Subversion Repositories HelenOS

Rev

Rev 2069 | Rev 2087 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 2069 Rev 2071
1
/*
1
/*
2
 * Copyright (C) 2001-2006 Jakub Jermar
2
 * Copyright (c) 2001-2006 Jakub Jermar
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/** @addtogroup genericmm
29
/** @addtogroup genericmm
30
 * @{
30
 * @{
31
 */
31
 */
32
 
32
 
33
/**
33
/**
34
 * @file
34
 * @file
35
 * @brief   Address space related functions.
35
 * @brief   Address space related functions.
36
 *
36
 *
37
 * This file contains address space manipulation functions.
37
 * This file contains address space manipulation functions.
38
 * Roughly speaking, this is a higher-level client of
38
 * Roughly speaking, this is a higher-level client of
39
 * Virtual Address Translation (VAT) subsystem.
39
 * Virtual Address Translation (VAT) subsystem.
40
 *
40
 *
41
 * Functionality provided by this file allows one to
41
 * Functionality provided by this file allows one to
42
 * create address spaces and create, resize and share
42
 * create address spaces and create, resize and share
43
 * address space areas.
43
 * address space areas.
44
 *
44
 *
45
 * @see page.c
45
 * @see page.c
46
 *
46
 *
47
 */
47
 */
48
 
48
 
49
#include <mm/as.h>
49
#include <mm/as.h>
50
#include <arch/mm/as.h>
50
#include <arch/mm/as.h>
51
#include <mm/page.h>
51
#include <mm/page.h>
52
#include <mm/frame.h>
52
#include <mm/frame.h>
53
#include <mm/slab.h>
53
#include <mm/slab.h>
54
#include <mm/tlb.h>
54
#include <mm/tlb.h>
55
#include <arch/mm/page.h>
55
#include <arch/mm/page.h>
56
#include <genarch/mm/page_pt.h>
56
#include <genarch/mm/page_pt.h>
57
#include <genarch/mm/page_ht.h>
57
#include <genarch/mm/page_ht.h>
58
#include <mm/asid.h>
58
#include <mm/asid.h>
59
#include <arch/mm/asid.h>
59
#include <arch/mm/asid.h>
60
#include <synch/spinlock.h>
60
#include <synch/spinlock.h>
61
#include <synch/mutex.h>
61
#include <synch/mutex.h>
62
#include <adt/list.h>
62
#include <adt/list.h>
63
#include <adt/btree.h>
63
#include <adt/btree.h>
64
#include <proc/task.h>
64
#include <proc/task.h>
65
#include <proc/thread.h>
65
#include <proc/thread.h>
66
#include <arch/asm.h>
66
#include <arch/asm.h>
67
#include <panic.h>
67
#include <panic.h>
68
#include <debug.h>
68
#include <debug.h>
69
#include <print.h>
69
#include <print.h>
70
#include <memstr.h>
70
#include <memstr.h>
71
#include <macros.h>
71
#include <macros.h>
72
#include <arch.h>
72
#include <arch.h>
73
#include <errno.h>
73
#include <errno.h>
74
#include <config.h>
74
#include <config.h>
75
#include <align.h>
75
#include <align.h>
76
#include <arch/types.h>
76
#include <arch/types.h>
77
#include <typedefs.h>
77
#include <typedefs.h>
78
#include <syscall/copy.h>
78
#include <syscall/copy.h>
79
#include <arch/interrupt.h>
79
#include <arch/interrupt.h>
80
 
80
 
81
#ifdef CONFIG_VIRT_IDX_DCACHE
81
#ifdef CONFIG_VIRT_IDX_DCACHE
82
#include <arch/mm/cache.h>
82
#include <arch/mm/cache.h>
83
#endif /* CONFIG_VIRT_IDX_DCACHE */
83
#endif /* CONFIG_VIRT_IDX_DCACHE */
84
 
84
 
85
/**
85
/**
86
 * Each architecture decides what functions will be used to carry out
86
 * Each architecture decides what functions will be used to carry out
87
 * address space operations such as creating or locking page tables.
87
 * address space operations such as creating or locking page tables.
88
 */
88
 */
89
as_operations_t *as_operations = NULL;
89
as_operations_t *as_operations = NULL;
90
 
90
 
91
/**
91
/**
92
 * Slab for as_t objects.
92
 * Slab for as_t objects.
93
 */
93
 */
94
static slab_cache_t *as_slab;
94
static slab_cache_t *as_slab;
95
 
95
 
96
/** This lock protects inactive_as_with_asid_head list. It must be acquired before as_t mutex. */
96
/** This lock protects inactive_as_with_asid_head list. It must be acquired before as_t mutex. */
97
SPINLOCK_INITIALIZE(inactive_as_with_asid_lock);
97
SPINLOCK_INITIALIZE(inactive_as_with_asid_lock);
98
 
98
 
99
/**
99
/**
100
 * This list contains address spaces that are not active on any
100
 * This list contains address spaces that are not active on any
101
 * processor and that have valid ASID.
101
 * processor and that have valid ASID.
102
 */
102
 */
103
LIST_INITIALIZE(inactive_as_with_asid_head);
103
LIST_INITIALIZE(inactive_as_with_asid_head);
104
 
104
 
105
/** Kernel address space. */
105
/** Kernel address space. */
106
as_t *AS_KERNEL = NULL;
106
as_t *AS_KERNEL = NULL;
107
 
107
 
108
static int area_flags_to_page_flags(int aflags);
108
static int area_flags_to_page_flags(int aflags);
109
static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
109
static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
110
static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area);
110
static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area);
111
static void sh_info_remove_reference(share_info_t *sh_info);
111
static void sh_info_remove_reference(share_info_t *sh_info);
112
 
112
 
113
static int as_constructor(void *obj, int flags)
113
static int as_constructor(void *obj, int flags)
114
{
114
{
115
    as_t *as = (as_t *) obj;
115
    as_t *as = (as_t *) obj;
116
    int rc;
116
    int rc;
117
 
117
 
118
    link_initialize(&as->inactive_as_with_asid_link);
118
    link_initialize(&as->inactive_as_with_asid_link);
119
    mutex_initialize(&as->lock);   
119
    mutex_initialize(&as->lock);   
120
   
120
   
121
    rc = as_constructor_arch(as, flags);
121
    rc = as_constructor_arch(as, flags);
122
   
122
   
123
    return rc;
123
    return rc;
124
}
124
}
125
 
125
 
126
static int as_destructor(void *obj)
126
static int as_destructor(void *obj)
127
{
127
{
128
    as_t *as = (as_t *) obj;
128
    as_t *as = (as_t *) obj;
129
 
129
 
130
    return as_destructor_arch(as);
130
    return as_destructor_arch(as);
131
}
131
}
132
 
132
 
133
/** Initialize address space subsystem. */
133
/** Initialize address space subsystem. */
134
void as_init(void)
134
void as_init(void)
135
{
135
{
136
    as_arch_init();
136
    as_arch_init();
137
   
137
   
138
    as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
138
    as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
139
        as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
139
        as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
140
   
140
   
141
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
141
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
142
    if (!AS_KERNEL)
142
    if (!AS_KERNEL)
143
        panic("can't create kernel address space\n");
143
        panic("can't create kernel address space\n");
144
   
144
   
145
}
145
}
146
 
146
 
147
/** Create address space.
147
/** Create address space.
148
 *
148
 *
149
 * @param flags Flags that influence way in wich the address space is created.
149
 * @param flags Flags that influence way in wich the address space is created.
150
 */
150
 */
151
as_t *as_create(int flags)
151
as_t *as_create(int flags)
152
{
152
{
153
    as_t *as;
153
    as_t *as;
154
 
154
 
155
    as = (as_t *) slab_alloc(as_slab, 0);
155
    as = (as_t *) slab_alloc(as_slab, 0);
156
    (void) as_create_arch(as, 0);
156
    (void) as_create_arch(as, 0);
157
   
157
   
158
    btree_create(&as->as_area_btree);
158
    btree_create(&as->as_area_btree);
159
   
159
   
160
    if (flags & FLAG_AS_KERNEL)
160
    if (flags & FLAG_AS_KERNEL)
161
        as->asid = ASID_KERNEL;
161
        as->asid = ASID_KERNEL;
162
    else
162
    else
163
        as->asid = ASID_INVALID;
163
        as->asid = ASID_INVALID;
164
   
164
   
165
    as->refcount = 0;
165
    as->refcount = 0;
166
    as->cpu_refcount = 0;
166
    as->cpu_refcount = 0;
167
    as->page_table = page_table_create(flags);
167
    as->page_table = page_table_create(flags);
168
 
168
 
169
    return as;
169
    return as;
170
}
170
}
171
 
171
 
172
/** Destroy adress space.
172
/** Destroy adress space.
173
 *
173
 *
174
 * When there are no tasks referencing this address space (i.e. its refcount is zero),
174
 * When there are no tasks referencing this address space (i.e. its refcount is zero),
175
 * the address space can be destroyed.
175
 * the address space can be destroyed.
176
 */
176
 */
177
void as_destroy(as_t *as)
177
void as_destroy(as_t *as)
178
{
178
{
179
    ipl_t ipl;
179
    ipl_t ipl;
180
    bool cond;
180
    bool cond;
181
 
181
 
182
    ASSERT(as->refcount == 0);
182
    ASSERT(as->refcount == 0);
183
   
183
   
184
    /*
184
    /*
185
     * Since there is no reference to this area,
185
     * Since there is no reference to this area,
186
     * it is safe not to lock its mutex.
186
     * it is safe not to lock its mutex.
187
     */
187
     */
188
    ipl = interrupts_disable();
188
    ipl = interrupts_disable();
189
    spinlock_lock(&inactive_as_with_asid_lock);
189
    spinlock_lock(&inactive_as_with_asid_lock);
190
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
190
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
191
        if (as != AS && as->cpu_refcount == 0)
191
        if (as != AS && as->cpu_refcount == 0)
192
            list_remove(&as->inactive_as_with_asid_link);
192
            list_remove(&as->inactive_as_with_asid_link);
193
        asid_put(as->asid);
193
        asid_put(as->asid);
194
    }
194
    }
195
    spinlock_unlock(&inactive_as_with_asid_lock);
195
    spinlock_unlock(&inactive_as_with_asid_lock);
196
 
