf);
1575
                leaf);
1609
            return 1;
1576
            return 1;
1610
        }
1577
        }
1611
    }
1578
    }
1612
   
1579
   
1613
    /*
1580
    /*
1614
     * Note that if the algorithm made it thus far, the interval can fit
1581
     * Note that if the algorithm made it thus far, the interval can fit
1615
     * only between two other intervals of the leaf. The two border cases
1582
     * only between two other intervals of the leaf. The two border cases
1616
     * were already resolved.
1583
     * were already resolved.
1617
     */
1584
     */
1618
    for (i = 1; i < leaf->keys; i++) {
1585
    for (i = 1; i < leaf->keys; i++) {
1619
        if (page < leaf->key[i]) {
1586
        if (page < leaf->key[i]) {
1620
            uintptr_t left_pg = leaf->key[i - 1];
1587
            uintptr_t left_pg = leaf->key[i - 1];
1621
            uintptr_t right_pg = leaf->key[i];
1588
            uintptr_t right_pg = leaf->key[i];
1622
            count_t left_cnt = (count_t) leaf->value[i - 1];
1589
            count_t left_cnt = (count_t) leaf->value[i - 1];
1623
            count_t right_cnt = (count_t) leaf->value[i];
1590
            count_t right_cnt = (count_t) leaf->value[i];
1624
 
1591
 
1625
            /*
1592
            /*
1626
             * The interval fits between left_pg and right_pg.
1593
             * The interval fits between left_pg and right_pg.
1627
             */
1594
             */
1628
 
1595
 
1629
            if (overlaps(page, count * PAGE_SIZE, left_pg,
1596
            if (overlaps(page, count * PAGE_SIZE, left_pg,
1630
                left_cnt * PAGE_SIZE)) {
1597
                left_cnt * PAGE_SIZE)) {
1631
                /*
1598
                /*
1632
                 * The interval intersects with the left
1599
                 * The interval intersects with the left
1633
                 * interval.
1600
                 * interval.
1634
                 */
1601
                 */
1635
                return 0;
1602
                return 0;
1636
            } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1603
            } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1637
                right_cnt * PAGE_SIZE)) {
1604
                right_cnt * PAGE_SIZE)) {
1638
                /*
1605
                /*
1639
                 * The interval intersects with the right
1606
                 * The interval intersects with the right
1640
                 * interval.
1607
                 * interval.
1641
                 */
1608
                 */
1642
                return 0;          
1609
                return 0;          
1643
            } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1610
            } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1644
                (page + count * PAGE_SIZE == right_pg)) {
1611
                (page + count * PAGE_SIZE == right_pg)) {
1645
                /*
1612
                /*
1646
                 * The interval can be added by merging the two
1613
                 * The interval can be added by merging the two
1647
                 * already present intervals.
1614
                 * already present intervals.
1648
                 */
1615
                 */
1649
                leaf->value[i - 1] += count + right_cnt;
1616
                leaf->value[i - 1] += count + right_cnt;
1650
                btree_remove(&a->used_space, right_pg, leaf);
1617
                btree_remove(&a->used_space, right_pg, leaf);
1651
                return 1;
1618
                return 1;
1652
            } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1619
            } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1653
                /*
1620
                /*
1654
                 * The interval can be added by simply growing
1621
                 * The interval can be added by simply growing
1655
                 * the left interval.
1622
                 * the left interval.
1656
                 */
1623
                 */
1657
                leaf->value[i - 1] += count;
1624
                leaf->value[i - 1] += count;
1658
                return 1;
1625
                return 1;
1659
            } else if (page + count * PAGE_SIZE == right_pg) {
1626
            } else if (page + count * PAGE_SIZE == right_pg) {
1660
                /*
1627
                /*
1661
                     * The interval can be addded by simply moving
1628
                     * The interval can be addded by simply moving
1662
                 * base of the right interval down and
1629
                 * base of the right interval down and
1663
                 * increasing its size accordingly.
1630
                 * increasing its size accordingly.
1664
                 */
1631
                 */
1665
                leaf->value[i] += count;
1632
                leaf->value[i] += count;
1666
                leaf->key[i] = page;
1633
                leaf->key[i] = page;
1667
                return 1;
1634
                return 1;
1668
            } else {
1635
            } else {
1669
                /*
1636
                /*
1670
                 * The interval is between both neigbouring
1637
                 * The interval is between both neigbouring
1671
                 * intervals, but cannot be merged with any of
1638
                 * intervals, but cannot be merged with any of
1672
                 * them.
1639
                 * them.
1673
                 */
1640
                 */
1674
                btree_insert(&a->used_space, page,
1641
                btree_insert(&a->used_space, page,
1675
                    (void *) count, leaf);
1642
                    (void *) count, leaf);
1676
                return 1;
1643
                return 1;
1677
            }
1644
            }
1678
        }
1645
        }
1679
    }
1646
    }
1680
 
