Subversion Repositories HelenOS

Rev

Rev 2087 | Rev 2094 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 2087 Rev 2089
1
/*
1
/*
2
 * Copyright (c) 2001-2006 Jakub Jermar
2
 * Copyright (c) 2001-2006 Jakub Jermar
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/** @addtogroup genericmm
29
/** @addtogroup genericmm
30
 * @{
30
 * @{
31
 */
31
 */
32
 
32
 
33
/**
33
/**
34
 * @file
34
 * @file
35
 * @brief   Address space related functions.
35
 * @brief   Address space related functions.
36
 *
36
 *
37
 * This file contains address space manipulation functions.
37
 * This file contains address space manipulation functions.
38
 * Roughly speaking, this is a higher-level client of
38
 * Roughly speaking, this is a higher-level client of
39
 * Virtual Address Translation (VAT) subsystem.
39
 * Virtual Address Translation (VAT) subsystem.
40
 *
40
 *
41
 * Functionality provided by this file allows one to
41
 * Functionality provided by this file allows one to
42
 * create address spaces and create, resize and share
42
 * create address spaces and create, resize and share
43
 * address space areas.
43
 * address space areas.
44
 *
44
 *
45
 * @see page.c
45
 * @see page.c
46
 *
46
 *
47
 */
47
 */
48
 
48
 
49
#include <mm/as.h>
49
#include <mm/as.h>
50
#include <arch/mm/as.h>
50
#include <arch/mm/as.h>
51
#include <mm/page.h>
51
#include <mm/page.h>
52
#include <mm/frame.h>
52
#include <mm/frame.h>
53
#include <mm/slab.h>
53
#include <mm/slab.h>
54
#include <mm/tlb.h>
54
#include <mm/tlb.h>
55
#include <arch/mm/page.h>
55
#include <arch/mm/page.h>
56
#include <genarch/mm/page_pt.h>
56
#include <genarch/mm/page_pt.h>
57
#include <genarch/mm/page_ht.h>
57
#include <genarch/mm/page_ht.h>
58
#include <mm/asid.h>
58
#include <mm/asid.h>
59
#include <arch/mm/asid.h>
59
#include <arch/mm/asid.h>
60
#include <synch/spinlock.h>
60
#include <synch/spinlock.h>
61
#include <synch/mutex.h>
61
#include <synch/mutex.h>
62
#include <adt/list.h>
62
#include <adt/list.h>
63
#include <adt/btree.h>
63
#include <adt/btree.h>
64
#include <proc/task.h>
64
#include <proc/task.h>
65
#include <proc/thread.h>
65
#include <proc/thread.h>
66
#include <arch/asm.h>
66
#include <arch/asm.h>
67
#include <panic.h>
67
#include <panic.h>
68
#include <debug.h>
68
#include <debug.h>
69
#include <print.h>
69
#include <print.h>
70
#include <memstr.h>
70
#include <memstr.h>
71
#include <macros.h>
71
#include <macros.h>
72
#include <arch.h>
72
#include <arch.h>
73
#include <errno.h>
73
#include <errno.h>
74
#include <config.h>
74
#include <config.h>
75
#include <align.h>
75
#include <align.h>
76
#include <arch/types.h>
76
#include <arch/types.h>
77
#include <typedefs.h>
-
 
78
#include <syscall/copy.h>
77
#include <syscall/copy.h>
79
#include <arch/interrupt.h>
78
#include <arch/interrupt.h>
80
 
79
 
81
#ifdef CONFIG_VIRT_IDX_DCACHE
80
#ifdef CONFIG_VIRT_IDX_DCACHE
82
#include <arch/mm/cache.h>
81
#include <arch/mm/cache.h>
83
#endif /* CONFIG_VIRT_IDX_DCACHE */
82
#endif /* CONFIG_VIRT_IDX_DCACHE */
84
 
83
 
85
/**
84
/**
86
 * Each architecture decides what functions will be used to carry out
85
 * Each architecture decides what functions will be used to carry out
87
 * address space operations such as creating or locking page tables.
86
 * address space operations such as creating or locking page tables.
88
 */
87
 */
89
as_operations_t *as_operations = NULL;
88
as_operations_t *as_operations = NULL;
90
 
89
 
91
/**
90
/**
92
 * Slab for as_t objects.
91
 * Slab for as_t objects.
93
 */
92
 */
94
static slab_cache_t *as_slab;
93
static slab_cache_t *as_slab;
95
 
94
 
96
/**
95
/**
97
 * This lock protects inactive_as_with_asid_head list. It must be acquired
96
 * This lock protects inactive_as_with_asid_head list. It must be acquired
98
 * before as_t mutex.
97
 * before as_t mutex.
99
 */
98
 */
100
SPINLOCK_INITIALIZE(inactive_as_with_asid_lock);
99
SPINLOCK_INITIALIZE(inactive_as_with_asid_lock);
101
 
100
 
102
/**
101
/**
103
 * This list contains address spaces that are not active on any
102
 * This list contains address spaces that are not active on any
104
 * processor and that have valid ASID.
103
 * processor and that have valid ASID.
105
 */
104
 */
106
LIST_INITIALIZE(inactive_as_with_asid_head);
105
LIST_INITIALIZE(inactive_as_with_asid_head);
107
 
106
 
108
/** Kernel address space. */
107
/** Kernel address space. */
109
as_t *AS_KERNEL = NULL;
108
as_t *AS_KERNEL = NULL;
110
 
109
 
111
static int area_flags_to_page_flags(int aflags);
110
static int area_flags_to_page_flags(int aflags);
112
static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
111
static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
113
static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
112
static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
114
    as_area_t *avoid_area);
113
    as_area_t *avoid_area);
115
static void sh_info_remove_reference(share_info_t *sh_info);
114
static void sh_info_remove_reference(share_info_t *sh_info);
116
 
115
 
117
static int as_constructor(void *obj, int flags)
116
static int as_constructor(void *obj, int flags)
118
{
117
{
119
    as_t *as = (as_t *) obj;
118
    as_t *as = (as_t *) obj;
120
    int rc;
119
    int rc;
121
 
120
 
122
    link_initialize(&as->inactive_as_with_asid_link);
121
    link_initialize(&as->inactive_as_with_asid_link);
123
    mutex_initialize(&as->lock);   
122
    mutex_initialize(&as->lock);   
124
   
123
   
125
    rc = as_constructor_arch(as, flags);
124
    rc = as_constructor_arch(as, flags);
126
   
125
   
127
    return rc;
126
    return rc;
128
}
127
}
129
 
128
 
130
static int as_destructor(void *obj)
129
static int as_destructor(void *obj)
131
{
130
{
132
    as_t *as = (as_t *) obj;
131
    as_t *as = (as_t *) obj;
133
 
132
 
134
    return as_destructor_arch(as);
133
    return as_destructor_arch(as);
135
}
134
}
136
 
135
 
137
/** Initialize address space subsystem. */
136
/** Initialize address space subsystem. */
138
void as_init(void)
137
void as_init(void)
139
{
138
{
140
    as_arch_init();
139
    as_arch_init();
141
   
140
   
142
    as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
141
    as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
143
        as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
142
        as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
144
   
143
   
145
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
144
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
146
    if (!AS_KERNEL)
145
    if (!AS_KERNEL)
147
        panic("can't create kernel address space\n");
146
        panic("can't create kernel address space\n");
148
   
147
   
149
}
148
}
150
 
149
 
151
/** Create address space.
150
/** Create address space.
152
 *
151
 *
153
 * @param flags Flags that influence way in wich the address space is created.
152
 * @param flags Flags that influence way in wich the address space is created.
154
 */
153
 */
155
as_t *as_create(int flags)
154
as_t *as_create(int flags)
156
{
155
{
157
    as_t *as;
156
    as_t *as;
158
 
157
 
159
    as = (as_t *) slab_alloc(as_slab, 0);
158
    as = (as_t *) slab_alloc(as_slab, 0);
160
    (void) as_create_arch(as, 0);
159
    (void) as_create_arch(as, 0);
161
   
160
   
162
    btree_create(&as->as_area_btree);
161
    btree_create(&as->as_area_btree);
163
   
162
   
164
    if (flags & FLAG_AS_KERNEL)
163
    if (flags & FLAG_AS_KERNEL)
165
        as->asid = ASID_KERNEL;
164
        as->asid = ASID_KERNEL;
166
    else
165
    else
167
        as->asid = ASID_INVALID;
166
        as->asid = ASID_INVALID;
168
   
167
   
169
    as->refcount = 0;
168
    as->refcount = 0;
170
    as->cpu_refcount = 0;
169
    as->cpu_refcount = 0;
-
 
170
#ifdef AS_PAGE_TABLE
171
    as->page_table = page_table_create(flags);
171
    as->page_table = page_table_create(flags);
-
 
172
#else
-
 
173
    page_table_create(flags);
-
 
174
#endif
172
 
175
 
173
    return as;
176
    return as;
174
}
177
}
175
 
178
 
176
/** Destroy adress space.
179
/** Destroy adress space.
177
 *
180
 *
178
 * When there are no tasks referencing this address space (i.e. its refcount is
181
 * When there are no tasks referencing this address space (i.e. its refcount is
179
 * zero), the address space can be destroyed.
182
 * zero), the address space can be destroyed.
180
 */
183
 */
181
void as_destroy(as_t *as)
184
void as_destroy(as_t *as)
182
{
185
{
183
    ipl_t ipl;
186
    ipl_t ipl;
184
    bool cond;
187
    bool cond;
185
 
188
 
186
    ASSERT(as->refcount == 0);
189
    ASSERT(as->refcount == 0);
187
   
190
   
188
    /*
191
    /*
189
     * Since there is no reference to this area,
192
     * Since there is no reference to this area,
190
     * it is safe not to lock its mutex.
193
     * it is safe not to lock its mutex.
191
     */
194
     */
192
    ipl = interrupts_disable();
195
    ipl = interrupts_disable();
193
    spinlock_lock(&inactive_as_with_asid_lock);
196
    spinlock_lock(&inactive_as_with_asid_lock);
194
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
197
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
195
        if (as != AS && as->cpu_refcount == 0)
198
        if (as != AS && as->cpu_refcount == 0)
196
            list_remove(&as->inactive_as_with_asid_link);
199
            list_remove(&as->inactive_as_with_asid_link);
197
        asid_put(as->asid);
200
        asid_put(as->asid);
198
    }
201
    }
199
    spinlock_unlock(&inactive_as_with_asid_lock);
202
    spinlock_unlock(&inactive_as_with_asid_lock);
200
 
203
 
201
    /*
204
    /*
202
     * Destroy address space areas of the address space.
205
     * Destroy address space areas of the address space.
203
     * The B+tree must be walked carefully because it is
206
     * The B+tree must be walked carefully because it is
204
     * also being destroyed.
207
     * also being destroyed.
205
     */
208
     */
206
    for (cond = true; cond; ) {
209
    for (cond = true; cond; ) {
207
        btree_node_t *node;
210
        btree_node_t *node;
208
 
211
 
209
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
212
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
210
        node = list_get_instance(as->as_area_btree.leaf_head.next,
213
        node = list_get_instance(as->as_area_btree.leaf_head.next,
211
            btree_node_t, leaf_link);
214
            btree_node_t, leaf_link);
212
 
215
 
213
        if ((cond = node->keys)) {
216
        if ((cond = node->keys)) {
214
            as_area_destroy(as, node->key[0]);
217
            as_area_destroy(as, node->key[0]);
215
        }
218
        }
216
    }
219
    }
217
 
220
 
218
    btree_destroy(&as->as_area_btree);
221
    btree_destroy(&as->as_area_btree);
-
 
222
#ifdef AS_PAGE_TABLE
219
    page_table_destroy(as->page_table);
223
    page_table_destroy(as->page_table);
-
 
224
#else
-
 
225
    page_table_destroy(NULL);
-
 
226
#endif
220
 
227
 
221
    interrupts_restore(ipl);
228
    interrupts_restore(ipl);
222
   
229
   
223
    slab_free(as_slab, as);
230
    slab_free(as_slab, as);
224
}
231
}
225
 
232
 
226
/** Create address space area of common attributes.
233
/** Create address space area of common attributes.
227
 *
234
 *
228
 * The created address space area is added to the target address space.
235
 * The created address space area is added to the target address space.
229
 *
236
 *
230
 * @param as Target address space.
237
 * @param as Target address space.
231
 * @param flags Flags of the area memory.
238
 * @param flags Flags of the area memory.
232
 * @param size Size of area.
239
 * @param size Size of area.
233
 * @param base Base address of area.
240
 * @param base Base address of area.
234
 * @param attrs Attributes of the area.
241
 * @param attrs Attributes of the area.
235
 * @param backend Address space area backend. NULL if no backend is used.
242
 * @param backend Address space area backend. NULL if no backend is used.
236
 * @param backend_data NULL or a pointer to an array holding two void *.
243
 * @param backend_data NULL or a pointer to an array holding two void *.
237
 *
244
 *
238
 * @return Address space area on success or NULL on failure.
245
 * @return Address space area on success or NULL on failure.
239
 */
246
 */
240
as_area_t *
247
as_area_t *
241
as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
248
as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
242
           mem_backend_t *backend, mem_backend_data_t *backend_data)
249
           mem_backend_t *backend, mem_backend_data_t *backend_data)
243
{
250
{
244
    ipl_t ipl;
251
    ipl_t ipl;
245
    as_area_t *a;
252
    as_area_t *a;
246
   
253
   
247
    if (base % PAGE_SIZE)
254
    if (base % PAGE_SIZE)
248
        return NULL;
255
        return NULL;
249
 