196
 
197
    /*
197
    /*
198
     * Destroy address space areas of the address space.
198
     * Destroy address space areas of the address space.
199
     * The B+tree must be walked carefully because it is
199
     * The B+tree must be walked carefully because it is
200
     * also being destroyed.
200
     * also being destroyed.
201
     */
201
     */
202
    for (cond = true; cond; ) {
202
    for (cond = true; cond; ) {
203
        btree_node_t *node;
203
        btree_node_t *node;
204
 
204
 
205
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
205
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
206
        node = list_get_instance(as->as_area_btree.leaf_head.next, btree_node_t, leaf_link);
206
        node = list_get_instance(as->as_area_btree.leaf_head.next, btree_node_t, leaf_link);
207
 
207
 
208
        if ((cond = node->keys)) {
208
        if ((cond = node->keys)) {
209
            as_area_destroy(as, node->key[0]);
209
            as_area_destroy(as, node->key[0]);
210
        }
210
        }
211
    }
211
    }
212
 
212
 
213
    btree_destroy(&as->as_area_btree);
213
    btree_destroy(&as->as_area_btree);
214
    page_table_destroy(as->page_table);
214
    page_table_destroy(as->page_table);
215
 
215
 
216
    interrupts_restore(ipl);
216
    interrupts_restore(ipl);
217
   
217
   
218
    slab_free(as_slab, as);
218
    slab_free(as_slab, as);
219
}
219
}
220
 
220
 
221
/** Create address space area of common attributes.
221
/** Create address space area of common attributes.
222
 *
222
 *
223
 * The created address space area is added to the target address space.
223
 * The created address space area is added to the target address space.
224
 *
224
 *
225
 * @param as Target address space.
225
 * @param as Target address space.
226
 * @param flags Flags of the area memory.
226
 * @param flags Flags of the area memory.
227
 * @param size Size of area.
227
 * @param size Size of area.
228
 * @param base Base address of area.
228
 * @param base Base address of area.
229
 * @param attrs Attributes of the area.
229
 * @param attrs Attributes of the area.
230
 * @param backend Address space area backend. NULL if no backend is used.
230
 * @param backend Address space area backend. NULL if no backend is used.
231
 * @param backend_data NULL or a pointer to an array holding two void *.
231
 * @param backend_data NULL or a pointer to an array holding two void *.
232
 *
232
 *
233
 * @return Address space area on success or NULL on failure.
233
 * @return Address space area on success or NULL on failure.
234
 */
234
 */
235
as_area_t *
235
as_area_t *
236
as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
236
as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
237
           mem_backend_t *backend, mem_backend_data_t *backend_data)
237
           mem_backend_t *backend, mem_backend_data_t *backend_data)
238
{
238
{
239
    ipl_t ipl;
239
    ipl_t ipl;
240
    as_area_t *a;
240
    as_area_t *a;
241
   
241
   
242
    if (base % PAGE_SIZE)
242
    if (base % PAGE_SIZE)
243
        return NULL;
243
        return NULL;
244
 
244
 
245
    if (!size)
245
    if (!size)
246
        return NULL;
246
        return NULL;
247
 
247
 
248
    /* Writeable executable areas are not supported. */
248
    /* Writeable executable areas are not supported. */
249
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
249
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
250
        return NULL;
250
        return NULL;
251
   
251
   
252
    ipl = interrupts_disable();
252
    ipl = interrupts_disable();
253
    mutex_lock(&as->lock);
253
    mutex_lock(&as->lock);
254
   
254
   
255
    if (!check_area_conflicts(as, base, size, NULL)) {
255
    if (!check_area_conflicts(as, base, size, NULL)) {
256
        mutex_unlock(&as->lock);
256
        mutex_unlock(&as->lock);
257
        interrupts_restore(ipl);
257
        interrupts_restore(ipl);
258
        return NULL;
258
        return NULL;
259
    }
259
    }
260
   
260
   
261
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
261
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
262
 
262
 
263
    mutex_initialize(&a->lock);
263
    mutex_initialize(&a->lock);
264
   
264
   
265
    a->as = as;
265
    a->as = as;
266
    a->flags = flags;
266
    a->flags = flags;
267
    a->attributes = attrs;
267
    a->attributes = attrs;
268
    a->pages = SIZE2FRAMES(size);
268
    a->pages = SIZE2FRAMES(size);
269
    a->base = base;
269
    a->base = base;
270
    a->sh_info = NULL;
270
    a->sh_info = NULL;
271
    a->backend = backend;
271
    a->backend = backend;
272
    if (backend_data)
272
    if (backend_data)
273
        a->backend_data = *backend_data;
273
        a->backend_data = *backend_data;
274
    else
274
    else
275
        memsetb((uintptr_t) &a->backend_data, sizeof(a->backend_data), 0);
275
        memsetb((uintptr_t) &a->backend_data, sizeof(a->backend_data), 0);
276
 
276
 
277
    btree_create(&a->used_space);
277
    btree_create(&a->used_space);
278
   
278
   
279
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
279
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
280
 
280
 
281
    mutex_unlock(&as->lock);
281
    mutex_unlock(&as->lock);
282
    interrupts_restore(ipl);
282
    interrupts_restore(ipl);
283
 
283
 
284
    return a;
284
    return a;
285
}
285
}
286
 
286
 
287
/** Find address space area and change it.
287
/** Find address space area and change it.
288
 *
288
 *
289
 * @param as Address space.
289
 * @param as Address space.
290
 * @param address Virtual address belonging to the area to be changed. Must be page-aligned.
290
 * @param address Virtual address belonging to the area to be changed. Must be page-aligned.
291
 * @param size New size of the virtual memory block starting at address.
291
 * @param size New size of the virtual memory block starting at address.
292
 * @param flags Flags influencing the remap operation. Currently unused.
292
 * @param flags Flags influencing the remap operation. Currently unused.
293
 *
293
 *
294
 * @return Zero on success or a value from @ref errno.h otherwise.
294
 * @return Zero on success or a value from @ref errno.h otherwise.
295
 */
295
 */
296
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
296
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
297
{
297
{
298
    as_area_t *area;
298
    as_area_t *area;
299
    ipl_t ipl;
299
    ipl_t ipl;
300
    size_t pages;
300
    size_t pages;
301
   
301
   
302
    ipl = interrupts_disable();
302
    ipl = interrupts_disable();
303
    mutex_lock(&as->lock);
303
    mutex_lock(&as->lock);
304
   
304
   
305
    /*
305
    /*
306
     * Locate the area.
306
     * Locate the area.
307
     */
307
     */
308
    area = find_area_and_lock(as, address);
308
    area = find_area_and_lock(as, address);
309
    if (!area) {
309
    if (!area) {
310
        mutex_unlock(&as->lock);
310
        mutex_unlock(&as->lock);
311
        interrupts_restore(ipl);
311
        interrupts_restore(ipl);
312
        return ENOENT;
312
        return ENOENT;
313
    }
313
    }
314
 
314
 
315
    if (area->backend == &phys_backend) {
315
    if (area->backend == &phys_backend) {
316
        /*
316
        /*
317
         * Remapping of address space areas associated
317
         * Remapping of address space areas associated
318
         * with memory mapped devices is not supported.
318
         * with memory mapped devices is not supported.
319
         */
319
         */
320
        mutex_unlock(&area->lock);
320
        mutex_unlock(&area->lock);
321
        mutex_unlock(&as->lock);
321
        mutex_unlock(&as->lock);
322
        interrupts_restore(ipl);
322
        interrupts_restore(ipl);
323
        return ENOTSUP;
323
        return ENOTSUP;
324
    }
324
    }
325
    if (area->sh_info) {
325
    if (area->sh_info) {
326
        /*
326
        /*
327
         * Remapping of shared address space areas
327
         * Remapping of shared address space areas
328
         * is not supported.
328
         * is not supported.
329
         */
329
         */
330
        mutex_unlock(&area->lock);
330
        mutex_unlock(&area->lock);
331
        mutex_unlock(&as->lock);
331
        mutex_unlock(&as->lock);
332
        interrupts_restore(ipl);
332
        interrupts_restore(ipl);
333
        return ENOTSUP;
333
        return ENOTSUP;
334
    }
334
    }
335
 
335
 
336
    pages = SIZE2FRAMES((address - area->base) + size);
336
    pages = SIZE2FRAMES((address - area->base) + size);
337
    if (!pages) {
337
    if (!pages) {
338
        /*
338
        /*
339
         * Zero size address space areas are not allowed.
339
         * Zero size address space areas are not allowed.
340
         */
340
         */
341
        mutex_unlock(&area->lock);
341
        mutex_unlock(&area->lock);
342
        mutex_unlock(&as->lock);
342
        mutex_unlock(&as->lock);
343
        interrupts_restore(ipl);
343
        interrupts_restore(ipl);
344
        return EPERM;
344
        return EPERM;
345
    }
345
    }
346
   
346
   
347
    if (pages < area->pages) {
347
    if (pages < area->pages) {
348
        bool cond;
348
        bool cond;
349
        uintptr_t start_free = area->base + pages*PAGE_SIZE;
349
        uintptr_t start_free = area->base + pages*PAGE_SIZE;
350
 
350
 
351
        /*
351
        /*
352
         * Shrinking the area.
352
         * Shrinking the area.
353
         * No need to check for overlaps.
353
         * No need to check for overlaps.
354
         */
354
         */
355
 
355
 
356
        /*
356
        /*
357
         * Start TLB shootdown sequence.
357
         * Start TLB shootdown sequence.
358
         */
358
         */
359
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
359
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
360
 
360
 
361
        /*
361
        /*
362
         * Remove frames belonging to used space starting from
362
         * Remove frames belonging to used space starting from
363
         * the highest addresses downwards until an overlap with
363
         * the highest addresses downwards until an overlap with
364
         * the resized address space area is found. Note that this
364
         * the resized address space area is found. Note that this
365
         * is also the right way to remove part of the used_space
365
         * is also the right way to remove part of the used_space
366
         * B+tree leaf list.
366
         * B+tree leaf list.
367
         */    
367
         */    
368
        for (cond = true; cond;) {
368
        for (cond = true; cond;) {
369
            btree_node_t *node;
369
            btree_node_t *node;
370
       