1647
 
1681
    panic("Inconsistency detected while adding %" PRIc " pages of used space at "
1648
    panic("Inconsistency detected while adding %" PRIc " pages of used space at "
1682
        "%p.\n", count, page);
1649
        "%p.\n", count, page);
1683
}
1650
}
1684
 
1651
 
1685
/** Mark portion of address space area as unused.
1652
/** Mark portion of address space area as unused.
1686
 *
1653
 *
1687
 * The address space area must be already locked.
1654
 * The address space area must be already locked.
1688
 *
1655
 *
1689
 * @param a Address space area.
1656
 * @param a Address space area.
1690
 * @param page First page to be marked.
1657
 * @param page First page to be marked.
1691
 * @param count Number of page to be marked.
1658
 * @param count Number of page to be marked.
1692
 *
1659
 *
1693
 * @return 0 on failure and 1 on success.
1660
 * @return 0 on failure and 1 on success.
1694
 */
1661
 */
1695
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1662
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1696
{
1663
{
1697
    btree_node_t *leaf, *node;
1664
    btree_node_t *leaf, *node;
1698
    count_t pages;
1665
    count_t pages;
1699
    unsigned int i;
1666
    unsigned int i;
1700
 
1667
 
1701
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1668
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1702
    ASSERT(count);
1669
    ASSERT(count);
1703
 
1670
 
1704
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1671
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1705
    if (pages) {
1672
    if (pages) {
1706
        /*
1673
        /*
1707
         * We are lucky, page is the beginning of some interval.
1674
         * We are lucky, page is the beginning of some interval.
1708
         */
1675
         */
1709
        if (count > pages) {
1676
        if (count > pages) {
1710
            return 0;
1677
            return 0;
1711
        } else if (count == pages) {
1678
        } else if (count == pages) {
1712
            btree_remove(&a->used_space, page, leaf);
1679
            btree_remove(&a->used_space, page, leaf);
1713
            return 1;
1680
            return 1;
1714
        } else {
1681
        } else {
1715
            /*
1682
            /*
1716
             * Find the respective interval.
1683
             * Find the respective interval.
1717
             * Decrease its size and relocate its start address.
1684
             * Decrease its size and relocate its start address.
1718
             */
1685
             */
1719
            for (i = 0; i < leaf->keys; i++) {
1686
            for (i = 0; i < leaf->keys; i++) {
1720
                if (leaf->key[i] == page) {
1687
                if (leaf->key[i] == page) {
1721
                    leaf->key[i] += count * PAGE_SIZE;
1688
                    leaf->key[i] += count * PAGE_SIZE;
1722
                    leaf->value[i] -= count;
1689
                    leaf->value[i] -= count;
1723
                    return 1;
1690
                    return 1;
1724
                }
1691
                }
1725
            }
1692
            }
1726
            goto error;
1693
            goto error;
1727
        }
1694
        }
1728
    }
1695
    }
1729
 
1696
 
1730
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1697
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1731
    if (node && page < leaf->key[0]) {
1698
    if (node && page < leaf->key[0]) {
1732
        uintptr_t left_pg = node->key[node->keys - 1];
1699
        uintptr_t left_pg = node->key[node->keys - 1];
1733
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1700
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1734
 