256
 
250
    if (!size)
257
    if (!size)
251
        return NULL;
258
        return NULL;
252
 
259
 
253
    /* Writeable executable areas are not supported. */
260
    /* Writeable executable areas are not supported. */
254
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
261
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
255
        return NULL;
262
        return NULL;
256
   
263
   
257
    ipl = interrupts_disable();
264
    ipl = interrupts_disable();
258
    mutex_lock(&as->lock);
265
    mutex_lock(&as->lock);
259
   
266
   
260
    if (!check_area_conflicts(as, base, size, NULL)) {
267
    if (!check_area_conflicts(as, base, size, NULL)) {
261
        mutex_unlock(&as->lock);
268
        mutex_unlock(&as->lock);
262
        interrupts_restore(ipl);
269
        interrupts_restore(ipl);
263
        return NULL;
270
        return NULL;
264
    }
271
    }
265
   
272
   
266
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
273
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
267
 
274
 
268
    mutex_initialize(&a->lock);
275
    mutex_initialize(&a->lock);
269
   
276
   
270
    a->as = as;
277
    a->as = as;
271
    a->flags = flags;
278
    a->flags = flags;
272
    a->attributes = attrs;
279
    a->attributes = attrs;
273
    a->pages = SIZE2FRAMES(size);
280
    a->pages = SIZE2FRAMES(size);
274
    a->base = base;
281
    a->base = base;
275
    a->sh_info = NULL;
282
    a->sh_info = NULL;
276
    a->backend = backend;
283
    a->backend = backend;
277
    if (backend_data)
284
    if (backend_data)
278
        a->backend_data = *backend_data;
285
        a->backend_data = *backend_data;
279
    else
286
    else
280
        memsetb((uintptr_t) &a->backend_data, sizeof(a->backend_data),
287
        memsetb((uintptr_t) &a->backend_data, sizeof(a->backend_data),
281
            0);
288
            0);
282
 
289
 
283
    btree_create(&a->used_space);
290
    btree_create(&a->used_space);
284
   
291
   
285
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
292
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
286
 
293
 
287
    mutex_unlock(&as->lock);
294
    mutex_unlock(&as->lock);
288
    interrupts_restore(ipl);
295
    interrupts_restore(ipl);
289
 
296
 
290
    return a;
297
    return a;
291
}
298
}
292
 
299
 
293
/** Find address space area and change it.
300
/** Find address space area and change it.
294
 *
301
 *
295
 * @param as Address space.
302
 * @param as Address space.
296
 * @param address Virtual address belonging to the area to be changed. Must be
303
 * @param address Virtual address belonging to the area to be changed. Must be
297
 *     page-aligned.
304
 *     page-aligned.
298
 * @param size New size of the virtual memory block starting at address.
305
 * @param size New size of the virtual memory block starting at address.
299
 * @param flags Flags influencing the remap operation. Currently unused.
306
 * @param flags Flags influencing the remap operation. Currently unused.
300
 *
307
 *
301
 * @return Zero on success or a value from @ref errno.h otherwise.
308
 * @return Zero on success or a value from @ref errno.h otherwise.
302
 */
309
 */
303
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
310
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
304
{
311
{
305
    as_area_t *area;
312
    as_area_t *area;
306
    ipl_t ipl;
313
    ipl_t ipl;
307
    size_t pages;
314
    size_t pages;
308
   
315
   
309
    ipl = interrupts_disable();
316
    ipl = interrupts_disable();
310
    mutex_lock(&as->lock);
317
    mutex_lock(&as->lock);
311
   
318
   
312
    /*
319
    /*
313
     * Locate the area.
320
     * Locate the area.
314
     */
321
     */
315
    area = find_area_and_lock(as, address);
322
    area = find_area_and_lock(as, address);
316
    if (!area) {
323
    if (!area) {
317
        mutex_unlock(&as->lock);
324
        mutex_unlock(&as->lock);
318
        interrupts_restore(ipl);
325
        interrupts_restore(ipl);
319
        return ENOENT;
326
        return ENOENT;
320
    }
327
    }
321
 
328
 
322
    if (area->backend == &phys_backend) {
329
    if (area->backend == &phys_backend) {
323
        /*
330
        /*
324
         * Remapping of address space areas associated
331
         * Remapping of address space areas associated
325
         * with memory mapped devices is not supported.
332
         * with memory mapped devices is not supported.
326
         */
333
         */
327
        mutex_unlock(&area->lock);
334
        mutex_unlock(&area->lock);
328
        mutex_unlock(&as->lock);
335
        mutex_unlock(&as->lock);
329
        interrupts_restore(ipl);
336
        interrupts_restore(ipl);
330
        return ENOTSUP;
337
        return ENOTSUP;
331
    }
338
    }
332
    if (area->sh_info) {
339
    if (area->sh_info) {
333
        /*
340
        /*
334
         * Remapping of shared address space areas
341
         * Remapping of shared address space areas
335
         * is not supported.
342
         * is not supported.
336
         */
343
         */
337
        mutex_unlock(&area->lock);
344
        mutex_unlock(&area->lock);
338
        mutex_unlock(&as->lock);
345
        mutex_unlock(&as->lock);
339
        interrupts_restore(ipl);
346
        interrupts_restore(ipl);
340
        return ENOTSUP;
347
        return ENOTSUP;
341
    }
348
    }
342
 
349
 
343
    pages = SIZE2FRAMES((address - area->base) + size);
350
    pages = SIZE2FRAMES((address - area->base) + size);
344
    if (!pages) {
351
    if (!pages) {
345
        /*
352
        /*
346
         * Zero size address space areas are not allowed.
353
         * Zero size address space areas are not allowed.
347
         */
354
         */
348
        mutex_unlock(&area->lock);
355
        mutex_unlock(&area->lock);
349
        mutex_unlock(&as->lock);
356
        mutex_unlock(&as->lock);
350
        interrupts_restore(ipl);
357
        interrupts_restore(ipl);
351
        return EPERM;
358
        return EPERM;
352
    }
359
    }
353
   
360
   
354
    if (pages < area->pages) {
361
    if (pages < area->pages) {
355
        bool cond;
362
        bool cond;
356
        uintptr_t start_free = area->base + pages*PAGE_SIZE;
363
        uintptr_t start_free = area->base + pages*PAGE_SIZE;
357
 
364
 
358
        /*
365
        /*
359
         * Shrinking the area.
366
         * Shrinking the area.
360
         * No need to check for overlaps.
367
         * No need to check for overlaps.
361
         */
368
         */
362
 
369
 
363
        /*
370
        /*
364
         * Start TLB shootdown sequence.
371
         * Start TLB shootdown sequence.
365
         */
372
         */
366
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base +
373
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base +
367
            pages * PAGE_SIZE, area->pages - pages);
374
            pages * PAGE_SIZE, area->pages - pages);
368
 
375
 
369
        /*
376
        /*
370
         * Remove frames belonging to used space starting from
377
         * Remove frames belonging to used space starting from
371
         * the highest addresses downwards until an overlap with
378
         * the highest addresses downwards until an overlap with
372
         * the resized address space area is found. Note that this
379
         * the resized address space area is found. Note that this
373
         * is also the right way to remove part of the used_space
380
         * is also the right way to remove part of the used_space
374
         * B+tree leaf list.
381
         * B+tree leaf list.
375
         */    
382
         */    
376
        for (cond = true; cond;) {
383
        for (cond = true; cond;) {
377
            btree_node_t *node;
384
            btree_node_t *node;
378
       
385
       
379
            ASSERT(!list_empty(&area->used_space.leaf_head));
386
            ASSERT(!list_empty(&area->used_space.leaf_head));
380
            node =
387
            node =
381
                list_get_instance(area->used_space.leaf_head.prev,
388
                list_get_instance(area->used_space.leaf_head.prev,
382
                btree_node_t, leaf_link);
389
                btree_node_t, leaf_link);
383
            if ((cond = (bool) node->keys)) {
390
            if ((cond = (bool) node->keys)) {
384
                uintptr_t b = node->key[node->keys - 1];
391
                uintptr_t b = node->key[node->keys - 1];
385
                count_t c =
392
                count_t c =
386
                    (count_t) node->value[node->keys - 1];
393
                    (count_t) node->value[node->keys - 1];
387
                int i = 0;
394
                int i = 0;
388
           
395
           
389
                if (overlaps(b, c * PAGE_SIZE, area->base,
396
                if (overlaps(b, c * PAGE_SIZE, area->base,
390
                    pages*PAGE_SIZE)) {
397
                    pages*PAGE_SIZE)) {
391
                   
398
                   
392
                    if (b + c * PAGE_SIZE <= start_free) {
399
                    if (b + c * PAGE_SIZE <= start_free) {
393
                        /*
400
                        /*
394
                         * The whole interval fits
401
                         * The whole interval fits
395
                         * completely in the resized
402
                         * completely in the resized
396
                         * address space area.
403
                         * address space area.
397
                         */
404
                         */
398
                        break;
405
                        break;
399
                    }
406
                    }
400
       
407
       
401
                    /*
408
                    /*
402
                     * Part of the interval corresponding
409
                     * Part of the interval corresponding
403
                     * to b and c overlaps with the resized
410
                     * to b and c overlaps with the resized
404
                     * address space area.
411
                     * address space area.
405
                     */
412
                     */
406
       
413
       
407
                    cond = false;   /* we are almost done */
414
                    cond = false;   /* we are almost done */
408
                    i = (start_free - b) >> PAGE_WIDTH;
415
                    i = (start_free - b) >> PAGE_WIDTH;
409
                    if (!used_space_remove(area, start_free,
416
                    if (!used_space_remove(area, start_free,
410
                        c - i))
417
                        c - i))
411
                        panic("Could not remove used "
418
                        panic("Could not remove used "
412
                            "space.\n");
419
                            "space.\n");
413
                } else {
420
                } else {
414
                    /*
421
                    /*
415
                     * The interval of used space can be
422
                     * The interval of used space can be
416
                     * completely removed.
423
                     * completely removed.
417
                     */
424
                     */
418
                    if (!used_space_remove(area, b, c))
425
                    if (!used_space_remove(area, b, c))
419
                        panic("Could not remove used "
426
                        panic("Could not remove used "
420
                            "space.\n");
427
                            "space.\n");
421
                }
428
                }
422
           
429
           
423
                for (; i < c; i++) {
430
                for (; i < c; i++) {
424
                    pte_t *pte;
431
                    pte_t *pte;
425
           
432
           
426
                    page_table_lock(as, false);
433
                    page_table_lock(as, false);
427
                    pte = page_mapping_find(as, b +
434
                    pte = page_mapping_find(as, b +
428
                        i * PAGE_SIZE);
435
                        i * PAGE_SIZE);
429
                    ASSERT(pte && PTE_VALID(pte) &&
436
                    ASSERT(pte && PTE_VALID(pte) &&
430
                        PTE_PRESENT(pte));
437
                        PTE_PRESENT(pte));
431
                    if (area->backend &&
438
                    if (area->backend &&
432
                        area->backend->frame_free) {
439
                        area->backend->frame_free) {
433
                        area->backend->frame_free(area,
440
                        area->backend->frame_free(area,
434
                            b + i * PAGE_SIZE,
441
                            b + i * PAGE_SIZE,
435
                            PTE_GET_FRAME(pte));
442
                            PTE_GET_FRAME(pte));
436
                    }
443
                    }
437
                    page_mapping_remove(as, b +
444
                    page_mapping_remove(as, b +
438
                        i * PAGE_SIZE);
445
                        i * PAGE_SIZE);
439
                    page_table_unlock(as, false);
446
                    page_table_unlock(as, false);
440
                }
447
                }
441
            }
448
            }
442
        }
449
        }
443
 
450
 
444
        /*
451
        /*
445
         * Finish TLB shootdown sequence.
452
         * Finish TLB shootdown sequence.
446
         */
453
         */
447
        tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
454
        tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
448
            area->pages - pages);
455
            area->pages - pages);
449
        tlb_shootdown_finalize();
456
        tlb_shootdown_finalize();
450
       
457
       
451
        /*
458
        /*
452
         * Invalidate software translation caches (e.g. TSB on sparc64).
459
         * Invalidate software translation caches (e.g. TSB on sparc64).
453
         */
460
         */
454
        as_invalidate_translation_cache(as, area->base +
461
        as_invalidate_translation_cache(as, area->base +
455
            pages * PAGE_SIZE, area->pages - pages);
462
            pages * PAGE_SIZE, area->pages - pages);
456
    } else {
463
    } else {
457
        /*
464
        /*
458
         * Growing the area.
465
         * Growing the area.
459
         * Check for overlaps with other address space areas.
466
         * Check for overlaps with other address space areas.
460
         */
467
         */
461
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
468
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
462
            area)) {
469
            area)) {
463
            mutex_unlock(&area->lock);
470
            mutex_unlock(&area->lock);
464
            mutex_unlock(&as->lock);       
471
            mutex_unlock(&as->lock);       
465
            interrupts_restore(ipl);
472
            interrupts_restore(ipl);
466
            return EADDRNOTAVAIL;
473
            return EADDRNOTAVAIL;
467
        }
474
        }
468
    }
475
    }
469
 
476
 
470
    area->pages = pages;
477
    area->pages = pages;
471
   
478
   
472
    mutex_unlock(&area->lock);
479
    mutex_unlock(&area->lock);
473
    mutex_unlock(&as->lock);
480
    mutex_unlock(&as->lock);
474
    interrupts_restore(ipl);
481
    interrupts_restore(ipl);
475
 