370
       
371
            ASSERT(!list_empty(&area->used_space.leaf_head));
371
            ASSERT(!list_empty(&area->used_space.leaf_head));
372
            node = list_get_instance(area->used_space.leaf_head.prev, btree_node_t, leaf_link);
372
            node = list_get_instance(area->used_space.leaf_head.prev, btree_node_t, leaf_link);
373
            if ((cond = (bool) node->keys)) {
373
            if ((cond = (bool) node->keys)) {
374
                uintptr_t b = node->key[node->keys - 1];
374
                uintptr_t b = node->key[node->keys - 1];
375
                count_t c = (count_t) node->value[node->keys - 1];
375
                count_t c = (count_t) node->value[node->keys - 1];
376
                int i = 0;
376
                int i = 0;
377
           
377
           
378
                if (overlaps(b, c*PAGE_SIZE, area->base, pages*PAGE_SIZE)) {
378
                if (overlaps(b, c*PAGE_SIZE, area->base, pages*PAGE_SIZE)) {
379
                   
379
                   
380
                    if (b + c*PAGE_SIZE <= start_free) {
380
                    if (b + c*PAGE_SIZE <= start_free) {
381
                        /*
381
                        /*
382
                         * The whole interval fits completely
382
                         * The whole interval fits completely
383
                         * in the resized address space area.
383
                         * in the resized address space area.
384
                         */
384
                         */
385
                        break;
385
                        break;
386
                    }
386
                    }
387
       
387
       
388
                    /*
388
                    /*
389
                     * Part of the interval corresponding to b and c
389
                     * Part of the interval corresponding to b and c
390
                     * overlaps with the resized address space area.
390
                     * overlaps with the resized address space area.
391
                     */
391
                     */
392
       
392
       
393
                    cond = false;   /* we are almost done */
393
                    cond = false;   /* we are almost done */
394
                    i = (start_free - b) >> PAGE_WIDTH;
394
                    i = (start_free - b) >> PAGE_WIDTH;
395
                    if (!used_space_remove(area, start_free, c - i))
395
                    if (!used_space_remove(area, start_free, c - i))
396
                        panic("Could not remove used space.\n");
396
                        panic("Could not remove used space.\n");
397
                } else {
397
                } else {
398
                    /*
398
                    /*
399
                     * The interval of used space can be completely removed.
399
                     * The interval of used space can be completely removed.
400
                     */
400
                     */
401
                    if (!used_space_remove(area, b, c))
401
                    if (!used_space_remove(area, b, c))
402
                        panic("Could not remove used space.\n");
402
                        panic("Could not remove used space.\n");
403
                }
403
                }
404
           
404
           
405
                for (; i < c; i++) {
405
                for (; i < c; i++) {
406
                    pte_t *pte;
406
                    pte_t *pte;
407
           
407
           
408
                    page_table_lock(as, false);
408
                    page_table_lock(as, false);
409
                    pte = page_mapping_find(as, b + i*PAGE_SIZE);
409
                    pte = page_mapping_find(as, b + i*PAGE_SIZE);
410
                    ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
410
                    ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
411
                    if (area->backend && area->backend->frame_free) {
411
                    if (area->backend && area->backend->frame_free) {
412
                        area->backend->frame_free(area,
412
                        area->backend->frame_free(area,
413
                            b + i*PAGE_SIZE, PTE_GET_FRAME(pte));
413
                            b + i*PAGE_SIZE, PTE_GET_FRAME(pte));
414
                    }
414
                    }
415
                    page_mapping_remove(as, b + i*PAGE_SIZE);
415
                    page_mapping_remove(as, b + i*PAGE_SIZE);
416
                    page_table_unlock(as, false);
416
                    page_table_unlock(as, false);
417
                }
417
                }
418
            }
418
            }
419
        }
419
        }
420
 
420
 
421
        /*
421
        /*
422
         * Finish TLB shootdown sequence.
422
         * Finish TLB shootdown sequence.
423
         */
423
         */
424
        tlb_invalidate_pages(as->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
424
        tlb_invalidate_pages(as->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
425
        tlb_shootdown_finalize();
425
        tlb_shootdown_finalize();
426
       
426
       
427
        /*
427
        /*
428
         * Invalidate software translation caches (e.g. TSB on sparc64).
428
         * Invalidate software translation caches (e.g. TSB on sparc64).
429
         */
429
         */
430
        as_invalidate_translation_cache(as, area->base + pages*PAGE_SIZE, area->pages - pages);
430
        as_invalidate_translation_cache(as, area->base + pages*PAGE_SIZE, area->pages - pages);
431
    } else {
431
    } else {
432
        /*
432
        /*
433
         * Growing the area.
433
         * Growing the area.
434
         * Check for overlaps with other address space areas.
434
         * Check for overlaps with other address space areas.
435
         */
435
         */
436
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE, area)) {
436
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE, area)) {
437
            mutex_unlock(&area->lock);
437
            mutex_unlock(&area->lock);
438
            mutex_unlock(&as->lock);       
438
            mutex_unlock(&as->lock);       
439
            interrupts_restore(ipl);
439
            interrupts_restore(ipl);
440
            return EADDRNOTAVAIL;
440
            return EADDRNOTAVAIL;
441
        }
441
        }
442
    }
442
    }
443
 
443
 
444
    area->pages = pages;
444
    area->pages = pages;
445
   
445
   
446
    mutex_unlock(&area->lock);
446
    mutex_unlock(&area->lock);
447
    mutex_unlock(&as->lock);
447
    mutex_unlock(&as->lock);
448
    interrupts_restore(ipl);
448
    interrupts_restore(ipl);
449
 
449
 
450
    return 0;
450
    return 0;
451
}
451
}
452
 
452
 
453
/** Destroy address space area.
453
/** Destroy address space area.
454
 *
454
 *
455
 * @param as Address space.
455
 * @param as Address space.
456
 * @param address Address withing the area to be deleted.
456
 * @param address Address withing the area to be deleted.
457
 *
457
 *
458
 * @return Zero on success or a value from @ref errno.h on failure.
458
 * @return Zero on success or a value from @ref errno.h on failure.
459
 */
459
 */
460
int as_area_destroy(as_t *as, uintptr_t address)
460
int as_area_destroy(as_t *as, uintptr_t address)
461
{
461
{
462
    as_area_t *area;
462
    as_area_t *area;
463
    uintptr_t base;
463
    uintptr_t base;
464
    link_t *cur;
464
    link_t *cur;
465
    ipl_t ipl;
465
    ipl_t ipl;
466
 
466
 
467
    ipl = interrupts_disable();
467
    ipl = interrupts_disable();
468
    mutex_lock(&as->lock);
468
    mutex_lock(&as->lock);
469
 
469
 
470
    area = find_area_and_lock(as, address);
470
    area = find_area_and_lock(as, address);
471
    if (!area) {
471
    if (!area) {
472
        mutex_unlock(&as->lock);
472
        mutex_unlock(&as->lock);
473
        interrupts_restore(ipl);
473
        interrupts_restore(ipl);
474
        return ENOENT;
474
        return ENOENT;
475
    }
475
    }
476
 
476
 
477
    base = area->base;
477
    base = area->base;
478
 
478
 
479
    /*
479
    /*
480
     * Start TLB shootdown sequence.
480
     * Start TLB shootdown sequence.
481
     */
481
     */
482
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
482
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
483
 
483
 
484
    /*
484
    /*
485
     * Visit only the pages mapped by used_space B+tree.
485
     * Visit only the pages mapped by used_space B+tree.
486
     */
486
     */
487
    for (cur = area->used_space.leaf_head.next; cur != &area->used_space.leaf_head; cur = cur->next) {
487
    for (cur = area->used_space.leaf_head.next; cur != &area->used_space.leaf_head; cur = cur->next) {
488
        btree_node_t *node;
488
        btree_node_t *node;
489
        int i;
489
        int i;
490
       
490
       
491
        node = list_get_instance(cur, btree_node_t, leaf_link);
491
        node = list_get_instance(cur, btree_node_t, leaf_link);
492
        for (i = 0; i < node->keys; i++) {
492
        for (i = 0; i < node->keys; i++) {
493
            uintptr_t b = node->key[i];
493
            uintptr_t b = node->key[i];
494
            count_t j;
494
            count_t j;
495
            pte_t *pte;
495
            pte_t *pte;
496
           
496
           
497
            for (j = 0; j < (count_t) node->value[i]; j++) {
497
            for (j = 0; j < (count_t) node->value[i]; j++) {
498
                page_table_lock(as, false);
498
                page_table_lock(as, false);
499
                pte = page_mapping_find(as, b + j*PAGE_SIZE);
499
                pte = page_mapping_find(as, b + j*PAGE_SIZE);
500
                ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
500
                ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
501
                if (area->backend && area->backend->frame_free) {
501
                if (area->backend && area->backend->frame_free) {
502
                    area->backend->frame_free(area,
502
                    area->backend->frame_free(area,
503
                        b + j*PAGE_SIZE, PTE_GET_FRAME(pte));
503
                        b + j*PAGE_SIZE, PTE_GET_FRAME(pte));
504
                }
504
                }
505
                page_mapping_remove(as, b + j*PAGE_SIZE);              
505
                page_mapping_remove(as, b + j*PAGE_SIZE);              
506
                page_table_unlock(as, false);
506
                page_table_unlock(as, false);
507
            }
507
            }
508
        }
508
        }
509
    }
509
    }
510
 
510
 
511
    /*
511
    /*
512
     * Finish TLB shootdown sequence.
512
     * Finish TLB shootdown sequence.
513
     */
513
     */
514
    tlb_invalidate_pages(as->asid, area->base, area->pages);
514
    tlb_invalidate_pages(as->asid, area->base, area->pages);
515
    tlb_shootdown_finalize();
515
    tlb_shootdown_finalize();
516
   
516
   
517
    /*
517
    /*
518
     * Invalidate potential software translation caches (e.g. TSB on sparc64).
518
     * Invalidate potential software translation caches (e.g. TSB on sparc64).
519
     */
519
     */
520
    as_invalidate_translation_cache(as, area->base, area->pages);
520
    as_invalidate_translation_cache(as, area->base, area->pages);
521
   