1701
 
1735
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1702
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1736
            count * PAGE_SIZE)) {
1703
            count * PAGE_SIZE)) {
1737
            if (page + count * PAGE_SIZE ==
1704
            if (page + count * PAGE_SIZE ==
1738
                left_pg + left_cnt * PAGE_SIZE) {
1705
                left_pg + left_cnt * PAGE_SIZE) {
1739
                /*
1706
                /*
1740
                 * The interval is contained in the rightmost
1707
                 * The interval is contained in the rightmost
1741
                 * interval of the left neighbour and can be
1708
                 * interval of the left neighbour and can be
1742
                 * removed by updating the size of the bigger
1709
                 * removed by updating the size of the bigger
1743
                 * interval.
1710
                 * interval.
1744
                 */
1711
                 */
1745
                node->value[node->keys - 1] -= count;
1712
                node->value[node->keys - 1] -= count;
1746
                return 1;
1713
                return 1;
1747
            } else if (page + count * PAGE_SIZE <
1714
            } else if (page + count * PAGE_SIZE <
1748
                left_pg + left_cnt*PAGE_SIZE) {
1715
                left_pg + left_cnt*PAGE_SIZE) {
1749
                count_t new_cnt;
1716
                count_t new_cnt;
1750
               
1717
               
1751
                /*
1718
                /*
1752
                 * The interval is contained in the rightmost
1719
                 * The interval is contained in the rightmost
1753
                 * interval of the left neighbour but its
1720
                 * interval of the left neighbour but its
1754
                 * removal requires both updating the size of
1721
                 * removal requires both updating the size of
1755
                 * the original interval and also inserting a
1722
                 * the original interval and also inserting a
1756
                 * new interval.
1723
                 * new interval.
1757
                 */
1724
                 */
1758
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1725
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1759
                    (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1726
                    (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1760
                node->value[node->keys - 1] -= count + new_cnt;
1727
                node->value[node->keys - 1] -= count + new_cnt;
1761
                btree_insert(&a->used_space, page +
1728
                btree_insert(&a->used_space, page +
1762
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1729
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1763
                return 1;
1730
                return 1;
1764
            }
1731
            }
1765
        }
1732
        }
1766
        return 0;
1733
        return 0;
1767
    } else if (page < leaf->key[0]) {
1734
    } else if (page < leaf->key[0]) {
1768
        return 0;
1735
        return 0;
1769
    }
1736
    }
1770
   
1737
   
1771
    if (page > leaf->key[leaf->keys - 1]) {
1738
    if (page > leaf->key[leaf->keys - 1]) {
1772
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1739
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1773
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1740
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1774
 
1741
 
1775
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1742
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1776
            count * PAGE_SIZE)) {
1743
            count * PAGE_SIZE)) {
1777
            if (page + count * PAGE_SIZE ==
1744
            if (page + count * PAGE_SIZE ==
1778
                left_pg + left_cnt * PAGE_SIZE) {
1745
                left_pg + left_cnt * PAGE_SIZE) {
1779
                /*
1746
                /*
1780
                 * The interval is contained in the rightmost
1747
                 * The interval is contained in the rightmost
1781
                 * interval of the leaf and can be removed by
1748
                 * interval of the leaf and can be removed by
1782
                 * updating the size of the bigger interval.
1749
                 * updating the size of the bigger interval.
1783
                 */
1750
                 */
1784
                leaf->value[leaf->keys - 1] -= count;
1751
                leaf->value[leaf->keys - 1] -= count;
1785
                return 1;
1752
                return 1;
1786
            } else if (page + count * PAGE_SIZE < left_pg +
1753
            } else if (page + count * PAGE_SIZE < left_pg +
1787
                left_cnt * PAGE_SIZE) {
1754
                left_cnt * PAGE_SIZE) {
1788
                count_t new_cnt;
1755
                count_t new_cnt;
1789
               