482
 
476
    return 0;
483
    return 0;
477
}
484
}
478
 
485
 
479
/** Destroy address space area.
486
/** Destroy address space area.
480
 *
487
 *
481
 * @param as Address space.
488
 * @param as Address space.
482
 * @param address Address withing the area to be deleted.
489
 * @param address Address withing the area to be deleted.
483
 *
490
 *
484
 * @return Zero on success or a value from @ref errno.h on failure.
491
 * @return Zero on success or a value from @ref errno.h on failure.
485
 */
492
 */
486
int as_area_destroy(as_t *as, uintptr_t address)
493
int as_area_destroy(as_t *as, uintptr_t address)
487
{
494
{
488
    as_area_t *area;
495
    as_area_t *area;
489
    uintptr_t base;
496
    uintptr_t base;
490
    link_t *cur;
497
    link_t *cur;
491
    ipl_t ipl;
498
    ipl_t ipl;
492
 
499
 
493
    ipl = interrupts_disable();
500
    ipl = interrupts_disable();
494
    mutex_lock(&as->lock);
501
    mutex_lock(&as->lock);
495
 
502
 
496
    area = find_area_and_lock(as, address);
503
    area = find_area_and_lock(as, address);
497
    if (!area) {
504
    if (!area) {
498
        mutex_unlock(&as->lock);
505
        mutex_unlock(&as->lock);
499
        interrupts_restore(ipl);
506
        interrupts_restore(ipl);
500
        return ENOENT;
507
        return ENOENT;
501
    }
508
    }
502
 
509
 
503
    base = area->base;
510
    base = area->base;
504
 
511
 
505
    /*
512
    /*
506
     * Start TLB shootdown sequence.
513
     * Start TLB shootdown sequence.
507
     */
514
     */
508
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
515
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
509
 
516
 
510
    /*
517
    /*
511
     * Visit only the pages mapped by used_space B+tree.
518
     * Visit only the pages mapped by used_space B+tree.
512
     */
519
     */
513
    for (cur = area->used_space.leaf_head.next;
520
    for (cur = area->used_space.leaf_head.next;
514
        cur != &area->used_space.leaf_head; cur = cur->next) {
521
        cur != &area->used_space.leaf_head; cur = cur->next) {
515
        btree_node_t *node;
522
        btree_node_t *node;
516
        int i;
523
        int i;
517
       
524
       
518
        node = list_get_instance(cur, btree_node_t, leaf_link);
525
        node = list_get_instance(cur, btree_node_t, leaf_link);
519
        for (i = 0; i < node->keys; i++) {
526
        for (i = 0; i < node->keys; i++) {
520
            uintptr_t b = node->key[i];
527
            uintptr_t b = node->key[i];
521
            count_t j;
528
            count_t j;
522
            pte_t *pte;
529
            pte_t *pte;
523
           
530
           
524
            for (j = 0; j < (count_t) node->value[i]; j++) {
531
            for (j = 0; j < (count_t) node->value[i]; j++) {
525
                page_table_lock(as, false);
532
                page_table_lock(as, false);
526
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
533
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
527
                ASSERT(pte && PTE_VALID(pte) &&
534
                ASSERT(pte && PTE_VALID(pte) &&
528
                    PTE_PRESENT(pte));
535
                    PTE_PRESENT(pte));
529
                if (area->backend &&
536
                if (area->backend &&
530
                    area->backend->frame_free) {
537
                    area->backend->frame_free) {
531
                    area->backend->frame_free(area, b +
538
                    area->backend->frame_free(area, b +
532
                    j * PAGE_SIZE, PTE_GET_FRAME(pte));
539
                    j * PAGE_SIZE, PTE_GET_FRAME(pte));
533
                }
540
                }
534
                page_mapping_remove(as, b + j * PAGE_SIZE);            
541
                page_mapping_remove(as, b + j * PAGE_SIZE);            
535
                page_table_unlock(as, false);
542
                page_table_unlock(as, false);
536
            }
543
            }
537
        }
544
        }
538
    }
545
    }
539
 
546
 
540
    /*
547
    /*
541
     * Finish TLB shootdown sequence.
548
     * Finish TLB shootdown sequence.
542
     */
549
     */
543
    tlb_invalidate_pages(as->asid, area->base, area->pages);
550
    tlb_invalidate_pages(as->asid, area->base, area->pages);
544
    tlb_shootdown_finalize();
551
    tlb_shootdown_finalize();
545
   
552
   
546
    /*
553
    /*
547
     * Invalidate potential software translation caches (e.g. TSB on
554
     * Invalidate potential software translation caches (e.g. TSB on
548
     * sparc64).
555
     * sparc64).
549
     */
556
     */
550
    as_invalidate_translation_cache(as, area->base, area->pages);
557
    as_invalidate_translation_cache(as, area->base, area->pages);
551
   
558
   
552
    btree_destroy(&area->used_space);
559
    btree_destroy(&area->used_space);
553
 
560
 
554
    area->attributes |= AS_AREA_ATTR_PARTIAL;
561
    area->attributes |= AS_AREA_ATTR_PARTIAL;
555
   
562
   
556
    if (area->sh_info)
563
    if (area->sh_info)
557
        sh_info_remove_reference(area->sh_info);
564
        sh_info_remove_reference(area->sh_info);
558
       
565
       
559
    mutex_unlock(&area->lock);
566
    mutex_unlock(&area->lock);
560
 
567
 
561
    /*
568
    /*
562
     * Remove the empty area from address space.
569
     * Remove the empty area from address space.
563
     */
570
     */
564
    btree_remove(&as->as_area_btree, base, NULL);
571
    btree_remove(&as->as_area_btree, base, NULL);
565
   
572
   
566
    free(area);
573
    free(area);
567
   
574
   
568
    mutex_unlock(&as->lock);
575
    mutex_unlock(&as->lock);
569
    interrupts_restore(ipl);
576
    interrupts_restore(ipl);
570
    return 0;
577
    return 0;
571
}
578
}
572
 
579
 
573
/** Share address space area with another or the same address space.
580
/** Share address space area with another or the same address space.
574
 *
581
 *
575
 * Address space area mapping is shared with a new address space area.
582
 * Address space area mapping is shared with a new address space area.
576
 * If the source address space area has not been shared so far,
583
 * If the source address space area has not been shared so far,
577
 * a new sh_info is created. The new address space area simply gets the
584
 * a new sh_info is created. The new address space area simply gets the
578
 * sh_info of the source area. The process of duplicating the
585
 * sh_info of the source area. The process of duplicating the
579
 * mapping is done through the backend share function.
586
 * mapping is done through the backend share function.
580
 *
587
 *
581
 * @param src_as Pointer to source address space.
588
 * @param src_as Pointer to source address space.
582
 * @param src_base Base address of the source address space area.
589
 * @param src_base Base address of the source address space area.
583
 * @param acc_size Expected size of the source area.
590
 * @param acc_size Expected size of the source area.
584
 * @param dst_as Pointer to destination address space.
591
 * @param dst_as Pointer to destination address space.
585
 * @param dst_base Target base address.
592
 * @param dst_base Target base address.
586
 * @param dst_flags_mask Destination address space area flags mask.
593
 * @param dst_flags_mask Destination address space area flags mask.
587
 *
594
 *
588
 * @return Zero on success or ENOENT if there is no such task or if there is no
595
 * @return Zero on success or ENOENT if there is no such task or if there is no
589
 * such address space area, EPERM if there was a problem in accepting the area
596
 * such address space area, EPERM if there was a problem in accepting the area
590
 * or ENOMEM if there was a problem in allocating destination address space
597
 * or ENOMEM if there was a problem in allocating destination address space
591
 * area. ENOTSUP is returned if the address space area backend does not support
598
 * area. ENOTSUP is returned if the address space area backend does not support
592
 * sharing or if the kernel detects an attempt to create an illegal address
599
 * sharing or if the kernel detects an attempt to create an illegal address
593
 * alias.
600
 * alias.
594
 */
601
 */
595
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
602
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
596
          as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
603
          as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
597
{
604
{
598
    ipl_t ipl;
605
    ipl_t ipl;
599
    int src_flags;
606
    int src_flags;
600
    size_t src_size;
607
    size_t src_size;
601
    as_area_t *src_area, *dst_area;
608
    as_area_t *src_area, *dst_area;
602
    share_info_t *sh_info;
609
    share_info_t *sh_info;
603
    mem_backend_t *src_backend;
610
    mem_backend_t *src_backend;
604
    mem_backend_data_t src_backend_data;
611
    mem_backend_data_t src_backend_data;
605
   
612
   
606
    ipl = interrupts_disable();
613
    ipl = interrupts_disable();
607
    mutex_lock(&src_as->lock);
614
    mutex_lock(&src_as->lock);
608
    src_area = find_area_and_lock(src_as, src_base);
615
    src_area = find_area_and_lock(src_as, src_base);
609
    if (!src_area) {
616
    if (!src_area) {
610
        /*
617
        /*
611
         * Could not find the source address space area.
618
         * Could not find the source address space area.
612
         */
619
         */
613
        mutex_unlock(&src_as->lock);
620
        mutex_unlock(&src_as->lock);
614
        interrupts_restore(ipl);
621
        interrupts_restore(ipl);
615
        return ENOENT;
622
        return ENOENT;
616
    }
623
    }
617
 
624
 
618
    if (!src_area->backend || !src_area->backend->share) {
625
    if (!src_area->backend || !src_area->backend->share) {
619
        /*
626
        /*
620
         * There is no backend or the backend does not
627
         * There is no backend or the backend does not
621
         * know how to share the area.
628
         * know how to share the area.
622
         */
629
         */
623
        mutex_unlock(&src_area->lock);
630
        mutex_unlock(&src_area->lock);
624
        mutex_unlock(&src_as->lock);
631
        mutex_unlock(&src_as->lock);
625
        interrupts_restore(ipl);
632
        interrupts_restore(ipl);
626
        return ENOTSUP;
633
        return ENOTSUP;
627
    }
634
    }
628
   
635
   
629
    src_size = src_area->pages * PAGE_SIZE;
636
    src_size = src_area->pages * PAGE_SIZE;
630
    src_flags = src_area->flags;
637
    src_flags = src_area->flags;
631
    src_backend = src_area->backend;
638
    src_backend = src_area->backend;
632
    src_backend_data = src_area->backend_data;
639
    src_backend_data = src_area->backend_data;
633
 
640
 
634
    /* Share the cacheable flag from the original mapping */
641
    /* Share the cacheable flag from the original mapping */
635
    if (src_flags & AS_AREA_CACHEABLE)
642
    if (src_flags & AS_AREA_CACHEABLE)
636
        dst_flags_mask |= AS_AREA_CACHEABLE;
643
        dst_flags_mask |= AS_AREA_CACHEABLE;
637
 
644
 
638
    if (src_size != acc_size ||
645
    if (src_size != acc_size ||
639
        (src_flags & dst_flags_mask) != dst_flags_mask) {
646
        (src_flags & dst_flags_mask) != dst_flags_mask) {
640
        mutex_unlock(&src_area->lock);
647
        mutex_unlock(&src_area->lock);
641
        mutex_unlock(&src_as->lock);
648
        mutex_unlock(&src_as->lock);
642
        interrupts_restore(ipl);
649
        interrupts_restore(ipl);
643
        return EPERM;
650
        return EPERM;
644
    }
651
    }
645
 
652
 
646
#ifdef CONFIG_VIRT_IDX_DCACHE
653
#ifdef CONFIG_VIRT_IDX_DCACHE
647
    if (!(dst_flags_mask & AS_AREA_EXEC)) {
654
    if (!(dst_flags_mask & AS_AREA_EXEC)) {
648
        if (PAGE_COLOR(src_area->base) != PAGE_COLOR(dst_base)) {
655
        if (PAGE_COLOR(src_area->base) != PAGE_COLOR(dst_base)) {
649
            /*
656
            /*
650
             * Refuse to create an illegal address alias.
657
             * Refuse to create an illegal address alias.
651
             */
658
             */
652
            mutex_unlock(&src_area->lock);
659
            mutex_unlock(&src_area->lock);
653
            mutex_unlock(&src_as->lock);
660
            mutex_unlock(&src_as->lock);
654
            interrupts_restore(ipl);
661
            interrupts_restore(ipl);
655
            return ENOTSUP;
662
            return ENOTSUP;
656
        }
663
        }
657
    }
664
    }
658
#endif /* CONFIG_VIRT_IDX_DCACHE */
665
#endif /* CONFIG_VIRT_IDX_DCACHE */
659
 
666
 
660
    /*
667
    /*
661
     * Now we are committed to sharing the area.
668
     * Now we are committed to sharing the area.
662
     * First, prepare the area for sharing.
669
     * First, prepare the area for sharing.
663
     * Then it will be safe to unlock it.
670
     * Then it will be safe to unlock it.
664
     */
671
     */
665
    sh_info = src_area->sh_info;
672
    sh_info = src_area->sh_info;
666
    if (!sh_info) {
673
    if (!sh_info) {
667
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
674
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
668
        mutex_initialize(&sh_info->lock);
675
        mutex_initialize(&sh_info->lock);
669
        sh_info->refcount = 2;
676
        sh_info->refcount = 2;
670
        btree_create(&sh_info->pagemap);
677
        btree_create(&sh_info->pagemap);
671
        src_area->sh_info = sh_info;
678
        src_area->sh_info = sh_info;
672
    } else {
679
    } else {
673
        mutex_lock(&sh_info->lock);
680
        mutex_lock(&sh_info->lock);
674
        sh_info->refcount++;
681
        sh_info->refcount++;
675
        mutex_unlock(&sh_info->lock);
682
        mutex_unlock(&sh_info->lock);
676
    }
683
    }
677
 