521
   
522
    btree_destroy(&area->used_space);
522
    btree_destroy(&area->used_space);
523
 
523
 
524
    area->attributes |= AS_AREA_ATTR_PARTIAL;
524
    area->attributes |= AS_AREA_ATTR_PARTIAL;
525
   
525
   
526
    if (area->sh_info)
526
    if (area->sh_info)
527
        sh_info_remove_reference(area->sh_info);
527
        sh_info_remove_reference(area->sh_info);
528
       
528
       
529
    mutex_unlock(&area->lock);
529
    mutex_unlock(&area->lock);
530
 
530
 
531
    /*
531
    /*
532
     * Remove the empty area from address space.
532
     * Remove the empty area from address space.
533
     */
533
     */
534
    btree_remove(&as->as_area_btree, base, NULL);
534
    btree_remove(&as->as_area_btree, base, NULL);
535
   
535
   
536
    free(area);
536
    free(area);
537
   
537
   
538
    mutex_unlock(&as->lock);
538
    mutex_unlock(&as->lock);
539
    interrupts_restore(ipl);
539
    interrupts_restore(ipl);
540
    return 0;
540
    return 0;
541
}
541
}
542
 
542
 
543
/** Share address space area with another or the same address space.
543
/** Share address space area with another or the same address space.
544
 *
544
 *
545
 * Address space area mapping is shared with a new address space area.
545
 * Address space area mapping is shared with a new address space area.
546
 * If the source address space area has not been shared so far,
546
 * If the source address space area has not been shared so far,
547
 * a new sh_info is created. The new address space area simply gets the
547
 * a new sh_info is created. The new address space area simply gets the
548
 * sh_info of the source area. The process of duplicating the
548
 * sh_info of the source area. The process of duplicating the
549
 * mapping is done through the backend share function.
549
 * mapping is done through the backend share function.
550
 *
550
 *
551
 * @param src_as Pointer to source address space.
551
 * @param src_as Pointer to source address space.
552
 * @param src_base Base address of the source address space area.
552
 * @param src_base Base address of the source address space area.
553
 * @param acc_size Expected size of the source area.
553
 * @param acc_size Expected size of the source area.
554
 * @param dst_as Pointer to destination address space.
554
 * @param dst_as Pointer to destination address space.
555
 * @param dst_base Target base address.
555
 * @param dst_base Target base address.
556
 * @param dst_flags_mask Destination address space area flags mask.
556
 * @param dst_flags_mask Destination address space area flags mask.
557
 *
557
 *
558
 * @return Zero on success or ENOENT if there is no such task or if there is no
558
 * @return Zero on success or ENOENT if there is no such task or if there is no
559
 * such address space area, EPERM if there was a problem in accepting the area
559
 * such address space area, EPERM if there was a problem in accepting the area
560
 * or ENOMEM if there was a problem in allocating destination address space
560
 * or ENOMEM if there was a problem in allocating destination address space
561
 * area. ENOTSUP is returned if the address space area backend does not support
561
 * area. ENOTSUP is returned if the address space area backend does not support
562
 * sharing or if the kernel detects an attempt to create an illegal address
562
 * sharing or if the kernel detects an attempt to create an illegal address
563
 * alias.
563
 * alias.
564
 */
564
 */
565
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
565
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
566
          as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
566
          as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
567
{
567
{
568
    ipl_t ipl;
568
    ipl_t ipl;
569
    int src_flags;
569
    int src_flags;
570
    size_t src_size;
570
    size_t src_size;
571
    as_area_t *src_area, *dst_area;
571
    as_area_t *src_area, *dst_area;
572
    share_info_t *sh_info;
572
    share_info_t *sh_info;
573
    mem_backend_t *src_backend;
573
    mem_backend_t *src_backend;
574
    mem_backend_data_t src_backend_data;
574
    mem_backend_data_t src_backend_data;
575
   
575
   
576
    ipl = interrupts_disable();
576
    ipl = interrupts_disable();
577
    mutex_lock(&src_as->lock);
577
    mutex_lock(&src_as->lock);
578
    src_area = find_area_and_lock(src_as, src_base);
578
    src_area = find_area_and_lock(src_as, src_base);
579
    if (!src_area) {
579
    if (!src_area) {
580
        /*
580
        /*
581
         * Could not find the source address space area.
581
         * Could not find the source address space area.
582
         */
582
         */
583
        mutex_unlock(&src_as->lock);
583
        mutex_unlock(&src_as->lock);
584
        interrupts_restore(ipl);
584
        interrupts_restore(ipl);
585
        return ENOENT;
585
        return ENOENT;
586
    }
586
    }
587
 
587
 
588
    if (!src_area->backend || !src_area->backend->share) {
588
    if (!src_area->backend || !src_area->backend->share) {
589
        /*
589
        /*
590
         * There is no backend or the backend does not
590
         * There is no backend or the backend does not
591
         * know how to share the area.
591
         * know how to share the area.
592
         */
592
         */
593
        mutex_unlock(&src_area->lock);
593
        mutex_unlock(&src_area->lock);
594
        mutex_unlock(&src_as->lock);
594
        mutex_unlock(&src_as->lock);
595
        interrupts_restore(ipl);
595
        interrupts_restore(ipl);
596
        return ENOTSUP;
596
        return ENOTSUP;
597
    }
597
    }
598
   
598
   
599
    src_size = src_area->pages * PAGE_SIZE;
599
    src_size = src_area->pages * PAGE_SIZE;
600
    src_flags = src_area->flags;
600
    src_flags = src_area->flags;
601
    src_backend = src_area->backend;
601
    src_backend = src_area->backend;
602
    src_backend_data = src_area->backend_data;
602
    src_backend_data = src_area->backend_data;
603
 
603
 
604
    /* Share the cacheable flag from the original mapping */
604
    /* Share the cacheable flag from the original mapping */
605
    if (src_flags & AS_AREA_CACHEABLE)
605
    if (src_flags & AS_AREA_CACHEABLE)
606
        dst_flags_mask |= AS_AREA_CACHEABLE;
606
        dst_flags_mask |= AS_AREA_CACHEABLE;
607
 
607
 
608
    if (src_size != acc_size || (src_flags & dst_flags_mask) != dst_flags_mask) {
608
    if (src_size != acc_size || (src_flags & dst_flags_mask) != dst_flags_mask) {
609
        mutex_unlock(&src_area->lock);
609
        mutex_unlock(&src_area->lock);
610
        mutex_unlock(&src_as->lock);
610
        mutex_unlock(&src_as->lock);
611
        interrupts_restore(ipl);
611
        interrupts_restore(ipl);
612
        return EPERM;
612
        return EPERM;
613
    }
613
    }
614
 
614
 
615
#ifdef CONFIG_VIRT_IDX_DCACHE
615
#ifdef CONFIG_VIRT_IDX_DCACHE
616
    if (!(dst_flags_mask & AS_AREA_EXEC)) {
616
    if (!(dst_flags_mask & AS_AREA_EXEC)) {
617
        if (PAGE_COLOR(src_area->base) != PAGE_COLOR(dst_base)) {
617
        if (PAGE_COLOR(src_area->base) != PAGE_COLOR(dst_base)) {
618
            /*
618
            /*
619
             * Refuse to create an illegal address alias.
619
             * Refuse to create an illegal address alias.
620
             */
620
             */
621
            mutex_unlock(&src_area->lock);
621
            mutex_unlock(&src_area->lock);
622
            mutex_unlock(&src_as->lock);
622
            mutex_unlock(&src_as->lock);
623
            interrupts_restore(ipl);
623
            interrupts_restore(ipl);
624
            return ENOTSUP;
624
            return ENOTSUP;
625
        }
625
        }
626
    }
626
    }
627
#endif /* CONFIG_VIRT_IDX_DCACHE */
627
#endif /* CONFIG_VIRT_IDX_DCACHE */
628
 
628
 
629
    /*
629
    /*
630
     * Now we are committed to sharing the area.
630
     * Now we are committed to sharing the area.
631
     * First, prepare the area for sharing.
631
     * First, prepare the area for sharing.
632
     * Then it will be safe to unlock it.
632
     * Then it will be safe to unlock it.
633
     */
633
     */
634
    sh_info = src_area->sh_info;
634
    sh_info = src_area->sh_info;
635
    if (!sh_info) {
635
    if (!sh_info) {
636
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
636
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
637
        mutex_initialize(&sh_info->lock);
637
        mutex_initialize(&sh_info->lock);
638
        sh_info->refcount = 2;
638
        sh_info->refcount = 2;
639
        btree_create(&sh_info->pagemap);
639
        btree_create(&sh_info->pagemap);
640
        src_area->sh_info = sh_info;
640
        src_area->sh_info = sh_info;
641
    } else {
641
    } else {
642
        mutex_lock(&sh_info->lock);
642
        mutex_lock(&sh_info->lock);
643
        sh_info->refcount++;
643
        sh_info->refcount++;
644
        mutex_unlock(&sh_info->lock);
644
        mutex_unlock(&sh_info->lock);
645
    }
645
    }
646
 
646
 
647
    src_area->backend->share(src_area);
647
    src_area->backend->share(src_area);
648
 
648
 
649
    mutex_unlock(&src_area->lock);
649
    mutex_unlock(&src_area->lock);
650
    mutex_unlock(&src_as->lock);
650
    mutex_unlock(&src_as->lock);
651
 
651
 
652
    /*
652
    /*
653
     * Create copy of the source address space area.
653
     * Create copy of the source address space area.
654
     * The destination area is created with AS_AREA_ATTR_PARTIAL
654
     * The destination area is created with AS_AREA_ATTR_PARTIAL
655
     * attribute set which prevents race condition with
655
     * attribute set which prevents race condition with
656
     * preliminary as_page_fault() calls.
656
     * preliminary as_page_fault() calls.
657
     * The flags of the source area are masked against dst_flags_mask
657
     * The flags of the source area are masked against dst_flags_mask
658
     * to support sharing in less privileged mode.
658
     * to support sharing in less privileged mode.
659
     */
659
     */
660
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
660
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
661
                  AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
661
                  AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
662
    if (!dst_area) {
662
    if (!dst_area) {
663
        /*
663
        /*
664
         * Destination address space area could not be created.
664
         * Destination address space area could not be created.
665
         */
665
         */
666
        sh_info_remove_reference(sh_info);
666
        sh_info_remove_reference(sh_info);
667
       