1756
               
1790
                /*
1757
                /*
1791
                 * The interval is contained in the rightmost
1758
                 * The interval is contained in the rightmost
1792
                 * interval of the leaf but its removal
1759
                 * interval of the leaf but its removal
1793
                 * requires both updating the size of the
1760
                 * requires both updating the size of the
1794
                 * original interval and also inserting a new
1761
                 * original interval and also inserting a new
1795
                 * interval.
1762
                 * interval.
1796
                 */
1763
                 */
1797
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1764
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1798
                    (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1765
                    (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1799
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1766
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1800
                btree_insert(&a->used_space, page +
1767
                btree_insert(&a->used_space, page +
1801
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1768
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1802
                return 1;
1769
                return 1;
1803
            }
1770
            }
1804
        }
1771
        }
1805
        return 0;
1772
        return 0;
1806
    }  
1773
    }  
1807
   
1774
   
1808
    /*
1775
    /*
1809
     * The border cases have been already resolved.
1776
     * The border cases have been already resolved.
1810
     * Now the interval can be only between intervals of the leaf.
1777
     * Now the interval can be only between intervals of the leaf.
1811
     */
1778
     */
1812
    for (i = 1; i < leaf->keys - 1; i++) {
1779
    for (i = 1; i < leaf->keys - 1; i++) {
1813
        if (page < leaf->key[i]) {
1780
        if (page < leaf->key[i]) {
1814
            uintptr_t left_pg = leaf->key[i - 1];
1781
            uintptr_t left_pg = leaf->key[i - 1];
1815
            count_t left_cnt = (count_t) leaf->value[i - 1];
1782
            count_t left_cnt = (count_t) leaf->value[i - 1];
1816
 
1783
 
1817
            /*
1784
            /*
1818
             * Now the interval is between intervals corresponding
1785
             * Now the interval is between intervals corresponding
1819
             * to (i - 1) and i.
1786
             * to (i - 1) and i.
1820
             */
1787
             */
1821
            if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1788
            if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1822
                count * PAGE_SIZE)) {
1789
                count * PAGE_SIZE)) {
1823
                if (page + count * PAGE_SIZE ==
1790
                if (page + count * PAGE_SIZE ==
1824
                    left_pg + left_cnt*PAGE_SIZE) {
1791
                    left_pg + left_cnt*PAGE_SIZE) {
1825
                    /*
1792
                    /*
1826
                     * The interval is contained in the
1793
                     * The interval is contained in the
1827
                     * interval (i - 1) of the leaf and can
1794
                     * interval (i - 1) of the leaf and can
1828
                     * be removed by updating the size of
1795
                     * be removed by updating the size of
1829
                     * the bigger interval.
1796
                     * the bigger interval.
1830
                     */
1797
                     */
1831
                    leaf->value[i - 1] -= count;
1798
                    leaf->value[i - 1] -= count;
1832
                    return 1;
1799
                    return 1;
1833
                } else if (page + count * PAGE_SIZE <
1800
                } else if (page + count * PAGE_SIZE <
1834
                    left_pg + left_cnt * PAGE_SIZE) {
1801
                    left_pg + left_cnt * PAGE_SIZE) {
1835
                    count_t new_cnt;
1802
                    count_t new_cnt;
1836
               
1803
               
1837
                    /*
1804
                    /*
1838
                     * The interval is contained in the
1805
                     * The interval is contained in the
1839
                     * interval (i - 1) of the leaf but its
1806
                     * interval (i - 1) of the leaf but its
1840
                     * removal requires both updating the
1807
                     * removal requires both updating the
1841
                     * size of the original interval and
1808
                     * size of the original interval and
1842
                     * also inserting a new interval.
1809
                     * also inserting a new interval.
1843
                     */
1810
                     */
1844
                    new_cnt = ((left_pg +
1811
                    new_cnt = ((left_pg +
1845
                        left_cnt * PAGE_SIZE) -
1812
                        left_cnt * PAGE_SIZE) -
1846
                        (page + count * PAGE_SIZE)) >>
1813
                        (page + count * PAGE_SIZE)) >>
1847
                        PAGE_WIDTH;
1814
                        PAGE_WIDTH;
1848
                    leaf->value[i - 1] -= count + new_cnt;
1815
                    leaf->value[i - 1] -= count + new_cnt;
1849
                    btree_insert(&a->used_space, page +
1816
                    btree_insert(&a->used_space, page +
1850
                        count * PAGE_SIZE, (void *) new_cnt,
1817
                        count * PAGE_SIZE, (void *) new_cnt,
1851
                        leaf);
1818
                        leaf);
1852
                    return 1;
1819
                    return 1;
1853
                }
1820
                }
1854
            }
1821
            }
1855
            return 0;
1822
            return 0;
1856
        }
1823
        }
1857
    }
1824
    }
1858
 