684
 
678
    src_area->backend->share(src_area);
685
    src_area->backend->share(src_area);
679
 
686
 
680
    mutex_unlock(&src_area->lock);
687
    mutex_unlock(&src_area->lock);
681
    mutex_unlock(&src_as->lock);
688
    mutex_unlock(&src_as->lock);
682
 
689
 
683
    /*
690
    /*
684
     * Create copy of the source address space area.
691
     * Create copy of the source address space area.
685
     * The destination area is created with AS_AREA_ATTR_PARTIAL
692
     * The destination area is created with AS_AREA_ATTR_PARTIAL
686
     * attribute set which prevents race condition with
693
     * attribute set which prevents race condition with
687
     * preliminary as_page_fault() calls.
694
     * preliminary as_page_fault() calls.
688
     * The flags of the source area are masked against dst_flags_mask
695
     * The flags of the source area are masked against dst_flags_mask
689
     * to support sharing in less privileged mode.
696
     * to support sharing in less privileged mode.
690
     */
697
     */
691
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
698
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
692
        AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
699
        AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
693
    if (!dst_area) {
700
    if (!dst_area) {
694
        /*
701
        /*
695
         * Destination address space area could not be created.
702
         * Destination address space area could not be created.
696
         */
703
         */
697
        sh_info_remove_reference(sh_info);
704
        sh_info_remove_reference(sh_info);
698
       
705
       
699
        interrupts_restore(ipl);
706
        interrupts_restore(ipl);
700
        return ENOMEM;
707
        return ENOMEM;
701
    }
708
    }
702
 
709
 
703
    /*
710
    /*
704
     * Now the destination address space area has been
711
     * Now the destination address space area has been
705
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
712
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
706
     * attribute and set the sh_info.
713
     * attribute and set the sh_info.
707
     */
714
     */
708
    mutex_lock(&dst_as->lock); 
715
    mutex_lock(&dst_as->lock); 
709
    mutex_lock(&dst_area->lock);
716
    mutex_lock(&dst_area->lock);
710
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
717
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
711
    dst_area->sh_info = sh_info;
718
    dst_area->sh_info = sh_info;
712
    mutex_unlock(&dst_area->lock);
719
    mutex_unlock(&dst_area->lock);
713
    mutex_unlock(&dst_as->lock);   
720
    mutex_unlock(&dst_as->lock);   
714
 
721
 
715
    interrupts_restore(ipl);
722
    interrupts_restore(ipl);
716
   
723
   
717
    return 0;
724
    return 0;
718
}
725
}
719
 
726
 
720
/** Check access mode for address space area.
727
/** Check access mode for address space area.
721
 *
728
 *
722
 * The address space area must be locked prior to this call.
729
 * The address space area must be locked prior to this call.
723
 *
730
 *
724
 * @param area Address space area.
731
 * @param area Address space area.
725
 * @param access Access mode.
732
 * @param access Access mode.
726
 *
733
 *
727
 * @return False if access violates area's permissions, true otherwise.
734
 * @return False if access violates area's permissions, true otherwise.
728
 */
735
 */
729
bool as_area_check_access(as_area_t *area, pf_access_t access)
736
bool as_area_check_access(as_area_t *area, pf_access_t access)
730
{
737
{
731
    int flagmap[] = {
738
    int flagmap[] = {
732
        [PF_ACCESS_READ] = AS_AREA_READ,
739
        [PF_ACCESS_READ] = AS_AREA_READ,
733
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
740
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
734
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
741
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
735
    };
742
    };
736
 
743
 
737
    if (!(area->flags & flagmap[access]))
744
    if (!(area->flags & flagmap[access]))
738
        return false;
745
        return false;
739
   
746
   
740
    return true;
747
    return true;
741
}
748
}
742
 
749
 
743
/** Handle page fault within the current address space.
750
/** Handle page fault within the current address space.
744
 *
751
 *
745
 * This is the high-level page fault handler. It decides
752
 * This is the high-level page fault handler. It decides
746
 * whether the page fault can be resolved by any backend
753
 * whether the page fault can be resolved by any backend
747
 * and if so, it invokes the backend to resolve the page
754
 * and if so, it invokes the backend to resolve the page
748
 * fault.
755
 * fault.
749
 *
756
 *
750
 * Interrupts are assumed disabled.
757
 * Interrupts are assumed disabled.
751
 *
758
 *
752
 * @param page Faulting page.
759
 * @param page Faulting page.
753
 * @param access Access mode that caused the fault (i.e. read/write/exec).
760
 * @param access Access mode that caused the fault (i.e. read/write/exec).
754
 * @param istate Pointer to interrupted state.
761
 * @param istate Pointer to interrupted state.
755
 *
762
 *
756
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
763
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
757
 *     fault was caused by copy_to_uspace() or copy_from_uspace().
764
 *     fault was caused by copy_to_uspace() or copy_from_uspace().
758
 */
765
 */
759
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
766
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
760
{
767
{
761
    pte_t *pte;
768
    pte_t *pte;
762
    as_area_t *area;
769
    as_area_t *area;
763
   
770
   
764
    if (!THREAD)
771
    if (!THREAD)
765
        return AS_PF_FAULT;
772
        return AS_PF_FAULT;
766
       
773
       
767
    ASSERT(AS);
774
    ASSERT(AS);
768
 
775
 
769
    mutex_lock(&AS->lock);
776
    mutex_lock(&AS->lock);
770
    area = find_area_and_lock(AS, page);   
777
    area = find_area_and_lock(AS, page);   
771
    if (!area) {
778
    if (!area) {
772
        /*
779
        /*
773
         * No area contained mapping for 'page'.
780
         * No area contained mapping for 'page'.
774
         * Signal page fault to low-level handler.
781
         * Signal page fault to low-level handler.
775
         */
782
         */
776
        mutex_unlock(&AS->lock);
783
        mutex_unlock(&AS->lock);
777
        goto page_fault;
784
        goto page_fault;
778
    }
785
    }
779
 
786
 
780
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
787
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
781
        /*
788
        /*
782
         * The address space area is not fully initialized.
789
         * The address space area is not fully initialized.
783
         * Avoid possible race by returning error.
790
         * Avoid possible race by returning error.
784
         */
791
         */
785
        mutex_unlock(&area->lock);
792
        mutex_unlock(&area->lock);
786
        mutex_unlock(&AS->lock);
793
        mutex_unlock(&AS->lock);
787
        goto page_fault;       
794
        goto page_fault;       
788
    }
795
    }
789
 
796
 
790
    if (!area->backend || !area->backend->page_fault) {
797
    if (!area->backend || !area->backend->page_fault) {
791
        /*
798
        /*
792
         * The address space area is not backed by any backend
799
         * The address space area is not backed by any backend
793
         * or the backend cannot handle page faults.
800
         * or the backend cannot handle page faults.
794
         */
801
         */
795
        mutex_unlock(&area->lock);
802
        mutex_unlock(&area->lock);
796
        mutex_unlock(&AS->lock);
803
        mutex_unlock(&AS->lock);
797
        goto page_fault;       
804
        goto page_fault;       
798
    }
805
    }
799
 
806
 
800
    page_table_lock(AS, false);
807
    page_table_lock(AS, false);
801
   
808
   
802
    /*
809
    /*
803
     * To avoid race condition between two page faults
810
     * To avoid race condition between two page faults
804
     * on the same address, we need to make sure
811
     * on the same address, we need to make sure
805
     * the mapping has not been already inserted.
812
     * the mapping has not been already inserted.
806
     */
813
     */
807
    if ((pte = page_mapping_find(AS, page))) {
814
    if ((pte = page_mapping_find(AS, page))) {
808
        if (PTE_PRESENT(pte)) {
815
        if (PTE_PRESENT(pte)) {
809
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
816
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
810
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
817
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
811
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
818
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
812
                page_table_unlock(AS, false);
819
                page_table_unlock(AS, false);
813
                mutex_unlock(&area->lock);
820
                mutex_unlock(&area->lock);
814
                mutex_unlock(&AS->lock);
821
                mutex_unlock(&AS->lock);
815
                return AS_PF_OK;
822
                return AS_PF_OK;
816
            }
823
            }
817
        }
824
        }
818
    }
825
    }
819
   
826
   
820
    /*
827
    /*
821
     * Resort to the backend page fault handler.
828
     * Resort to the backend page fault handler.
822
     */
829
     */
823
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
830
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
824
        page_table_unlock(AS, false);
831
        page_table_unlock(AS, false);
825
        mutex_unlock(&area->lock);
832
        mutex_unlock(&area->lock);
826
        mutex_unlock(&AS->lock);
833
        mutex_unlock(&AS->lock);
827
        goto page_fault;
834
        goto page_fault;
828
    }
835
    }
829
   
836
   
830
    page_table_unlock(AS, false);
837
    page_table_unlock(AS, false);
831
    mutex_unlock(&area->lock);
838
    mutex_unlock(&area->lock);
832
    mutex_unlock(&AS->lock);
839
    mutex_unlock(&AS->lock);
833
    return AS_PF_OK;
840
    return AS_PF_OK;
834
 
841
 
835
page_fault:
842
page_fault:
836
    if (THREAD->in_copy_from_uspace) {
843
    if (THREAD->in_copy_from_uspace) {
837
        THREAD->in_copy_from_uspace = false;
844
        THREAD->in_copy_from_uspace = false;
838
        istate_set_retaddr(istate,
845
        istate_set_retaddr(istate,
839
            (uintptr_t) &memcpy_from_uspace_failover_address);
846
            (uintptr_t) &memcpy_from_uspace_failover_address);
840
    } else if (THREAD->in_copy_to_uspace) {
847
    } else if (THREAD->in_copy_to_uspace) {
841
        THREAD->in_copy_to_uspace = false;
848
        THREAD->in_copy_to_uspace = false;
842
        istate_set_retaddr(istate,
849
        istate_set_retaddr(istate,
843
            (uintptr_t) &memcpy_to_uspace_failover_address);
850
            (uintptr_t) &memcpy_to_uspace_failover_address);
844
    } else {
851
    } else {
845
        return AS_PF_FAULT;
852
        return AS_PF_FAULT;
846
    }
853
    }
847
 
854
 
848
    return AS_PF_DEFER;
855
    return AS_PF_DEFER;
849
}
856
}
850
 
857
 
851
/** Switch address spaces.
858
/** Switch address spaces.
852
 *
859
 *
853
 * Note that this function cannot sleep as it is essentially a part of
860
 * Note that this function cannot sleep as it is essentially a part of
854
 * scheduling. Sleeping here would lead to deadlock on wakeup.
861
 * scheduling. Sleeping here would lead to deadlock on wakeup.
855
 *
862
 *
856
 * @param old Old address space or NULL.
863
 * @param old Old address space or NULL.
857
 * @param new New address space.
864
 * @param new New address space.
858
 */
865
 */
859
void as_switch(as_t *old, as_t *new)
866
void as_switch(as_t *old, as_t *new)
860
{
867
{
861
    ipl_t ipl;
868
    ipl_t ipl;
862
    bool needs_asid = false;
869
    bool needs_asid = false;
863
   
870
   
864
    ipl = interrupts_disable();
871
    ipl = interrupts_disable();
865
    spinlock_lock(&inactive_as_with_asid_lock);
872
    spinlock_lock(&inactive_as_with_asid_lock);
866
 
873
 
867
    /*
874
    /*
868
     * First, take care of the old address space.
875
     * First, take care of the old address space.
869
     */
876
     */
870
    if (old) {
877
    if (old) {
871
        mutex_lock_active(&old->lock);
878
        mutex_lock_active(&old->lock);
872
        ASSERT(old->cpu_refcount);
879
        ASSERT(old->cpu_refcount);
873
        if((--old->cpu_refcount == 0) && (old != AS_KERNEL)) {
880
        if((--old->cpu_refcount == 0) && (old != AS_KERNEL)) {
874
            /*
881
            /*
875
             * The old address space is no longer active on
882
             * The old address space is no longer active on
876
             * any processor. It can be appended to the
883
             * any processor. It can be appended to the
877
             * list of inactive address spaces with assigned
884
             * list of inactive address spaces with assigned
878
             * ASID.
885
             * ASID.
879
             */
886
             */
880
             ASSERT(old->asid != ASID_INVALID);
887
             ASSERT(old->asid != ASID_INVALID);
881
             list_append(&old->inactive_as_with_asid_link,
888
             list_append(&old->inactive_as_with_asid_link,
882
                 &inactive_as_with_asid_head);
889
                 &inactive_as_with_asid_head);
883
        }
890
        }
884
        mutex_unlock(&old->lock);
891
        mutex_unlock(&old->lock);
885
 
892
 
886
        /*
893
        /*
887
         * Perform architecture-specific tasks when the address space
894
         * Perform architecture-specific tasks when the address space
888
         * is being removed from the CPU.
895
         * is being removed from the CPU.
889
         */
896
         */
890
        as_deinstall_arch(old);
897
        as_deinstall_arch(old);
891
    }
898
    }
892
 
899
 
893
    /*
900
    /*
894
     * Second, prepare the new address space.
901
     * Second, prepare the new address space.
895
     */
902
     */
896
    mutex_lock_active(&new->lock);
903
    mutex_lock_active(&new->lock);
897
    if ((new->cpu_refcount++ == 0) && (new != AS_KERNEL)) {
904
    if ((new->cpu_refcount++ == 0) && (new != AS_KERNEL)) {
898
        if (new->asid != ASID_INVALID) {
905
        if (new->asid != ASID_INVALID) {
899
            list_remove(&new->inactive_as_with_asid_link);
906
            list_remove(&new->inactive_as_with_asid_link);
900
        } else {
907
        } else {
901
            /*
908
            /*
902
             * Defer call to asid_get() until new->lock is released.
909
             * Defer call to asid_get() until new->lock is released.
903
             */
910
             */
904
            needs_asid = true;
911
            needs_asid = true;
905
        }
912
        }
906
    }
913
    }
907
    SET_PTL0_ADDRESS(new->page_table);
914
    SET_PTL0_ADDRESS(new->page_table);
908
    mutex_unlock(&new->lock);
915
    mutex_unlock(&new->lock);
909
 