667
       
668
        interrupts_restore(ipl);
668
        interrupts_restore(ipl);
669
        return ENOMEM;
669
        return ENOMEM;
670
    }
670
    }
671
 
671
 
672
    /*
672
    /*
673
     * Now the destination address space area has been
673
     * Now the destination address space area has been
674
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
674
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
675
     * attribute and set the sh_info.
675
     * attribute and set the sh_info.
676
     */
676
     */
677
    mutex_lock(&dst_as->lock); 
677
    mutex_lock(&dst_as->lock); 
678
    mutex_lock(&dst_area->lock);
678
    mutex_lock(&dst_area->lock);
679
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
679
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
680
    dst_area->sh_info = sh_info;
680
    dst_area->sh_info = sh_info;
681
    mutex_unlock(&dst_area->lock);
681
    mutex_unlock(&dst_area->lock);
682
    mutex_unlock(&dst_as->lock);   
682
    mutex_unlock(&dst_as->lock);   
683
 
683
 
684
    interrupts_restore(ipl);
684
    interrupts_restore(ipl);
685
   
685
   
686
    return 0;
686
    return 0;
687
}
687
}
688
 
688
 
689
/** Check access mode for address space area.
689
/** Check access mode for address space area.
690
 *
690
 *
691
 * The address space area must be locked prior to this call.
691
 * The address space area must be locked prior to this call.
692
 *
692
 *
693
 * @param area Address space area.
693
 * @param area Address space area.
694
 * @param access Access mode.
694
 * @param access Access mode.
695
 *
695
 *
696
 * @return False if access violates area's permissions, true otherwise.
696
 * @return False if access violates area's permissions, true otherwise.
697
 */
697
 */
698
bool as_area_check_access(as_area_t *area, pf_access_t access)
698
bool as_area_check_access(as_area_t *area, pf_access_t access)
699
{
699
{
700
    int flagmap[] = {
700
    int flagmap[] = {
701
        [PF_ACCESS_READ] = AS_AREA_READ,
701
        [PF_ACCESS_READ] = AS_AREA_READ,
702
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
702
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
703
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
703
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
704
    };
704
    };
705
 
705
 
706
    if (!(area->flags & flagmap[access]))
706
    if (!(area->flags & flagmap[access]))
707
        return false;
707
        return false;
708
   
708
   
709
    return true;
709
    return true;
710
}
710
}
711
 
711
 
712
/** Handle page fault within the current address space.
712
/** Handle page fault within the current address space.
713
 *
713
 *
714
 * This is the high-level page fault handler. It decides
714
 * This is the high-level page fault handler. It decides
715
 * whether the page fault can be resolved by any backend
715
 * whether the page fault can be resolved by any backend
716
 * and if so, it invokes the backend to resolve the page
716
 * and if so, it invokes the backend to resolve the page
717
 * fault.
717
 * fault.
718
 *
718
 *
719
 * Interrupts are assumed disabled.
719
 * Interrupts are assumed disabled.
720
 *
720
 *
721
 * @param page Faulting page.
721
 * @param page Faulting page.
722
 * @param access Access mode that caused the fault (i.e. read/write/exec).
722
 * @param access Access mode that caused the fault (i.e. read/write/exec).
723
 * @param istate Pointer to interrupted state.
723
 * @param istate Pointer to interrupted state.
724
 *
724
 *
725
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
725
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
726
 *     fault was caused by copy_to_uspace() or copy_from_uspace().
726
 *     fault was caused by copy_to_uspace() or copy_from_uspace().
727
 */
727
 */
728
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
728
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
729
{
729
{
730
    pte_t *pte;
730
    pte_t *pte;
731
    as_area_t *area;
731
    as_area_t *area;
732
   
732
   
733
    if (!THREAD)
733
    if (!THREAD)
734
        return AS_PF_FAULT;
734
        return AS_PF_FAULT;
735
       
735
       
736
    ASSERT(AS);
736
    ASSERT(AS);
737
 
737
 
738
    mutex_lock(&AS->lock);
738
    mutex_lock(&AS->lock);
739
    area = find_area_and_lock(AS, page);   
739
    area = find_area_and_lock(AS, page);   
740
    if (!area) {
740
    if (!area) {
741
        /*
741
        /*
742
         * No area contained mapping for 'page'.
742
         * No area contained mapping for 'page'.
743
         * Signal page fault to low-level handler.
743
         * Signal page fault to low-level handler.
744
         */
744
         */
745
        mutex_unlock(&AS->lock);
745
        mutex_unlock(&AS->lock);
746
        goto page_fault;
746
        goto page_fault;
747
    }
747
    }
748
 
748
 
749
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
749
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
750
        /*
750
        /*
751
         * The address space area is not fully initialized.
751
         * The address space area is not fully initialized.
752
         * Avoid possible race by returning error.
752
         * Avoid possible race by returning error.
753
         */
753
         */
754
        mutex_unlock(&area->lock);
754
        mutex_unlock(&area->lock);
755
        mutex_unlock(&AS->lock);
755
        mutex_unlock(&AS->lock);
756
        goto page_fault;       
756
        goto page_fault;       
757
    }
757
    }
758
 
758
 
759
    if (!area->backend || !area->backend->page_fault) {
759
    if (!area->backend || !area->backend->page_fault) {
760
        /*
760
        /*
761
         * The address space area is not backed by any backend
761
         * The address space area is not backed by any backend
762
         * or the backend cannot handle page faults.
762
         * or the backend cannot handle page faults.
763
         */
763
         */
764
        mutex_unlock(&area->lock);
764
        mutex_unlock(&area->lock);
765
        mutex_unlock(&AS->lock);
765
        mutex_unlock(&AS->lock);
766
        goto page_fault;       
766
        goto page_fault;       
767
    }
767
    }
768
 
768
 
769
    page_table_lock(AS, false);
769
    page_table_lock(AS, false);
770
   
770
   
771
    /*
771
    /*
772
     * To avoid race condition between two page faults
772
     * To avoid race condition between two page faults
773
     * on the same address, we need to make sure
773
     * on the same address, we need to make sure
774
     * the mapping has not been already inserted.
774
     * the mapping has not been already inserted.
775
     */
775
     */
776
    if ((pte = page_mapping_find(AS, page))) {
776
    if ((pte = page_mapping_find(AS, page))) {
777
        if (PTE_PRESENT(pte)) {
777
        if (PTE_PRESENT(pte)) {
778
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
778
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
779
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
779
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
780
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
780
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
781
                page_table_unlock(AS, false);
781
                page_table_unlock(AS, false);
782
                mutex_unlock(&area->lock);
782
                mutex_unlock(&area->lock);
783
                mutex_unlock(&AS->lock);
783
                mutex_unlock(&AS->lock);
784
                return AS_PF_OK;
784
                return AS_PF_OK;
785
            }
785
            }
786
        }
786
        }
787
    }
787
    }
788
   
788
   
789
    /*
789
    /*
790
     * Resort to the backend page fault handler.
790
     * Resort to the backend page fault handler.
791
     */
791
     */
792
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
792
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
793
        page_table_unlock(AS, false);
793
        page_table_unlock(AS, false);
794
        mutex_unlock(&area->lock);
794
        mutex_unlock(&area->lock);
795
        mutex_unlock(&AS->lock);
795
        mutex_unlock(&AS->lock);
796
        goto page_fault;
796
        goto page_fault;
797
    }
797
    }
798
   
798
   
799
    page_table_unlock(AS, false);
799
    page_table_unlock(AS, false);
800
    mutex_unlock(&area->lock);
800
    mutex_unlock(&area->lock);
801
    mutex_unlock(&AS->lock);
801
    mutex_unlock(&AS->lock);
802
    return AS_PF_OK;
802
    return AS_PF_OK;
803
 
803
 
804
page_fault:
804
page_fault:
805
    if (THREAD->in_copy_from_uspace) {
805
    if (THREAD->in_copy_from_uspace) {
806
        THREAD->in_copy_from_uspace = false;
806
        THREAD->in_copy_from_uspace = false;
807
        istate_set_retaddr(istate, (uintptr_t) &memcpy_from_uspace_failover_address);
807
        istate_set_retaddr(istate, (uintptr_t) &memcpy_from_uspace_failover_address);
808
    } else if (THREAD->in_copy_to_uspace) {
808
    } else if (THREAD->in_copy_to_uspace) {
809
        THREAD->in_copy_to_uspace = false;
809
        THREAD->in_copy_to_uspace = false;
810
        istate_set_retaddr(istate, (uintptr_t) &memcpy_to_uspace_failover_address);
810
        istate_set_retaddr(istate, (uintptr_t) &memcpy_to_uspace_failover_address);
811
    } else {
811
    } else {
812
        return AS_PF_FAULT;
812
        return AS_PF_FAULT;
813
    }
813
    }
814
 
814
 
815
    return AS_PF_DEFER;
815
    return AS_PF_DEFER;
816
}
816
}
817
 
817
 
818
/** Switch address spaces.
818
/** Switch address spaces.
819
 *
819
 *
820
 * Note that this function cannot sleep as it is essentially a part of
820
 * Note that this function cannot sleep as it is essentially a part of
821
 * scheduling. Sleeping here would lead to deadlock on wakeup.
821
 * scheduling. Sleeping here would lead to deadlock on wakeup.
822
 *
822
 *
823
 * @param old Old address space or NULL.
823
 * @param old Old address space or NULL.
824
 * @param new New address space.
824
 * @param new New address space.
825
 */
825
 */
826
void as_switch(as_t *old, as_t *new)
826
void as_switch(as_t *old, as_t *new)
827
{
827
{
828
    ipl_t ipl;
828
    ipl_t ipl;
829
    bool needs_asid = false;
829
    bool needs_asid = false;
830
   
830
   
831
    ipl = interrupts_disable();
831
    ipl = interrupts_disable();
832
    spinlock_lock(&inactive_as_with_asid_lock);
832
    spinlock_lock(&inactive_as_with_asid_lock);
833
 