1825
 
1859
error:
1826
error:
1860
    panic("Inconsistency detected while removing %" PRIc " pages of used space "
1827
    panic("Inconsistency detected while removing %" PRIc " pages of used space "
1861
        "from %p.\n", count, page);
1828
        "from %p.\n", count, page);
1862
}
1829
}
1863
 
1830
 
1864
/** Remove reference to address space area share info.
1831
/** Remove reference to address space area share info.
1865
 *
1832
 *
1866
 * If the reference count drops to 0, the sh_info is deallocated.
1833
 * If the reference count drops to 0, the sh_info is deallocated.
1867
 *
1834
 *
1868
 * @param sh_info Pointer to address space area share info.
1835
 * @param sh_info Pointer to address space area share info.
1869
 */
1836
 */
1870
void sh_info_remove_reference(share_info_t *sh_info)
1837
void sh_info_remove_reference(share_info_t *sh_info)
1871
{
1838
{
1872
    bool dealloc = false;
1839
    bool dealloc = false;
1873
 
1840
 
1874
    mutex_lock(&sh_info->lock);
1841
    mutex_lock(&sh_info->lock);
1875
    ASSERT(sh_info->refcount);
1842
    ASSERT(sh_info->refcount);
1876
    if (--sh_info->refcount == 0) {
1843
    if (--sh_info->refcount == 0) {
1877
        dealloc = true;
1844
        dealloc = true;
1878
        link_t *cur;
1845
        link_t *cur;
1879
       
1846
       
1880
        /*
1847
        /*
1881
         * Now walk carefully the pagemap B+tree and free/remove
1848
         * Now walk carefully the pagemap B+tree and free/remove
1882
         * reference from all frames found there.
1849
         * reference from all frames found there.
1883
         */
1850
         */
1884
        for (cur = sh_info->pagemap.leaf_head.next;
1851
        for (cur = sh_info->pagemap.leaf_head.next;
1885
            cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1852
            cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1886
            btree_node_t *node;
1853
            btree_node_t *node;
1887
            unsigned int i;
1854
            unsigned int i;
1888
           
1855
           
1889
            node = list_get_instance(cur, btree_node_t, leaf_link);
1856
            node = list_get_instance(cur, btree_node_t, leaf_link);
1890
            for (i = 0; i < node->keys; i++)
1857
            for (i = 0; i < node->keys; i++)
1891
                frame_free((uintptr_t) node->value[i]);
1858
                frame_free((uintptr_t) node->value[i]);
1892
        }
1859
        }
1893
       
1860
       
1894
    }
1861
    }
1895
    mutex_unlock(&sh_info->lock);
1862
    mutex_unlock(&sh_info->lock);
1896
   
1863
   
1897
    if (dealloc) {
1864
    if (dealloc) {
1898
        btree_destroy(&sh_info->pagemap);
1865
        btree_destroy(&sh_info->pagemap);
1899
        free(sh_info);
1866
        free(sh_info);
1900
    }
1867
    }
1901
}
1868
}
1902
 
1869
 
1903
/*
1870
/*
1904
 * Address space related syscalls.
1871
 * Address space related syscalls.
1905
 */
1872
 */
1906
 
1873
 
1907
/** Wrapper for as_area_create(). */
1874
/** Wrapper for as_area_create(). */
1908
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1875
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1909
{
1876
{
1910
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
1877
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
1911
        AS_AREA_ATTR_NONE, &anon_backend, NULL))
1878
        AS_AREA_ATTR_NONE, &anon_backend, NULL))
1912
        return (unative_t) address;
1879
        return (unative_t) address;
1913
    else
1880
    else
1914
        return (unative_t) -1;
1881
        return (unative_t) -1;
1915
}
1882
}
1916
 