916
 
910
    if (needs_asid) {
917
    if (needs_asid) {
911
        /*
918
        /*
912
         * Allocation of new ASID was deferred
919
         * Allocation of new ASID was deferred
913
         * until now in order to avoid deadlock.
920
         * until now in order to avoid deadlock.
914
         */
921
         */
915
        asid_t asid;
922
        asid_t asid;
916
       
923
       
917
        asid = asid_get();
924
        asid = asid_get();
918
        mutex_lock_active(&new->lock);
925
        mutex_lock_active(&new->lock);
919
        new->asid = asid;
926
        new->asid = asid;
920
        mutex_unlock(&new->lock);
927
        mutex_unlock(&new->lock);
921
    }
928
    }
922
    spinlock_unlock(&inactive_as_with_asid_lock);
929
    spinlock_unlock(&inactive_as_with_asid_lock);
923
    interrupts_restore(ipl);
930
    interrupts_restore(ipl);
924
   
931
   
925
    /*
932
    /*
926
     * Perform architecture-specific steps.
933
     * Perform architecture-specific steps.
927
     * (e.g. write ASID to hardware register etc.)
934
     * (e.g. write ASID to hardware register etc.)
928
     */
935
     */
929
    as_install_arch(new);
936
    as_install_arch(new);
930
   
937
   
931
    AS = new;
938
    AS = new;
932
}
939
}
933
 
940
 
934
/** Convert address space area flags to page flags.
941
/** Convert address space area flags to page flags.
935
 *
942
 *
936
 * @param aflags Flags of some address space area.
943
 * @param aflags Flags of some address space area.
937
 *
944
 *
938
 * @return Flags to be passed to page_mapping_insert().
945
 * @return Flags to be passed to page_mapping_insert().
939
 */
946
 */
940
int area_flags_to_page_flags(int aflags)
947
int area_flags_to_page_flags(int aflags)
941
{
948
{
942
    int flags;
949
    int flags;
943
 
950
 
944
    flags = PAGE_USER | PAGE_PRESENT;
951
    flags = PAGE_USER | PAGE_PRESENT;
945
   
952
   
946
    if (aflags & AS_AREA_READ)
953
    if (aflags & AS_AREA_READ)
947
        flags |= PAGE_READ;
954
        flags |= PAGE_READ;
948
       
955
       
949
    if (aflags & AS_AREA_WRITE)
956
    if (aflags & AS_AREA_WRITE)
950
        flags |= PAGE_WRITE;
957
        flags |= PAGE_WRITE;
951
   
958
   
952
    if (aflags & AS_AREA_EXEC)
959
    if (aflags & AS_AREA_EXEC)
953
        flags |= PAGE_EXEC;
960
        flags |= PAGE_EXEC;
954
   
961
   
955
    if (aflags & AS_AREA_CACHEABLE)
962
    if (aflags & AS_AREA_CACHEABLE)
956
        flags |= PAGE_CACHEABLE;
963
        flags |= PAGE_CACHEABLE;
957
       
964
       
958
    return flags;
965
    return flags;
959
}
966
}
960
 
967
 
961
/** Compute flags for virtual address translation subsytem.
968
/** Compute flags for virtual address translation subsytem.
962
 *
969
 *
963
 * The address space area must be locked.
970
 * The address space area must be locked.
964
 * Interrupts must be disabled.
971
 * Interrupts must be disabled.
965
 *
972
 *
966
 * @param a Address space area.
973
 * @param a Address space area.
967
 *
974
 *
968
 * @return Flags to be used in page_mapping_insert().
975
 * @return Flags to be used in page_mapping_insert().
969
 */
976
 */
970
int as_area_get_flags(as_area_t *a)
977
int as_area_get_flags(as_area_t *a)
971
{
978
{
972
    return area_flags_to_page_flags(a->flags);
979
    return area_flags_to_page_flags(a->flags);
973
}
980
}
974
 
981
 
975
/** Create page table.
982
/** Create page table.
976
 *
983
 *
977
 * Depending on architecture, create either address space
984
 * Depending on architecture, create either address space
978
 * private or global page table.
985
 * private or global page table.
979
 *
986
 *
980
 * @param flags Flags saying whether the page table is for kernel address space.
987
 * @param flags Flags saying whether the page table is for kernel address space.
981
 *
988
 *
982
 * @return First entry of the page table.
989
 * @return First entry of the page table.
983
 */
990
 */
984
pte_t *page_table_create(int flags)
991
pte_t *page_table_create(int flags)
985
{
992
{
986
        ASSERT(as_operations);
993
        ASSERT(as_operations);
987
        ASSERT(as_operations->page_table_create);
994
        ASSERT(as_operations->page_table_create);
988
 
995
 
989
        return as_operations->page_table_create(flags);
996
        return as_operations->page_table_create(flags);
990
}
997
}
991
 
998
 
992
/** Destroy page table.
999
/** Destroy page table.
993
 *
1000
 *
994
 * Destroy page table in architecture specific way.
1001
 * Destroy page table in architecture specific way.
995
 *
1002
 *
996
 * @param page_table Physical address of PTL0.
1003
 * @param page_table Physical address of PTL0.
997
 */
1004
 */
998
void page_table_destroy(pte_t *page_table)
1005
void page_table_destroy(pte_t *page_table)
999
{
1006
{
1000
        ASSERT(as_operations);
1007
        ASSERT(as_operations);
1001
        ASSERT(as_operations->page_table_destroy);
1008
        ASSERT(as_operations->page_table_destroy);
1002
 
1009
 
1003
        as_operations->page_table_destroy(page_table);
1010
        as_operations->page_table_destroy(page_table);
1004
}
1011
}
1005
 
1012
 
1006
/** Lock page table.
1013
/** Lock page table.
1007
 *
1014
 *
1008
 * This function should be called before any page_mapping_insert(),
1015
 * This function should be called before any page_mapping_insert(),
1009
 * page_mapping_remove() and page_mapping_find().
1016
 * page_mapping_remove() and page_mapping_find().
1010
 *
1017
 *
1011
 * Locking order is such that address space areas must be locked
1018
 * Locking order is such that address space areas must be locked
1012
 * prior to this call. Address space can be locked prior to this
1019
 * prior to this call. Address space can be locked prior to this
1013
 * call in which case the lock argument is false.
1020
 * call in which case the lock argument is false.
1014
 *
1021
 *
1015
 * @param as Address space.
1022
 * @param as Address space.
1016
 * @param lock If false, do not attempt to lock as->lock.
1023
 * @param lock If false, do not attempt to lock as->lock.
1017
 */
1024
 */
1018
void page_table_lock(as_t *as, bool lock)
1025
void page_table_lock(as_t *as, bool lock)
1019
{
1026
{
1020
    ASSERT(as_operations);
1027
    ASSERT(as_operations);
1021
    ASSERT(as_operations->page_table_lock);
1028
    ASSERT(as_operations->page_table_lock);
1022
 
1029
 
1023
    as_operations->page_table_lock(as, lock);
1030
    as_operations->page_table_lock(as, lock);
1024
}
1031
}
1025
 
1032
 
1026
/** Unlock page table.
1033
/** Unlock page table.
1027
 *
1034
 *
1028
 * @param as Address space.
1035
 * @param as Address space.
1029
 * @param unlock If false, do not attempt to unlock as->lock.
1036
 * @param unlock If false, do not attempt to unlock as->lock.
1030
 */
1037
 */
1031
void page_table_unlock(as_t *as, bool unlock)
1038
void page_table_unlock(as_t *as, bool unlock)
1032
{
1039
{
1033
    ASSERT(as_operations);
1040
    ASSERT(as_operations);
1034
    ASSERT(as_operations->page_table_unlock);
1041
    ASSERT(as_operations->page_table_unlock);
1035
 
1042
 
1036
    as_operations->page_table_unlock(as, unlock);
1043
    as_operations->page_table_unlock(as, unlock);
1037
}
1044
}
1038
 
1045
 
1039
 
1046
 
1040
/** Find address space area and lock it.
1047
/** Find address space area and lock it.
1041
 *
1048
 *
1042
 * The address space must be locked and interrupts must be disabled.
1049
 * The address space must be locked and interrupts must be disabled.
1043
 *
1050
 *
1044
 * @param as Address space.
1051
 * @param as Address space.
1045
 * @param va Virtual address.
1052
 * @param va Virtual address.
1046
 *
1053
 *
1047
 * @return Locked address space area containing va on success or NULL on
1054
 * @return Locked address space area containing va on success or NULL on
1048
 *     failure.
1055
 *     failure.
1049
 */
1056
 */
1050
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1057
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1051
{
1058
{
1052
    as_area_t *a;
1059
    as_area_t *a;
1053
    btree_node_t *leaf, *lnode;
1060
    btree_node_t *leaf, *lnode;
1054
    int i;
1061
    int i;
1055
   
1062
   
1056
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1063
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1057
    if (a) {
1064
    if (a) {
1058
        /* va is the base address of an address space area */
1065
        /* va is the base address of an address space area */
1059
        mutex_lock(&a->lock);
1066
        mutex_lock(&a->lock);
1060
        return a;
1067
        return a;
1061
    }
1068
    }
1062
   
1069
   
1063
    /*
1070
    /*
1064
     * Search the leaf node and the righmost record of its left neighbour
1071
     * Search the leaf node and the righmost record of its left neighbour
1065
     * to find out whether this is a miss or va belongs to an address
1072
     * to find out whether this is a miss or va belongs to an address
1066
     * space area found there.
1073
     * space area found there.
1067
     */
1074
     */
1068
   
1075
   
1069
    /* First, search the leaf node itself. */
1076
    /* First, search the leaf node itself. */
1070
    for (i = 0; i < leaf->keys; i++) {
1077
    for (i = 0; i < leaf->keys; i++) {
1071
        a = (as_area_t *) leaf->value[i];
1078
        a = (as_area_t *) leaf->value[i];
1072
        mutex_lock(&a->lock);
1079
        mutex_lock(&a->lock);
1073
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1080
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1074
            return a;
1081
            return a;
1075
        }
1082
        }
1076
        mutex_unlock(&a->lock);
1083
        mutex_unlock(&a->lock);
1077
    }
1084
    }
1078
 
1085
 
1079
    /*
1086
    /*
1080
     * Second, locate the left neighbour and test its last record.
1087
     * Second, locate the left neighbour and test its last record.
1081
     * Because of its position in the B+tree, it must have base < va.
1088
     * Because of its position in the B+tree, it must have base < va.
1082
     */
1089
     */
1083
    lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1090
    lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1084
    if (lnode) {
1091
    if (lnode) {
1085
        a = (as_area_t *) lnode->value[lnode->keys - 1];
1092
        a = (as_area_t *) lnode->value[lnode->keys - 1];
1086
        mutex_lock(&a->lock);
1093
        mutex_lock(&a->lock);
1087
        if (va < a->base + a->pages * PAGE_SIZE) {
1094
        if (va < a->base + a->pages * PAGE_SIZE) {
1088
            return a;
1095
            return a;
1089
        }
1096
        }
1090
        mutex_unlock(&a->lock);
1097
        mutex_unlock(&a->lock);
1091
    }
1098
    }
1092
 
1099
 
1093
    return NULL;
1100
    return NULL;
1094
}
1101
}
1095
 
1102
 
1096
/** Check area conflicts with other areas.
1103
/** Check area conflicts with other areas.
1097
 *
1104
 *
1098
 * The address space must be locked and interrupts must be disabled.
1105
 * The address space must be locked and interrupts must be disabled.
1099
 *
1106
 *
1100
 * @param as Address space.
1107
 * @param as Address space.
1101
 * @param va Starting virtual address of the area being tested.
1108
 * @param va Starting virtual address of the area being tested.
1102
 * @param size Size of the area being tested.
1109
 * @param size Size of the area being tested.
1103
 * @param avoid_area Do not touch this area.
1110
 * @param avoid_area Do not touch this area.
1104
 *
1111
 *
1105
 * @return True if there is no conflict, false otherwise.
1112
 * @return True if there is no conflict, false otherwise.
1106
 */
1113
 */
1107
bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
1114
bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
1108
              as_area_t *avoid_area)
1115
              as_area_t *avoid_area)
1109
{
1116
{
1110
    as_area_t *a;
1117
    as_area_t *a;
1111
    btree_node_t *leaf, *node;
1118
    btree_node_t *leaf, *node;
1112
    int i;
1119
    int i;
1113
   
1120
   
1114
    /*
1121
    /*
1115
     * We don't want any area to have conflicts with NULL page.
1122
     * We don't want any area to have conflicts with NULL page.
1116
     */
1123
     */
1117
    if (overlaps(va, size, NULL, PAGE_SIZE))
1124
    if (overlaps(va, size, NULL, PAGE_SIZE))
1118
        return false;
1125
        return false;
1119
   
1126
   
1120
    /*
1127
    /*
1121
     * The leaf node is found in O(log n), where n is proportional to
1128
     * The leaf node is found in O(log n), where n is proportional to
1122
     * the number of address space areas belonging to as.
1129
     * the number of address space areas belonging to as.
1123
     * The check for conflicts is then attempted on the rightmost
1130
     * The check for conflicts is then attempted on the rightmost
1124
     * record in the left neighbour, the leftmost record in the right
1131
     * record in the left neighbour, the leftmost record in the right
1125
     * neighbour and all records in the leaf node itself.
1132
     * neighbour and all records in the leaf node itself.
1126
     */
1133
     */
1127
   