833
 
834
    /*
834
    /*
835
     * First, take care of the old address space.
835
     * First, take care of the old address space.
836
     */
836
     */
837
    if (old) {
837
    if (old) {
838
        mutex_lock_active(&old->lock);
838
        mutex_lock_active(&old->lock);
839
        ASSERT(old->cpu_refcount);
839
        ASSERT(old->cpu_refcount);
840
        if((--old->cpu_refcount == 0) && (old != AS_KERNEL)) {
840
        if((--old->cpu_refcount == 0) && (old != AS_KERNEL)) {
841
            /*
841
            /*
842
             * The old address space is no longer active on
842
             * The old address space is no longer active on
843
             * any processor. It can be appended to the
843
             * any processor. It can be appended to the
844
             * list of inactive address spaces with assigned
844
             * list of inactive address spaces with assigned
845
             * ASID.
845
             * ASID.
846
             */
846
             */
847
             ASSERT(old->asid != ASID_INVALID);
847
             ASSERT(old->asid != ASID_INVALID);
848
             list_append(&old->inactive_as_with_asid_link, &inactive_as_with_asid_head);
848
             list_append(&old->inactive_as_with_asid_link, &inactive_as_with_asid_head);
849
        }
849
        }
850
        mutex_unlock(&old->lock);
850
        mutex_unlock(&old->lock);
851
 
851
 
852
        /*
852
        /*
853
         * Perform architecture-specific tasks when the address space
853
         * Perform architecture-specific tasks when the address space
854
         * is being removed from the CPU.
854
         * is being removed from the CPU.
855
         */
855
         */
856
        as_deinstall_arch(old);
856
        as_deinstall_arch(old);
857
    }
857
    }
858
 
858
 
859
    /*
859
    /*
860
     * Second, prepare the new address space.
860
     * Second, prepare the new address space.
861
     */
861
     */
862
    mutex_lock_active(&new->lock);
862
    mutex_lock_active(&new->lock);
863
    if ((new->cpu_refcount++ == 0) && (new != AS_KERNEL)) {
863
    if ((new->cpu_refcount++ == 0) && (new != AS_KERNEL)) {
864
        if (new->asid != ASID_INVALID)
864
        if (new->asid != ASID_INVALID)
865
            list_remove(&new->inactive_as_with_asid_link);
865
            list_remove(&new->inactive_as_with_asid_link);
866
        else
866
        else
867
            needs_asid = true;  /* defer call to asid_get() until new->lock is released */
867
            needs_asid = true;  /* defer call to asid_get() until new->lock is released */
868
    }
868
    }
869
    SET_PTL0_ADDRESS(new->page_table);
869
    SET_PTL0_ADDRESS(new->page_table);
870
    mutex_unlock(&new->lock);
870
    mutex_unlock(&new->lock);
871
 
871
 
872
    if (needs_asid) {
872
    if (needs_asid) {
873
        /*
873
        /*
874
         * Allocation of new ASID was deferred
874
         * Allocation of new ASID was deferred
875
         * until now in order to avoid deadlock.
875
         * until now in order to avoid deadlock.
876
         */
876
         */
877
        asid_t asid;
877
        asid_t asid;
878
       
878
       
879
        asid = asid_get();
879
        asid = asid_get();
880
        mutex_lock_active(&new->lock);
880
        mutex_lock_active(&new->lock);
881
        new->asid = asid;
881
        new->asid = asid;
882
        mutex_unlock(&new->lock);
882
        mutex_unlock(&new->lock);
883
    }
883
    }
884
    spinlock_unlock(&inactive_as_with_asid_lock);
884
    spinlock_unlock(&inactive_as_with_asid_lock);
885
    interrupts_restore(ipl);
885
    interrupts_restore(ipl);
886
   
886
   
887
    /*
887
    /*
888
     * Perform architecture-specific steps.
888
     * Perform architecture-specific steps.
889
     * (e.g. write ASID to hardware register etc.)
889
     * (e.g. write ASID to hardware register etc.)
890
     */
890
     */
891
    as_install_arch(new);
891
    as_install_arch(new);
892
   
892
   
893
    AS = new;
893
    AS = new;
894
}
894
}
895
 
895
 
896
/** Convert address space area flags to page flags.
896
/** Convert address space area flags to page flags.
897
 *
897
 *
898
 * @param aflags Flags of some address space area.
898
 * @param aflags Flags of some address space area.
899
 *
899
 *
900
 * @return Flags to be passed to page_mapping_insert().
900
 * @return Flags to be passed to page_mapping_insert().
901
 */
901
 */
902
int area_flags_to_page_flags(int aflags)
902
int area_flags_to_page_flags(int aflags)
903
{
903
{
904
    int flags;
904
    int flags;
905
 
905
 
906
    flags = PAGE_USER | PAGE_PRESENT;
906
    flags = PAGE_USER | PAGE_PRESENT;
907
   
907
   
908
    if (aflags & AS_AREA_READ)
908
    if (aflags & AS_AREA_READ)
909
        flags |= PAGE_READ;
909
        flags |= PAGE_READ;
910
       
910
       
911
    if (aflags & AS_AREA_WRITE)
911
    if (aflags & AS_AREA_WRITE)
912
        flags |= PAGE_WRITE;
912
        flags |= PAGE_WRITE;
913
   
913
   
914
    if (aflags & AS_AREA_EXEC)
914
    if (aflags & AS_AREA_EXEC)
915
        flags |= PAGE_EXEC;
915
        flags |= PAGE_EXEC;
916
   
916
   
917
    if (aflags & AS_AREA_CACHEABLE)
917
    if (aflags & AS_AREA_CACHEABLE)
918
        flags |= PAGE_CACHEABLE;
918
        flags |= PAGE_CACHEABLE;
919
       
919
       
920
    return flags;
920
    return flags;
921
}
921
}
922
 
922
 
923
/** Compute flags for virtual address translation subsytem.
923
/** Compute flags for virtual address translation subsytem.
924
 *
924
 *
925
 * The address space area must be locked.
925
 * The address space area must be locked.
926
 * Interrupts must be disabled.
926
 * Interrupts must be disabled.
927
 *
927
 *
928
 * @param a Address space area.
928
 * @param a Address space area.
929
 *
929
 *
930
 * @return Flags to be used in page_mapping_insert().
930
 * @return Flags to be used in page_mapping_insert().
931
 */
931
 */
932
int as_area_get_flags(as_area_t *a)
932
int as_area_get_flags(as_area_t *a)
933
{
933
{
934
    return area_flags_to_page_flags(a->flags);
934
    return area_flags_to_page_flags(a->flags);
935
}
935
}
936
 
936
 
937
/** Create page table.
937
/** Create page table.
938
 *
938
 *
939
 * Depending on architecture, create either address space
939
 * Depending on architecture, create either address space
940
 * private or global page table.
940
 * private or global page table.
941
 *
941
 *
942
 * @param flags Flags saying whether the page table is for kernel address space.
942
 * @param flags Flags saying whether the page table is for kernel address space.
943
 *
943
 *
944
 * @return First entry of the page table.
944
 * @return First entry of the page table.
945
 */
945
 */
946
pte_t *page_table_create(int flags)
946
pte_t *page_table_create(int flags)
947
{
947
{
948
        ASSERT(as_operations);
948
        ASSERT(as_operations);
949
        ASSERT(as_operations->page_table_create);
949
        ASSERT(as_operations->page_table_create);
950
 
950
 
951
        return as_operations->page_table_create(flags);
951
        return as_operations->page_table_create(flags);
952
}
952
}
953
 
953
 
954
/** Destroy page table.
954
/** Destroy page table.
955
 *
955
 *
956
 * Destroy page table in architecture specific way.
956
 * Destroy page table in architecture specific way.
957
 *
957
 *
958
 * @param page_table Physical address of PTL0.
958
 * @param page_table Physical address of PTL0.
959
 */
959
 */
960
void page_table_destroy(pte_t *page_table)
960
void page_table_destroy(pte_t *page_table)
961
{
961
{
962
        ASSERT(as_operations);
962
        ASSERT(as_operations);
963
        ASSERT(as_operations->page_table_destroy);
963
        ASSERT(as_operations->page_table_destroy);
964
 
964
 
965
        as_operations->page_table_destroy(page_table);
965
        as_operations->page_table_destroy(page_table);
966
}
966
}
967
 
967
 
968
/** Lock page table.
968
/** Lock page table.
969
 *
969
 *
970
 * This function should be called before any page_mapping_insert(),
970
 * This function should be called before any page_mapping_insert(),
971
 * page_mapping_remove() and page_mapping_find().
971
 * page_mapping_remove() and page_mapping_find().
972
 *
972
 *
973
 * Locking order is such that address space areas must be locked
973
 * Locking order is such that address space areas must be locked
974
 * prior to this call. Address space can be locked prior to this
974
 * prior to this call. Address space can be locked prior to this
975
 * call in which case the lock argument is false.
975
 * call in which case the lock argument is false.
976
 *
976
 *
977
 * @param as Address space.
977
 * @param as Address space.
978
 * @param lock If false, do not attempt to lock as->lock.
978
 * @param lock If false, do not attempt to lock as->lock.
979
 */
979
 */
980
void page_table_lock(as_t *as, bool lock)
980
void page_table_lock(as_t *as, bool lock)
981
{
981
{
982
    ASSERT(as_operations);
982
    ASSERT(as_operations);
983
    ASSERT(as_operations->page_table_lock);
983
    ASSERT(as_operations->page_table_lock);
984
 
984
 
985
    as_operations->page_table_lock(as, lock);
985
    as_operations->page_table_lock(as, lock);
986
}
986
}
987
 
987
 
988
/** Unlock page table.
988
/** Unlock page table.
989
 *
989
 *
990
 * @param as Address space.
990
 * @param as Address space.
991
 * @param unlock If false, do not attempt to unlock as->lock.
991
 * @param unlock If false, do not attempt to unlock as->lock.
992
 */
992
 */
993
void page_table_unlock(as_t *as, bool unlock)
993
void page_table_unlock(as_t *as, bool unlock)
994
{
994
{
995
    ASSERT(as_operations);
995
    ASSERT(as_operations);
996
    ASSERT(as_operations->page_table_unlock);
996
    ASSERT(as_operations->page_table_unlock);
997
 