1883
 
1917
/** Wrapper for as_area_resize(). */
1884
/** Wrapper for as_area_resize(). */
1918
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1885
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1919
{
1886
{
1920
    return (unative_t) as_area_resize(AS, address, size, 0);
1887
    return (unative_t) as_area_resize(AS, address, size, 0);
1921
}
1888
}
1922
 
1889
 
1923
/** Wrapper for as_area_change_flags(). */
1890
/** Wrapper for as_area_change_flags(). */
1924
unative_t sys_as_area_change_flags(uintptr_t address, int flags)
1891
unative_t sys_as_area_change_flags(uintptr_t address, int flags)
1925
{
1892
{
1926
    return (unative_t) as_area_change_flags(AS, flags, address);
1893
    return (unative_t) as_area_change_flags(AS, flags, address);
1927
}
1894
}
1928
 
1895
 
1929
/** Wrapper for as_area_destroy(). */
1896
/** Wrapper for as_area_destroy(). */
1930
unative_t sys_as_area_destroy(uintptr_t address)
1897
unative_t sys_as_area_destroy(uintptr_t address)
1931
{
1898
{
1932
    return (unative_t) as_area_destroy(AS, address);
1899
    return (unative_t) as_area_destroy(AS, address);
1933
}
1900
}
1934
 
1901
 
1935
/** Print out information about address space.
1902
/** Print out information about address space.
1936
 *
1903
 *
1937
 * @param as Address space.
1904
 * @param as Address space.
1938
 */
1905
 */
1939
void as_print(as_t *as)
1906
void as_print(as_t *as)
1940
{
1907
{
1941
    ipl_t ipl;
1908
    ipl_t ipl;
1942
   
1909
   
1943
    ipl = interrupts_disable();
1910
    ipl = interrupts_disable();
1944
    mutex_lock(&as->lock);
1911
    mutex_lock(&as->lock);
1945
   
1912
   
1946
    /* print out info about address space areas */
1913
    /* print out info about address space areas */
1947
    link_t *cur;
1914
    link_t *cur;
1948
    for (cur = as->as_area_btree.leaf_head.next;
1915
    for (cur = as->as_area_btree.leaf_head.next;
1949
        cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1916
        cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1950
        btree_node_t *node;
1917
        btree_node_t *node;
1951
       
1918
       
1952
        node = list_get_instance(cur, btree_node_t, leaf_link);
1919
        node = list_get_instance(cur, btree_node_t, leaf_link);
1953
       
1920
       
1954
        unsigned int i;
1921
        unsigned int i;
1955
        for (i = 0; i < node->keys; i++) {
1922
        for (i = 0; i < node->keys; i++) {
1956
            as_area_t *area = node->value[i];
1923
            as_area_t *area = node->value[i];
1957
       
1924
       
1958
            mutex_lock(&area->lock);
1925
            mutex_lock(&area->lock);
1959
            printf("as_area: %p, base=%p, pages=%" PRIc " (%p - %p)\n",
1926
            printf("as_area: %p, base=%p, pages=%" PRIc " (%p - %p)\n",
1960
                area, area->base, area->pages, area->base,
1927
                area, area->base, area->pages, area->base,
1961
                area->base + FRAMES2SIZE(area->pages));
1928
                area->base + FRAMES2SIZE(area->pages));
1962
            mutex_unlock(&area->lock);
1929
            mutex_unlock(&area->lock);
1963
        }
1930
        }
1964
    }
1931
    }
1965
   
1932
   
1966
    mutex_unlock(&as->lock);
1933
    mutex_unlock(&as->lock);
1967
    interrupts_restore(ipl);
1934
    interrupts_restore(ipl);
1968
}
1935
}
1969
 
1936
 
1970
/** @}
1937
/** @}
1971
 */
1938
 */
1972
 
1939