1134
   
1128
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1135
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1129
        if (a != avoid_area)
1136
        if (a != avoid_area)
1130
            return false;
1137
            return false;
1131
    }
1138
    }
1132
   
1139
   
1133
    /* First, check the two border cases. */
1140
    /* First, check the two border cases. */
1134
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1141
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1135
        a = (as_area_t *) node->value[node->keys - 1];
1142
        a = (as_area_t *) node->value[node->keys - 1];
1136
        mutex_lock(&a->lock);
1143
        mutex_lock(&a->lock);
1137
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1144
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1138
            mutex_unlock(&a->lock);
1145
            mutex_unlock(&a->lock);
1139
            return false;
1146
            return false;
1140
        }
1147
        }
1141
        mutex_unlock(&a->lock);
1148
        mutex_unlock(&a->lock);
1142
    }
1149
    }
1143
    node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1150
    node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1144
    if (node) {
1151
    if (node) {
1145
        a = (as_area_t *) node->value[0];
1152
        a = (as_area_t *) node->value[0];
1146
        mutex_lock(&a->lock);
1153
        mutex_lock(&a->lock);
1147
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1154
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1148
            mutex_unlock(&a->lock);
1155
            mutex_unlock(&a->lock);
1149
            return false;
1156
            return false;
1150
        }
1157
        }
1151
        mutex_unlock(&a->lock);
1158
        mutex_unlock(&a->lock);
1152
    }
1159
    }
1153
   
1160
   
1154
    /* Second, check the leaf node. */
1161
    /* Second, check the leaf node. */
1155
    for (i = 0; i < leaf->keys; i++) {
1162
    for (i = 0; i < leaf->keys; i++) {
1156
        a = (as_area_t *) leaf->value[i];
1163
        a = (as_area_t *) leaf->value[i];
1157
   
1164
   
1158
        if (a == avoid_area)
1165
        if (a == avoid_area)
1159
            continue;
1166
            continue;
1160
   
1167
   
1161
        mutex_lock(&a->lock);
1168
        mutex_lock(&a->lock);
1162
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1169
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1163
            mutex_unlock(&a->lock);
1170
            mutex_unlock(&a->lock);
1164
            return false;
1171
            return false;
1165
        }
1172
        }
1166
        mutex_unlock(&a->lock);
1173
        mutex_unlock(&a->lock);
1167
    }
1174
    }
1168
 
1175
 
1169
    /*
1176
    /*
1170
     * So far, the area does not conflict with other areas.
1177
     * So far, the area does not conflict with other areas.
1171
     * Check if it doesn't conflict with kernel address space.
1178
     * Check if it doesn't conflict with kernel address space.
1172
     */  
1179
     */  
1173
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1180
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1174
        return !overlaps(va, size,
1181
        return !overlaps(va, size,
1175
            KERNEL_ADDRESS_SPACE_START,
1182
            KERNEL_ADDRESS_SPACE_START,
1176
            KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1183
            KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1177
    }
1184
    }
1178
 
1185
 
1179
    return true;
1186
    return true;
1180
}
1187
}
1181
 
1188
 
1182
/** Return size of the address space area with given base.  */
1189
/** Return size of the address space area with given base.  */
1183
size_t as_get_size(uintptr_t base)
1190
size_t as_get_size(uintptr_t base)
1184
{
1191
{
1185
    ipl_t ipl;
1192
    ipl_t ipl;
1186
    as_area_t *src_area;
1193
    as_area_t *src_area;
1187
    size_t size;
1194
    size_t size;
1188
 
1195
 
1189
    ipl = interrupts_disable();
1196
    ipl = interrupts_disable();
1190
    src_area = find_area_and_lock(AS, base);
1197
    src_area = find_area_and_lock(AS, base);
1191
    if (src_area){
1198
    if (src_area){
1192
        size = src_area->pages * PAGE_SIZE;
1199
        size = src_area->pages * PAGE_SIZE;
1193
        mutex_unlock(&src_area->lock);
1200
        mutex_unlock(&src_area->lock);
1194
    } else {
1201
    } else {
1195
        size = 0;
1202
        size = 0;
1196
    }
1203
    }
1197
    interrupts_restore(ipl);
1204
    interrupts_restore(ipl);
1198
    return size;
1205
    return size;
1199
}
1206
}
1200
 
1207
 
1201
/** Mark portion of address space area as used.
1208
/** Mark portion of address space area as used.
1202
 *
1209
 *
1203
 * The address space area must be already locked.
1210
 * The address space area must be already locked.
1204
 *
1211
 *
1205
 * @param a Address space area.
1212
 * @param a Address space area.
1206
 * @param page First page to be marked.
1213
 * @param page First page to be marked.
1207
 * @param count Number of page to be marked.
1214
 * @param count Number of page to be marked.
1208
 *
1215
 *
1209
 * @return 0 on failure and 1 on success.
1216
 * @return 0 on failure and 1 on success.
1210
 */
1217
 */
1211
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1218
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1212
{
1219
{
1213
    btree_node_t *leaf, *node;
1220
    btree_node_t *leaf, *node;
1214
    count_t pages;
1221
    count_t pages;
1215
    int i;
1222
    int i;
1216
 
1223
 
1217
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1224
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1218
    ASSERT(count);
1225
    ASSERT(count);
1219
 
1226
 
1220
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1227
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1221
    if (pages) {
1228
    if (pages) {
1222
        /*
1229
        /*
1223
         * We hit the beginning of some used space.
1230
         * We hit the beginning of some used space.
1224
         */
1231
         */
1225
        return 0;
1232
        return 0;
1226
    }
1233
    }
1227
 
1234
 
1228
    if (!leaf->keys) {
1235
    if (!leaf->keys) {
1229
        btree_insert(&a->used_space, page, (void *) count, leaf);
1236
        btree_insert(&a->used_space, page, (void *) count, leaf);
1230
        return 1;
1237
        return 1;
1231
    }
1238
    }
1232
 
1239
 
1233
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1240
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1234
    if (node) {
1241
    if (node) {
1235
        uintptr_t left_pg = node->key[node->keys - 1];
1242
        uintptr_t left_pg = node->key[node->keys - 1];
1236
        uintptr_t right_pg = leaf->key[0];
1243
        uintptr_t right_pg = leaf->key[0];
1237
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1244
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1238
        count_t right_cnt = (count_t) leaf->value[0];
1245
        count_t right_cnt = (count_t) leaf->value[0];
1239
       
1246
       
1240
        /*
1247
        /*
1241
         * Examine the possibility that the interval fits
1248
         * Examine the possibility that the interval fits
1242
         * somewhere between the rightmost interval of
1249
         * somewhere between the rightmost interval of
1243
         * the left neigbour and the first interval of the leaf.
1250
         * the left neigbour and the first interval of the leaf.
1244
         */
1251
         */
1245
         
1252
         
1246
        if (page >= right_pg) {
1253
        if (page >= right_pg) {
1247
            /* Do nothing. */
1254
            /* Do nothing. */
1248
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1255
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1249
            left_cnt * PAGE_SIZE)) {
1256
            left_cnt * PAGE_SIZE)) {
1250
            /* The interval intersects with the left interval. */
1257
            /* The interval intersects with the left interval. */
1251
            return 0;
1258
            return 0;
1252
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1259
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1253
            right_cnt * PAGE_SIZE)) {
1260
            right_cnt * PAGE_SIZE)) {
1254
            /* The interval intersects with the right interval. */
1261
            /* The interval intersects with the right interval. */
1255
            return 0;          
1262
            return 0;          
1256
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1263
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1257
            (page + count * PAGE_SIZE == right_pg)) {
1264
            (page + count * PAGE_SIZE == right_pg)) {
1258
            /*
1265
            /*
1259
             * The interval can be added by merging the two already
1266
             * The interval can be added by merging the two already
1260
             * present intervals.
1267
             * present intervals.
1261
             */
1268
             */
1262
            node->value[node->keys - 1] += count + right_cnt;
1269
            node->value[node->keys - 1] += count + right_cnt;
1263
            btree_remove(&a->used_space, right_pg, leaf);
1270
            btree_remove(&a->used_space, right_pg, leaf);
1264
            return 1;
1271
            return 1;
1265
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1272
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1266
            /*
1273
            /*
1267
             * The interval can be added by simply growing the left
1274
             * The interval can be added by simply growing the left
1268
             * interval.
1275
             * interval.
1269
             */
1276
             */
1270
            node->value[node->keys - 1] += count;
1277
            node->value[node->keys - 1] += count;
1271
            return 1;
1278
            return 1;
1272
        } else if (page + count * PAGE_SIZE == right_pg) {
1279
        } else if (page + count * PAGE_SIZE == right_pg) {
1273
            /*
1280
            /*
1274
             * The interval can be addded by simply moving base of
1281
             * The interval can be addded by simply moving base of
1275
             * the right interval down and increasing its size
1282
             * the right interval down and increasing its size
1276
             * accordingly.
1283
             * accordingly.
1277
             */
1284
             */
1278
            leaf->value[0] += count;
1285
            leaf->value[0] += count;
1279
            leaf->key[0] = page;
1286
            leaf->key[0] = page;
1280
            return 1;
1287
            return 1;
1281
        } else {
1288
        } else {
1282
            /*
1289
            /*
1283
             * The interval is between both neigbouring intervals,
1290
             * The interval is between both neigbouring intervals,
1284
             * but cannot be merged with any of them.
1291
             * but cannot be merged with any of them.
1285
             */
1292
             */
1286
            btree_insert(&a->used_space, page, (void *) count,
1293
            btree_insert(&a->used_space, page, (void *) count,
1287
                leaf);
1294
                leaf);
1288
            return 1;
1295
            return 1;
1289
        }
1296
        }
1290
    } else if (page < leaf->key[0]) {
1297
    } else if (page < leaf->key[0]) {
1291
        uintptr_t right_pg = leaf->key[0];
1298
        uintptr_t right_pg = leaf->key[0];
1292
        count_t right_cnt = (count_t) leaf->value[0];
1299
        count_t right_cnt = (count_t) leaf->value[0];
1293
   
1300
   
1294
        /*
1301
        /*
1295
         * Investigate the border case in which the left neighbour does
1302
         * Investigate the border case in which the left neighbour does
1296
         * not exist but the interval fits from the left.
1303
         * not exist but the interval fits from the left.
1297
         */
1304
         */
1298
         
1305
         
1299
        if (overlaps(page, count * PAGE_SIZE, right_pg,
1306
        if (overlaps(page, count * PAGE_SIZE, right_pg,
1300
            right_cnt * PAGE_SIZE)) {
1307
            right_cnt * PAGE_SIZE)) {
1301
            /* The interval intersects with the right interval. */
1308
            /* The interval intersects with the right interval. */
1302
            return 0;
1309
            return 0;
1303
        } else if (page + count * PAGE_SIZE == right_pg) {
1310
        } else if (page + count * PAGE_SIZE == right_pg) {
1304
            /*
1311
            /*
1305
             * The interval can be added by moving the base of the
1312
             * The interval can be added by moving the base of the
1306
             * right interval down and increasing its size
1313
             * right interval down and increasing its size
1307
             * accordingly.
1314
             * accordingly.
1308
             */
1315
             */
1309
            leaf->key[0] = page;
1316
            leaf->key[0] = page;
1310
            leaf->value[0] += count;
1317
            leaf->value[0] += count;
1311
            return 1;
1318
            return 1;
1312
        } else {
1319
        } else {
1313
            /*
1320
            /*
1314
             * The interval doesn't adjoin with the right interval.
1321
             * The interval doesn't adjoin with the right interval.
1315
             * It must be added individually.
1322
             * It must be added individually.
1316
             */
1323
             */
1317
            btree_insert(&a->used_space, page, (void *) count,
1324
            btree_insert(&a->used_space, page, (void *) count,
1318
                leaf);
1325
                leaf);
1319
            return 1;
1326
            return 1;
1320
        }
1327
        }
1321
    }
1328
    }
1322
 
1329
 
1323
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1330
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1324
    if (node) {
1331
    if (node) {
1325
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1332
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1326
        uintptr_t right_pg = node->key[0];
1333
        uintptr_t right_pg = node->key[0];
1327
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1334
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1328
        count_t right_cnt = (count_t) node->value[0];
1335
        count_t right_cnt = (count_t) node->value[0];
1329
       
1336
       
1330
        /*
1337
        /*
1331
         * Examine the possibility that the interval fits
1338
         * Examine the possibility that the interval fits
1332
         * somewhere between the leftmost interval of
1339
         * somewhere between the leftmost interval of
1333
         * the right neigbour and the last interval of the leaf.
1340
         * the right neigbour and the last interval of the leaf.
1334
         */
1341
         */
1335
 