997
 
998
    as_operations->page_table_unlock(as, unlock);
998
    as_operations->page_table_unlock(as, unlock);
999
}
999
}
1000
 
1000
 
1001
 
1001
 
1002
/** Find address space area and lock it.
1002
/** Find address space area and lock it.
1003
 *
1003
 *
1004
 * The address space must be locked and interrupts must be disabled.
1004
 * The address space must be locked and interrupts must be disabled.
1005
 *
1005
 *
1006
 * @param as Address space.
1006
 * @param as Address space.
1007
 * @param va Virtual address.
1007
 * @param va Virtual address.
1008
 *
1008
 *
1009
 * @return Locked address space area containing va on success or NULL on failure.
1009
 * @return Locked address space area containing va on success or NULL on failure.
1010
 */
1010
 */
1011
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1011
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1012
{
1012
{
1013
    as_area_t *a;
1013
    as_area_t *a;
1014
    btree_node_t *leaf, *lnode;
1014
    btree_node_t *leaf, *lnode;
1015
    int i;
1015
    int i;
1016
   
1016
   
1017
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1017
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1018
    if (a) {
1018
    if (a) {
1019
        /* va is the base address of an address space area */
1019
        /* va is the base address of an address space area */
1020
        mutex_lock(&a->lock);
1020
        mutex_lock(&a->lock);
1021
        return a;
1021
        return a;
1022
    }
1022
    }
1023
   
1023
   
1024
    /*
1024
    /*
1025
     * Search the leaf node and the righmost record of its left neighbour
1025
     * Search the leaf node and the righmost record of its left neighbour
1026
     * to find out whether this is a miss or va belongs to an address
1026
     * to find out whether this is a miss or va belongs to an address
1027
     * space area found there.
1027
     * space area found there.
1028
     */
1028
     */
1029
   
1029
   
1030
    /* First, search the leaf node itself. */
1030
    /* First, search the leaf node itself. */
1031
    for (i = 0; i < leaf->keys; i++) {
1031
    for (i = 0; i < leaf->keys; i++) {
1032
        a = (as_area_t *) leaf->value[i];
1032
        a = (as_area_t *) leaf->value[i];
1033
        mutex_lock(&a->lock);
1033
        mutex_lock(&a->lock);
1034
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1034
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1035
            return a;
1035
            return a;
1036
        }
1036
        }
1037
        mutex_unlock(&a->lock);
1037
        mutex_unlock(&a->lock);
1038
    }
1038
    }
1039
 
1039
 
1040
    /*
1040
    /*
1041
     * Second, locate the left neighbour and test its last record.
1041
     * Second, locate the left neighbour and test its last record.
1042
     * Because of its position in the B+tree, it must have base < va.
1042
     * Because of its position in the B+tree, it must have base < va.
1043
     */
1043
     */
1044
    if ((lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1044
    if ((lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1045
        a = (as_area_t *) lnode->value[lnode->keys - 1];
1045
        a = (as_area_t *) lnode->value[lnode->keys - 1];
1046
        mutex_lock(&a->lock);
1046
        mutex_lock(&a->lock);
1047
        if (va < a->base + a->pages * PAGE_SIZE) {
1047
        if (va < a->base + a->pages * PAGE_SIZE) {
1048
            return a;
1048
            return a;
1049
        }
1049
        }
1050
        mutex_unlock(&a->lock);
1050
        mutex_unlock(&a->lock);
1051
    }
1051
    }
1052
 
1052
 
1053
    return NULL;
1053
    return NULL;
1054
}
1054
}
1055
 
1055
 
1056
/** Check area conflicts with other areas.
1056
/** Check area conflicts with other areas.
1057
 *
1057
 *
1058
 * The address space must be locked and interrupts must be disabled.
1058
 * The address space must be locked and interrupts must be disabled.
1059
 *
1059
 *
1060
 * @param as Address space.
1060
 * @param as Address space.
1061
 * @param va Starting virtual address of the area being tested.
1061
 * @param va Starting virtual address of the area being tested.
1062
 * @param size Size of the area being tested.
1062
 * @param size Size of the area being tested.
1063
 * @param avoid_area Do not touch this area.
1063
 * @param avoid_area Do not touch this area.
1064
 *
1064
 *
1065
 * @return True if there is no conflict, false otherwise.
1065
 * @return True if there is no conflict, false otherwise.
1066
 */
1066
 */
1067
bool check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area)
1067
bool check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area)
1068
{
1068
{
1069
    as_area_t *a;
1069
    as_area_t *a;
1070
    btree_node_t *leaf, *node;
1070
    btree_node_t *leaf, *node;
1071
    int i;
1071
    int i;
1072
   
1072
   
1073
    /*
1073
    /*
1074
     * We don't want any area to have conflicts with NULL page.
1074
     * We don't want any area to have conflicts with NULL page.
1075
     */
1075
     */
1076
    if (overlaps(va, size, NULL, PAGE_SIZE))
1076
    if (overlaps(va, size, NULL, PAGE_SIZE))
1077
        return false;
1077
        return false;
1078
   
1078
   
1079
    /*
1079
    /*
1080
     * The leaf node is found in O(log n), where n is proportional to
1080
     * The leaf node is found in O(log n), where n is proportional to
1081
     * the number of address space areas belonging to as.
1081
     * the number of address space areas belonging to as.
1082
     * The check for conflicts is then attempted on the rightmost
1082
     * The check for conflicts is then attempted on the rightmost
1083
     * record in the left neighbour, the leftmost record in the right
1083
     * record in the left neighbour, the leftmost record in the right
1084
     * neighbour and all records in the leaf node itself.
1084
     * neighbour and all records in the leaf node itself.
1085
     */
1085
     */
1086
   
1086
   
1087
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1087
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1088
        if (a != avoid_area)
1088
        if (a != avoid_area)
1089
            return false;
1089
            return false;
1090
    }
1090
    }
1091
   
1091
   
1092
    /* First, check the two border cases. */
1092
    /* First, check the two border cases. */
1093
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1093
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1094
        a = (as_area_t *) node->value[node->keys - 1];
1094
        a = (as_area_t *) node->value[node->keys - 1];
1095
        mutex_lock(&a->lock);
1095
        mutex_lock(&a->lock);
1096
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1096
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1097
            mutex_unlock(&a->lock);
1097
            mutex_unlock(&a->lock);
1098
            return false;
1098
            return false;
1099
        }
1099
        }
1100
        mutex_unlock(&a->lock);
1100
        mutex_unlock(&a->lock);
1101
    }
1101
    }
1102
    if ((node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf))) {
1102
    if ((node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf))) {
1103
        a = (as_area_t *) node->value[0];
1103
        a = (as_area_t *) node->value[0];
1104
        mutex_lock(&a->lock);
1104
        mutex_lock(&a->lock);
1105
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1105
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1106
            mutex_unlock(&a->lock);
1106
            mutex_unlock(&a->lock);
1107
            return false;
1107
            return false;
1108
        }
1108
        }
1109
        mutex_unlock(&a->lock);
1109
        mutex_unlock(&a->lock);
1110
    }
1110
    }
1111
   
1111
   
1112
    /* Second, check the leaf node. */
1112
    /* Second, check the leaf node. */
1113
    for (i = 0; i < leaf->keys; i++) {
1113
    for (i = 0; i < leaf->keys; i++) {
1114
        a = (as_area_t *) leaf->value[i];
1114
        a = (as_area_t *) leaf->value[i];
1115
   
1115
   
1116
        if (a == avoid_area)
1116
        if (a == avoid_area)
1117
            continue;
1117
            continue;
1118
   
1118
   
1119
        mutex_lock(&a->lock);
1119
        mutex_lock(&a->lock);
1120
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1120
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1121
            mutex_unlock(&a->lock);
1121
            mutex_unlock(&a->lock);
1122
            return false;
1122
            return false;
1123
        }
1123
        }
1124
        mutex_unlock(&a->lock);
1124
        mutex_unlock(&a->lock);
1125
    }
1125
    }
1126
 
1126
 
1127
    /*
1127
    /*
1128
     * So far, the area does not conflict with other areas.
1128
     * So far, the area does not conflict with other areas.
1129
     * Check if it doesn't conflict with kernel address space.
1129
     * Check if it doesn't conflict with kernel address space.
1130
     */  
1130
     */  
1131
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1131
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1132
        return !overlaps(va, size,
1132
        return !overlaps(va, size,
1133
            KERNEL_ADDRESS_SPACE_START, KERNEL_ADDRESS_SPACE_END-KERNEL_ADDRESS_SPACE_START);
1133
            KERNEL_ADDRESS_SPACE_START, KERNEL_ADDRESS_SPACE_END-KERNEL_ADDRESS_SPACE_START);
1134
    }
1134
    }
1135
 
1135
 
1136
    return true;
1136
    return true;
1137
}
1137
}
1138
 
1138
 
1139
/** Return size of the address space area with given base.  */
1139
/** Return size of the address space area with given base.  */
1140
size_t as_get_size(uintptr_t base)
1140
size_t as_get_size(uintptr_t base)
1141
{
1141
{
1142
    ipl_t ipl;
1142
    ipl_t ipl;
1143
    as_area_t *src_area;
1143
    as_area_t *src_area;
1144
    size_t size;
1144
    size_t size;
1145
 
1145
 
1146
    ipl = interrupts_disable();
1146
    ipl = interrupts_disable();
1147
    src_area = find_area_and_lock(AS, base);
1147
    src_area = find_area_and_lock(AS, base);
1148
    if (src_area){
1148
    if (src_area){
1149
        size = src_area->pages * PAGE_SIZE;
1149
        size = src_area->pages * PAGE_SIZE;
1150
        mutex_unlock(&src_area->lock);
1150
        mutex_unlock(&src_area->lock);
1151
    } else {
1151
    } else {
1152
        size = 0;
1152
        size = 0;
1153
    }
1153
    }
1154
    interrupts_restore(ipl);
1154
    interrupts_restore(ipl);
1155
    return size;
1155
    return size;
1156
}
1156
}
1157
 