1342
 
1336
        if (page < left_pg) {
1343
        if (page < left_pg) {
1337
            /* Do nothing. */
1344
            /* Do nothing. */
1338
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1345
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1339
            left_cnt * PAGE_SIZE)) {
1346
            left_cnt * PAGE_SIZE)) {
1340
            /* The interval intersects with the left interval. */
1347
            /* The interval intersects with the left interval. */
1341
            return 0;
1348
            return 0;
1342
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1349
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1343
            right_cnt * PAGE_SIZE)) {
1350
            right_cnt * PAGE_SIZE)) {
1344
            /* The interval intersects with the right interval. */
1351
            /* The interval intersects with the right interval. */
1345
            return 0;          
1352
            return 0;          
1346
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1353
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1347
            (page + count * PAGE_SIZE == right_pg)) {
1354
            (page + count * PAGE_SIZE == right_pg)) {
1348
            /*
1355
            /*
1349
             * The interval can be added by merging the two already
1356
             * The interval can be added by merging the two already
1350
             * present intervals.
1357
             * present intervals.
1351
             * */
1358
             * */
1352
            leaf->value[leaf->keys - 1] += count + right_cnt;
1359
            leaf->value[leaf->keys - 1] += count + right_cnt;
1353
            btree_remove(&a->used_space, right_pg, node);
1360
            btree_remove(&a->used_space, right_pg, node);
1354
            return 1;
1361
            return 1;
1355
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1362
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1356
            /*
1363
            /*
1357
             * The interval can be added by simply growing the left
1364
             * The interval can be added by simply growing the left
1358
             * interval.
1365
             * interval.
1359
             * */
1366
             * */
1360
            leaf->value[leaf->keys - 1] +=  count;
1367
            leaf->value[leaf->keys - 1] +=  count;
1361
            return 1;
1368
            return 1;
1362
        } else if (page + count * PAGE_SIZE == right_pg) {
1369
        } else if (page + count * PAGE_SIZE == right_pg) {
1363
            /*
1370
            /*
1364
             * The interval can be addded by simply moving base of
1371
             * The interval can be addded by simply moving base of
1365
             * the right interval down and increasing its size
1372
             * the right interval down and increasing its size
1366
             * accordingly.
1373
             * accordingly.
1367
             */
1374
             */
1368
            node->value[0] += count;
1375
            node->value[0] += count;
1369
            node->key[0] = page;
1376
            node->key[0] = page;
1370
            return 1;
1377
            return 1;
1371
        } else {
1378
        } else {
1372
            /*
1379
            /*
1373
             * The interval is between both neigbouring intervals,
1380
             * The interval is between both neigbouring intervals,
1374
             * but cannot be merged with any of them.
1381
             * but cannot be merged with any of them.
1375
             */
1382
             */
1376
            btree_insert(&a->used_space, page, (void *) count,
1383
            btree_insert(&a->used_space, page, (void *) count,
1377
                leaf);
1384
                leaf);
1378
            return 1;
1385
            return 1;
1379
        }
1386
        }
1380
    } else if (page >= leaf->key[leaf->keys - 1]) {
1387
    } else if (page >= leaf->key[leaf->keys - 1]) {
1381
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1388
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1382
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1389
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1383
   
1390
   
1384
        /*
1391
        /*
1385
         * Investigate the border case in which the right neighbour
1392
         * Investigate the border case in which the right neighbour
1386
         * does not exist but the interval fits from the right.
1393
         * does not exist but the interval fits from the right.
1387
         */
1394
         */
1388
         
1395
         
1389
        if (overlaps(page, count * PAGE_SIZE, left_pg,
1396
        if (overlaps(page, count * PAGE_SIZE, left_pg,
1390
            left_cnt * PAGE_SIZE)) {
1397
            left_cnt * PAGE_SIZE)) {
1391
            /* The interval intersects with the left interval. */
1398
            /* The interval intersects with the left interval. */
1392
            return 0;
1399
            return 0;
1393
        } else if (left_pg + left_cnt * PAGE_SIZE == page) {
1400
        } else if (left_pg + left_cnt * PAGE_SIZE == page) {
1394
            /*
1401
            /*
1395
             * The interval can be added by growing the left
1402
             * The interval can be added by growing the left
1396
             * interval.
1403
             * interval.
1397
             */
1404
             */
1398
            leaf->value[leaf->keys - 1] += count;
1405
            leaf->value[leaf->keys - 1] += count;
1399
            return 1;
1406
            return 1;
1400
        } else {
1407
        } else {
1401
            /*
1408
            /*
1402
             * The interval doesn't adjoin with the left interval.
1409
             * The interval doesn't adjoin with the left interval.
1403
             * It must be added individually.
1410
             * It must be added individually.
1404
             */
1411
             */
1405
            btree_insert(&a->used_space, page, (void *) count,
1412
            btree_insert(&a->used_space, page, (void *) count,
1406
                leaf);
1413
                leaf);
1407
            return 1;
1414
            return 1;
1408
        }
1415
        }
1409
    }
1416
    }
1410
   
1417
   
1411
    /*
1418
    /*
1412
     * Note that if the algorithm made it thus far, the interval can fit
1419
     * Note that if the algorithm made it thus far, the interval can fit
1413
     * only between two other intervals of the leaf. The two border cases
1420
     * only between two other intervals of the leaf. The two border cases
1414
     * were already resolved.
1421
     * were already resolved.
1415
     */
1422
     */
1416
    for (i = 1; i < leaf->keys; i++) {
1423
    for (i = 1; i < leaf->keys; i++) {
1417
        if (page < leaf->key[i]) {
1424
        if (page < leaf->key[i]) {
1418
            uintptr_t left_pg = leaf->key[i - 1];
1425
            uintptr_t left_pg = leaf->key[i - 1];
1419
            uintptr_t right_pg = leaf->key[i];
1426
            uintptr_t right_pg = leaf->key[i];
1420
            count_t left_cnt = (count_t) leaf->value[i - 1];
1427
            count_t left_cnt = (count_t) leaf->value[i - 1];
1421
            count_t right_cnt = (count_t) leaf->value[i];
1428
            count_t right_cnt = (count_t) leaf->value[i];
1422
 
1429
 
1423
            /*
1430
            /*
1424
             * The interval fits between left_pg and right_pg.
1431
             * The interval fits between left_pg and right_pg.
1425
             */
1432
             */
1426
 
1433
 
1427
            if (overlaps(page, count * PAGE_SIZE, left_pg,
1434
            if (overlaps(page, count * PAGE_SIZE, left_pg,
1428
                left_cnt * PAGE_SIZE)) {
1435
                left_cnt * PAGE_SIZE)) {
1429
                /*
1436
                /*
1430
                 * The interval intersects with the left
1437
                 * The interval intersects with the left
1431
                 * interval.
1438
                 * interval.
1432
                 */
1439
                 */
1433
                return 0;
1440
                return 0;
1434
            } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1441
            } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1435
                right_cnt * PAGE_SIZE)) {
1442
                right_cnt * PAGE_SIZE)) {
1436
                /*
1443
                /*
1437
                 * The interval intersects with the right
1444
                 * The interval intersects with the right
1438
                 * interval.
1445
                 * interval.
1439
                 */
1446
                 */
1440
                return 0;          
1447
                return 0;          
1441
            } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1448
            } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1442
                (page + count * PAGE_SIZE == right_pg)) {
1449
                (page + count * PAGE_SIZE == right_pg)) {
1443
                /*
1450
                /*
1444
                 * The interval can be added by merging the two
1451
                 * The interval can be added by merging the two
1445
                 * already present intervals.
1452
                 * already present intervals.
1446
                 */
1453
                 */
1447
                leaf->value[i - 1] += count + right_cnt;
1454
                leaf->value[i - 1] += count + right_cnt;
1448
                btree_remove(&a->used_space, right_pg, leaf);
1455
                btree_remove(&a->used_space, right_pg, leaf);
1449
                return 1;
1456
                return 1;
1450
            } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1457
            } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1451
                /*
1458
                /*
1452
                 * The interval can be added by simply growing
1459
                 * The interval can be added by simply growing
1453
                 * the left interval.
1460
                 * the left interval.
1454
                 */
1461
                 */
1455
                leaf->value[i - 1] += count;
1462
                leaf->value[i - 1] += count;
1456
                return 1;
1463
                return 1;
1457
            } else if (page + count * PAGE_SIZE == right_pg) {
1464
            } else if (page + count * PAGE_SIZE == right_pg) {
1458
                /*
1465
                /*
1459
                     * The interval can be addded by simply moving
1466
                     * The interval can be addded by simply moving
1460
                 * base of the right interval down and
1467
                 * base of the right interval down and
1461
                 * increasing its size accordingly.
1468
                 * increasing its size accordingly.
1462
                 */
1469
                 */
1463
                leaf->value[i] += count;
1470
                leaf->value[i] += count;
1464
                leaf->key[i] = page;
1471
                leaf->key[i] = page;
1465
                return 1;
1472
                return 1;
1466
            } else {
1473
            } else {
1467
                /*
1474
                /*
1468
                 * The interval is between both neigbouring
1475
                 * The interval is between both neigbouring
1469
                 * intervals, but cannot be merged with any of
1476
                 * intervals, but cannot be merged with any of
1470
                 * them.
1477
                 * them.
1471
                 */
1478
                 */
1472
                btree_insert(&a->used_space, page,
1479
                btree_insert(&a->used_space, page,
1473
                    (void *) count, leaf);
1480
                    (void *) count, leaf);
1474
                return 1;
1481
                return 1;
1475
            }
1482
            }
1476
        }
1483
        }
1477
    }
1484
    }
1478
 
1485
 
1479
    panic("Inconsistency detected while adding %d pages of used space at "
1486
    panic("Inconsistency detected while adding %d pages of used space at "
1480
        "%p.\n", count, page);
1487
        "%p.\n", count, page);
1481
}
1488
}
1482
 
1489
 
1483
/** Mark portion of address space area as unused.
1490
/** Mark portion of address space area as unused.
1484
 *
1491
 *
1485
 * The address space area must be already locked.
1492
 * The address space area must be already locked.
1486
 *
1493
 *
1487
 * @param a Address space area.
1494
 * @param a Address space area.
1488
 * @param page First page to be marked.
1495
 * @param page First page to be marked.
1489
 * @param count Number of page to be marked.
1496
 * @param count Number of page to be marked.
1490
 *
1497
 *
1491
 * @return 0 on failure and 1 on success.
1498
 * @return 0 on failure and 1 on success.
1492
 */
1499
 */
1493
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1500
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1494
{
1501
{
1495
    btree_node_t *leaf, *node;
1502
    btree_node_t *leaf, *node;
1496
    count_t pages;
1503
    count_t pages;
1497
    int i;
1504
    int i;
1498
 
1505
 
1499
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1506
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1500
    ASSERT(count);
1507
    ASSERT(count);
1501
 
1508
 
1502
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1509
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1503
    if (pages) {
1510
    if (pages) {
1504
        /*
1511
        /*
1505
         * We are lucky, page is the beginning of some interval.
1512
         * We are lucky, page is the beginning of some interval.
1506
         */
1513
         */
1507
        if (count > pages) {
1514
        if (count > pages) {
1508
            return 0;
1515
            return 0;
1509
        } else if (count == pages) {
1516
        } else if (count == pages) {
1510
            btree_remove(&a->used_space, page, leaf);
1517
            btree_remove(&a->used_space, page, leaf);
1511
            return 1;
1518
            return 1;
1512
        } else {
1519
        } else {
1513
            /*
1520
            /*
1514
             * Find the respective interval.
1521
             * Find the respective interval.
1515
             * Decrease its size and relocate its start address.
1522
             * Decrease its size and relocate its start address.
1516
             */
1523
             */
1517
            for (i = 0; i < leaf->keys; i++) {
1524
            for (i = 0; i < leaf->keys; i++) {
1518
                if (leaf->key[i] == page) {
1525
                if (leaf->key[i] == page) {
1519
                    leaf->key[i] += count * PAGE_SIZE;
1526
                    leaf->key[i] += count * PAGE_SIZE;
1520
                    leaf->value[i] -= count;
1527
                    leaf->value[i] -= count;
1521
                    return 1;
1528
                    return 1;
1522
                }
1529
                }
1523
            }
1530
            }
1524
            goto error;
1531
            goto error;
1525
        }
1532
        }
1526
    }
1533
    }
1527
 
1534
 
1528
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1535
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1529
    if (node && page < leaf->key[0]) {
1536
    if (node && page < leaf->key[0]) {
1530
        uintptr_t left_pg = node->key[node->keys - 1];
1537
        uintptr_t left_pg = node->key[node->keys - 1];
1531
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1538
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1532
 
1539
 
1533
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1540
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1534
            count * PAGE_SIZE)) {
1541
            count * PAGE_SIZE)) {
1535
            if (page + count * PAGE_SIZE ==
1542
            if (page + count * PAGE_SIZE ==
1536
                left_pg + left_cnt * PAGE_SIZE) {
1543
                left_pg + left_cnt * PAGE_SIZE) {
1537
                /*
1544
                /*
1538
                 * The interval is contained in the rightmost
1545
                 * The interval is contained in the rightmost
1539
                 * interval of the left neighbour and can be
1546
                 * interval of the left neighbour and can be
1540
                 * removed by updating the size of the bigger
1547
                 * removed by updating the size of the bigger
1541
                 * interval.
1548
                 * interval.
1542
                 */
1549
                 */
1543
                node->value[node->keys - 1] -= count;
1550
                node->value[node->keys - 1] -= count;
1544
                return 1;
1551
                return 1;
1545
            } else if (page + count * PAGE_SIZE <
1552
            } else if (page + count * PAGE_SIZE <
1546
                left_pg + left_cnt*PAGE_SIZE) {
1553
                left_pg + left_cnt*PAGE_SIZE) {
1547
                count_t new_cnt;
1554
                count_t new_cnt;
1548
               
1555
               
1549
                /*
1556
                /*
1550
                 * The interval is contained in the rightmost
1557
                 * The interval is contained in the rightmost
1551
                 * interval of the left neighbour but its
1558
                 * interval of the left neighbour but its
1552
                 * removal requires both updating the size of
1559
                 * removal requires both updating the size of
1553
                 * the original interval and also inserting a
1560
                 * the original interval and also inserting a
1554
                 * new interval.
1561
                 * new interval.
1555
                 */
1562
                 */
1556
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1563
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1557
                    (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1564
                    (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1558
                node->value[node->keys - 1] -= count + new_cnt;
1565
                node->value[node->keys - 1] -= count + new_cnt;
1559
                btree_insert(&a->used_space, page +
1566
                btree_insert(&a->used_space, page +
1560
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1567
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1561
                return 1;
1568
                return 1;
1562
            }
1569
            }
1563
        }
1570
        }
1564
        return 0;
1571
        return 0;
1565
    } else if (page < leaf->key[0]) {
1572
    } else if (page < leaf->key[0]) {
1566
        return 0;
1573
        return 0;
1567
    }
1574
    }
1568
   
1575
   
1569
    if (page > leaf->key[leaf->keys - 1]) {
1576
    if (page > leaf->key[leaf->keys - 1]) {
1570
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1577
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1571
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1578
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1572
 
1579
 
1573
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1580
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1574
            count * PAGE_SIZE)) {
1581
            count * PAGE_SIZE)) {
1575
            if (page + count * PAGE_SIZE ==
1582
            if (page + count * PAGE_SIZE ==
1576
                left_pg + left_cnt * PAGE_SIZE) {
1583
                left_pg + left_cnt * PAGE_SIZE) {
1577
                /*
1584
                /*
1578
                 * The interval is contained in the rightmost
1585
                 * The interval is contained in the rightmost
1579
                 * interval of the leaf and can be removed by
1586
                 * interval of the leaf and can be removed by
1580
                 * updating the size of the bigger interval.
1587
                 * updating the size of the bigger interval.
1581
                 */
1588
                 */
1582
                leaf->value[leaf->keys - 1] -= count;
1589
                leaf->value[leaf->keys - 1] -= count;
1583
                return 1;
1590
                return 1;
1584
            } else if (page + count * PAGE_SIZE < left_pg +
1591
            } else if (page + count * PAGE_SIZE < left_pg +
1585
                left_cnt * PAGE_SIZE) {
1592
                left_cnt * PAGE_SIZE) {
1586
                count_t new_cnt;
1593
                count_t new_cnt;
1587
               
1594
               
1588
                /*
1595
                /*
1589
                 * The interval is contained in the rightmost
1596
                 * The interval is contained in the rightmost
1590
                 * interval of the leaf but its removal
1597
                 * interval of the leaf but its removal
1591
                 * requires both updating the size of the
1598
                 * requires both updating the size of the
1592
                 * original interval and also inserting a new
1599
                 * original interval and also inserting a new
1593
                 * interval.
1600
                 * interval.
1594
                 */
1601
                 */
1595
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1602
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1596
                    (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1603
                    (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1597
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1604
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1598
                btree_insert(&a->used_space, page +
1605
                btree_insert(&a->used_space, page +
1599
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1606
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1600
                return 1;
1607
                return 1;
1601
            }
1608
            }
1602
        }
1609
        }
1603
        return 0;
1610
        return 0;
1604
    }  
1611
    }  
1605
   
1612
   
1606
    /*
1613
    /*
1607
     * The border cases have been already resolved.
1614
     * The border cases have been already resolved.
1608
     * Now the interval can be only between intervals of the leaf.
1615
     * Now the interval can be only between intervals of the leaf.
1609
     */
1616
     */
1610
    for (i = 1; i < leaf->keys - 1; i++) {
1617
    for (i = 1; i < leaf->keys - 1; i++) {
1611
        if (page < leaf->key[i]) {
1618
        if (page < leaf->key[i]) {
1612
            uintptr_t left_pg = leaf->key[i - 1];
1619
            uintptr_t left_pg = leaf->key[i - 1];
1613
            count_t left_cnt = (count_t) leaf->value[i - 1];
1620
            count_t left_cnt = (count_t) leaf->value[i - 1];
1614
 
1621
 
1615
            /*
1622
            /*
1616
             * Now the interval is between intervals corresponding
1623
             * Now the interval is between intervals corresponding
1617
             * to (i - 1) and i.
1624
             * to (i - 1) and i.
1618
             */
1625
             */
1619
            if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1626
            if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1620
                count * PAGE_SIZE)) {
1627
                count * PAGE_SIZE)) {
1621
                if (page + count * PAGE_SIZE ==
1628
                if (page + count * PAGE_SIZE ==
1622
                    left_pg + left_cnt*PAGE_SIZE) {
1629
                    left_pg + left_cnt*PAGE_SIZE) {
1623
                    /*
1630
                    /*
1624
                     * The interval is contained in the
1631
                     * The interval is contained in the
1625
                     * interval (i - 1) of the leaf and can
1632
                     * interval (i - 1) of the leaf and can
1626
                     * be removed by updating the size of
1633
                     * be removed by updating the size of
1627
                     * the bigger interval.
1634
                     * the bigger interval.
1628
                     */
1635
                     */
1629
                    leaf->value[i - 1] -= count;
1636
                    leaf->value[i - 1] -= count;
1630
                    return 1;
1637
                    return 1;
1631
                } else if (page + count * PAGE_SIZE <
1638
                } else if (page + count * PAGE_SIZE <
1632
                    left_pg + left_cnt * PAGE_SIZE) {
1639
                    left_pg + left_cnt * PAGE_SIZE) {
1633
                    count_t new_cnt;
1640
                    count_t new_cnt;
1634
               
1641
               
1635
                    /*
1642
                    /*
1636
                     * The interval is contained in the
1643
                     * The interval is contained in the
1637
                     * interval (i - 1) of the leaf but its
1644
                     * interval (i - 1) of the leaf but its
1638
                     * removal requires both updating the
1645
                     * removal requires both updating the
1639
                     * size of the original interval and
1646
                     * size of the original interval and
1640
                     * also inserting a new interval.
1647
                     * also inserting a new interval.
1641
                     */
1648
                     */
1642
                    new_cnt = ((left_pg +
1649
                    new_cnt = ((left_pg +
1643
                        left_cnt * PAGE_SIZE) -
1650
                        left_cnt * PAGE_SIZE) -
1644
                        (page + count * PAGE_SIZE)) >>
1651
                        (page + count * PAGE_SIZE)) >>
1645
                        PAGE_WIDTH;
1652
                        PAGE_WIDTH;
1646
                    leaf->value[i - 1] -= count + new_cnt;
1653
                    leaf->value[i - 1] -= count + new_cnt;
1647
                    btree_insert(&a->used_space, page +
1654
                    btree_insert(&a->used_space, page +
1648
                        count * PAGE_SIZE, (void *) new_cnt,
1655
                        count * PAGE_SIZE, (void *) new_cnt,
1649
                        leaf);
1656
                        leaf);
1650
                    return 1;
1657
                    return 1;
1651
                }
1658
                }
1652
            }
1659
            }
1653
            return 0;
1660
            return 0;
1654
        }
1661
        }
1655
    }
1662
    }
1656
 
1663
 
1657
error:
1664
error:
1658
    panic("Inconsistency detected while removing %d pages of used space "
1665
    panic("Inconsistency detected while removing %d pages of used space "
1659
        "from %p.\n", count, page);
1666
        "from %p.\n", count, page);
1660
}
1667
}
1661
 
1668
 
1662
/** Remove reference to address space area share info.
1669
/** Remove reference to address space area share info.
1663
 *
1670
 *
1664
 * If the reference count drops to 0, the sh_info is deallocated.
1671
 * If the reference count drops to 0, the sh_info is deallocated.
1665
 *
1672
 *
1666
 * @param sh_info Pointer to address space area share info.
1673
 * @param sh_info Pointer to address space area share info.
1667
 */
1674
 */
1668
void sh_info_remove_reference(share_info_t *sh_info)
1675
void sh_info_remove_reference(share_info_t *sh_info)
1669
{
1676
{
1670
    bool dealloc = false;
1677
    bool dealloc = false;
1671
 
1678
 
1672
    mutex_lock(&sh_info->lock);
1679
    mutex_lock(&sh_info->lock);
1673
    ASSERT(sh_info->refcount);
1680
    ASSERT(sh_info->refcount);
1674
    if (--sh_info->refcount == 0) {
1681
    if (--sh_info->refcount == 0) {
1675
        dealloc = true;
1682
        dealloc = true;
1676
        link_t *cur;
1683
        link_t *cur;
1677
       
1684
       
1678
        /*
1685
        /*
1679
         * Now walk carefully the pagemap B+tree and free/remove
1686
         * Now walk carefully the pagemap B+tree and free/remove
1680
         * reference from all frames found there.
1687
         * reference from all frames found there.
1681
         */
1688
         */
1682
        for (cur = sh_info->pagemap.leaf_head.next;
1689
        for (cur = sh_info->pagemap.leaf_head.next;
1683
            cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1690
            cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1684
            btree_node_t *node;
1691
            btree_node_t *node;
1685
            int i;
1692
            int i;
1686
           
1693
           
1687
            node = list_get_instance(cur, btree_node_t, leaf_link);
1694
            node = list_get_instance(cur, btree_node_t, leaf_link);
1688
            for (i = 0; i < node->keys; i++)
1695
            for (i = 0; i < node->keys; i++)
1689
                frame_free((uintptr_t) node->value[i]);
1696
                frame_free((uintptr_t) node->value[i]);
1690
        }
1697
        }
1691
       
1698
       
1692
    }
1699
    }
1693
    mutex_unlock(&sh_info->lock);
1700
    mutex_unlock(&sh_info->lock);
1694
   
1701
   
1695
    if (dealloc) {
1702
    if (dealloc) {
1696
        btree_destroy(&sh_info->pagemap);
1703
        btree_destroy(&sh_info->pagemap);
1697
        free(sh_info);
1704
        free(sh_info);
1698
    }
1705
    }
1699
}
1706
}
1700
 
1707
 
1701
/*
1708
/*
1702
 * Address space related syscalls.
1709
 * Address space related syscalls.
1703
 */
1710
 */
1704
 
1711
 
1705
/** Wrapper for as_area_create(). */
1712
/** Wrapper for as_area_create(). */
1706
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1713
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1707
{
1714
{
1708
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
1715
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
1709
        AS_AREA_ATTR_NONE, &anon_backend, NULL))
1716
        AS_AREA_ATTR_NONE, &anon_backend, NULL))
1710
        return (unative_t) address;
1717
        return (unative_t) address;
1711
    else
1718
    else
1712
        return (unative_t) -1;
1719
        return (unative_t) -1;
1713
}
1720
}
1714
 
1721
 
1715
/** Wrapper for as_area_resize(). */
1722
/** Wrapper for as_area_resize(). */
1716
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1723
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1717
{
1724
{
1718
    return (unative_t) as_area_resize(AS, address, size, 0);
1725
    return (unative_t) as_area_resize(AS, address, size, 0);
1719
}
1726
}
1720
 
1727
 
1721
/** Wrapper for as_area_destroy(). */
1728
/** Wrapper for as_area_destroy(). */
1722
unative_t sys_as_area_destroy(uintptr_t address)
1729
unative_t sys_as_area_destroy(uintptr_t address)
1723
{
1730
{
1724
    return (unative_t) as_area_destroy(AS, address);
1731
    return (unative_t) as_area_destroy(AS, address);
1725
}
1732
}
1726
 
1733
 
1727
/** Print out information about address space.
1734
/** Print out information about address space.
1728
 *
1735
 *
1729
 * @param as Address space.
1736
 * @param as Address space.
1730
 */
1737
 */
1731
void as_print(as_t *as)
1738
void as_print(as_t *as)
1732
{
1739
{
1733
    ipl_t ipl;
1740
    ipl_t ipl;
1734
   
1741
   
1735
    ipl = interrupts_disable();
1742
    ipl = interrupts_disable();
1736
    mutex_lock(&as->lock);
1743
    mutex_lock(&as->lock);
1737
   
1744
   
1738
    /* print out info about address space areas */
1745
    /* print out info about address space areas */
1739
    link_t *cur;
1746
    link_t *cur;
1740
    for (cur = as->as_area_btree.leaf_head.next;
1747
    for (cur = as->as_area_btree.leaf_head.next;
1741
        cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1748
        cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1742
        btree_node_t *node;
1749
        btree_node_t *node;
1743
       
1750
       
1744
        node = list_get_instance(cur, btree_node_t, leaf_link);
1751
        node = list_get_instance(cur, btree_node_t, leaf_link);
1745
       
1752
       
1746
        int i;
1753
        int i;
1747
        for (i = 0; i < node->keys; i++) {
1754
        for (i = 0; i < node->keys; i++) {
1748
            as_area_t *area = node->value[i];
1755
            as_area_t *area = node->value[i];
1749
       
1756
       
1750
            mutex_lock(&area->lock);
1757
            mutex_lock(&area->lock);
1751
            printf("as_area: %p, base=%p, pages=%d (%p - %p)\n",
1758
            printf("as_area: %p, base=%p, pages=%d (%p - %p)\n",
1752
                area, area->base, area->pages, area->base,
1759
                area, area->base, area->pages, area->base,
1753
                area->base + area->pages*PAGE_SIZE);
1760
                area->base + area->pages*PAGE_SIZE);
1754
            mutex_unlock(&area->lock);
1761
            mutex_unlock(&area->lock);
1755
        }
1762
        }
1756
    }
1763
    }
1757
   
1764
   
1758
    mutex_unlock(&as->lock);
1765
    mutex_unlock(&as->lock);
1759
    interrupts_restore(ipl);
1766
    interrupts_restore(ipl);
1760
}
1767
}
1761
 
1768
 
1762
/** @}
1769
/** @}
1763
 */
1770
 */
1764
 
1771