1157
 
1158
/** Mark portion of address space area as used.
1158
/** Mark portion of address space area as used.
1159
 *
1159
 *
1160
 * The address space area must be already locked.
1160
 * The address space area must be already locked.
1161
 *
1161
 *
1162
 * @param a Address space area.
1162
 * @param a Address space area.
1163
 * @param page First page to be marked.
1163
 * @param page First page to be marked.
1164
 * @param count Number of page to be marked.
1164
 * @param count Number of page to be marked.
1165
 *
1165
 *
1166
 * @return 0 on failure and 1 on success.
1166
 * @return 0 on failure and 1 on success.
1167
 */
1167
 */
1168
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1168
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1169
{
1169
{
1170
    btree_node_t *leaf, *node;
1170
    btree_node_t *leaf, *node;
1171
    count_t pages;
1171
    count_t pages;
1172
    int i;
1172
    int i;
1173
 
1173
 
1174
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1174
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1175
    ASSERT(count);
1175
    ASSERT(count);
1176
 
1176
 
1177
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1177
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1178
    if (pages) {
1178
    if (pages) {
1179
        /*
1179
        /*
1180
         * We hit the beginning of some used space.
1180
         * We hit the beginning of some used space.
1181
         */
1181
         */
1182
        return 0;
1182
        return 0;
1183
    }
1183
    }
1184
 
1184
 
1185
    if (!leaf->keys) {
1185
    if (!leaf->keys) {
1186
        btree_insert(&a->used_space, page, (void *) count, leaf);
1186
        btree_insert(&a->used_space, page, (void *) count, leaf);
1187
        return 1;
1187
        return 1;
1188
    }
1188
    }
1189
 
1189
 
1190
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1190
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1191
    if (node) {
1191
    if (node) {
1192
        uintptr_t left_pg = node->key[node->keys - 1], right_pg = leaf->key[0];
1192
        uintptr_t left_pg = node->key[node->keys - 1], right_pg = leaf->key[0];
1193
        count_t left_cnt = (count_t) node->value[node->keys - 1], right_cnt = (count_t) leaf->value[0];
1193
        count_t left_cnt = (count_t) node->value[node->keys - 1], right_cnt = (count_t) leaf->value[0];
1194
       
1194
       
1195
        /*
1195
        /*
1196
         * Examine the possibility that the interval fits
1196
         * Examine the possibility that the interval fits
1197
         * somewhere between the rightmost interval of
1197
         * somewhere between the rightmost interval of
1198
         * the left neigbour and the first interval of the leaf.
1198
         * the left neigbour and the first interval of the leaf.
1199
         */
1199
         */
1200
         
1200
         
1201
        if (page >= right_pg) {
1201
        if (page >= right_pg) {
1202
            /* Do nothing. */
1202
            /* Do nothing. */
1203
        } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1203
        } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1204
            /* The interval intersects with the left interval. */
1204
            /* The interval intersects with the left interval. */
1205
            return 0;
1205
            return 0;
1206
        } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1206
        } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1207
            /* The interval intersects with the right interval. */
1207
            /* The interval intersects with the right interval. */
1208
            return 0;          
1208
            return 0;          
1209
        } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1209
        } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1210
            /* The interval can be added by merging the two already present intervals. */
1210
            /* The interval can be added by merging the two already present intervals. */
1211
            node->value[node->keys - 1] += count + right_cnt;
1211
            node->value[node->keys - 1] += count + right_cnt;
1212
            btree_remove(&a->used_space, right_pg, leaf);
1212
            btree_remove(&a->used_space, right_pg, leaf);
1213
            return 1;
1213
            return 1;
1214
        } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1214
        } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1215
            /* The interval can be added by simply growing the left interval. */
1215
            /* The interval can be added by simply growing the left interval. */
1216
            node->value[node->keys - 1] += count;
1216
            node->value[node->keys - 1] += count;
1217
            return 1;
1217
            return 1;
1218
        } else if (page + count*PAGE_SIZE == right_pg) {
1218
        } else if (page + count*PAGE_SIZE == right_pg) {
1219
            /*
1219
            /*
1220
             * The interval can be addded by simply moving base of the right
1220
             * The interval can be addded by simply moving base of the right
1221
             * interval down and increasing its size accordingly.
1221
             * interval down and increasing its size accordingly.
1222
             */
1222
             */
1223
            leaf->value[0] += count;
1223
            leaf->value[0] += count;
1224
            leaf->key[0] = page;
1224
            leaf->key[0] = page;
1225
            return 1;
1225
            return 1;
1226
        } else {
1226
        } else {
1227
            /*
1227
            /*
1228
             * The interval is between both neigbouring intervals,
1228
             * The interval is between both neigbouring intervals,
1229
             * but cannot be merged with any of them.
1229
             * but cannot be merged with any of them.
1230
             */
1230
             */
1231
            btree_insert(&a->used_space, page, (void *) count, leaf);
1231
            btree_insert(&a->used_space, page, (void *) count, leaf);
1232
            return 1;
1232
            return 1;
1233
        }
1233
        }
1234
    } else if (page < leaf->key[0]) {
1234
    } else if (page < leaf->key[0]) {
1235
        uintptr_t right_pg = leaf->key[0];
1235
        uintptr_t right_pg = leaf->key[0];
1236
        count_t right_cnt = (count_t) leaf->value[0];
1236
        count_t right_cnt = (count_t) leaf->value[0];
1237
   
1237
   
1238
        /*
1238
        /*
1239
         * Investigate the border case in which the left neighbour does not
1239
         * Investigate the border case in which the left neighbour does not
1240
         * exist but the interval fits from the left.
1240
         * exist but the interval fits from the left.
1241
         */
1241
         */
1242
         
1242
         
1243
        if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1243
        if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1244
            /* The interval intersects with the right interval. */
1244
            /* The interval intersects with the right interval. */
1245
            return 0;
1245
            return 0;
1246
        } else if (page + count*PAGE_SIZE == right_pg) {
1246
        } else if (page + count*PAGE_SIZE == right_pg) {
1247
            /*
1247
            /*
1248
             * The interval can be added by moving the base of the right interval down
1248
             * The interval can be added by moving the base of the right interval down
1249
             * and increasing its size accordingly.
1249
             * and increasing its size accordingly.
1250
             */
1250
             */
1251
            leaf->key[0] = page;
1251
            leaf->key[0] = page;
1252
            leaf->value[0] += count;
1252
            leaf->value[0] += count;
1253
            return 1;
1253
            return 1;
1254
        } else {
1254
        } else {
1255
            /*
1255
            /*
1256
             * The interval doesn't adjoin with the right interval.
1256
             * The interval doesn't adjoin with the right interval.
1257
             * It must be added individually.
1257
             * It must be added individually.
1258
             */
1258
             */
1259
            btree_insert(&a->used_space, page, (void *) count, leaf);
1259
            btree_insert(&a->used_space, page, (void *) count, leaf);
1260
            return 1;
1260
            return 1;
1261
        }
1261
        }
1262
    }
1262
    }
1263
 
1263
 
1264
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1264
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1265
    if (node) {
1265
    if (node) {
1266
        uintptr_t left_pg = leaf->key[leaf->keys - 1], right_pg = node->key[0];
1266
        uintptr_t left_pg = leaf->key[leaf->keys - 1], right_pg = node->key[0];
1267
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1], right_cnt = (count_t) node->value[0];
1267
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1], right_cnt = (count_t) node->value[0];
1268
       
1268
       
1269
        /*
1269
        /*
1270
         * Examine the possibility that the interval fits
1270
         * Examine the possibility that the interval fits
1271
         * somewhere between the leftmost interval of
1271
         * somewhere between the leftmost interval of
1272
         * the right neigbour and the last interval of the leaf.
1272
         * the right neigbour and the last interval of the leaf.
1273
         */
1273
         */
1274
 
1274
 
1275
        if (page < left_pg) {
1275
        if (page < left_pg) {
1276
            /* Do nothing. */
1276
            /* Do nothing. */
1277
        } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1277
        } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1278
            /* The interval intersects with the left interval. */
1278
            /* The interval intersects with the left interval. */
1279
            return 0;
1279
            return 0;
1280
        } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1280
        } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1281
            /* The interval intersects with the right interval. */
1281
            /* The interval intersects with the right interval. */
1282
            return 0;          
1282
            return 0;          
1283
        } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1283
        } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1284
            /* The interval can be added by merging the two already present intervals. */
1284
            /* The interval can be added by merging the two already present intervals. */
1285
            leaf->value[leaf->keys - 1] += count + right_cnt;
1285
            leaf->value[leaf->keys - 1] += count + right_cnt;
1286
            btree_remove(&a->used_space, right_pg, node);
1286
            btree_remove(&a->used_space, right_pg, node);
1287
            return 1;
1287
            return 1;
1288
        } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1288
        } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1289
            /* The interval can be added by simply growing the left interval. */
1289
            /* The interval can be added by simply growing the left interval. */
1290
            leaf->value[leaf->keys - 1] +=  count;
1290
            leaf->value[leaf->keys - 1] +=  count;
1291
            return 1;
1291
            return 1;
1292
        } else if (page + count*PAGE_SIZE == right_pg) {
1292
        } else if (page + count*PAGE_SIZE == right_pg) {
1293
            /*
1293
            /*
1294
             * The interval can be addded by simply moving base of the right
1294
             * The interval can be addded by simply moving base of the right
1295
             * interval down and increasing its size accordingly.
1295
             * interval down and increasing its size accordingly.
1296
             */
1296
             */
1297
            node->value[0] += count;
1297
            node->value[0] += count;
1298
            node->key[0] = page;
1298
            node->key[0] = page;
1299
            return 1;
1299
            return 1;
1300
        } else {
1300
        } else {
1301
            /*
1301
            /*
1302
             * The interval is between both neigbouring intervals,
1302
             * The interval is between both neigbouring intervals,
1303
             * but cannot be merged with any of them.
1303
             * but cannot be merged with any of them.
1304
             */
1304
             */
1305
            btree_insert(&a->used_space, page, (void *) count, leaf);
1305
            btree_insert(&a->used_space, page, (void *) count, leaf);
1306
            return 1;
1306
            return 1;
1307
        }
1307
        }
1308
    } else if (page >= leaf->key[leaf->keys - 1]) {
1308
    } else if (page >= leaf->key[leaf->keys - 1]) {
1309
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1309
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1310
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1310
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1311
   
1311
   
1312
        /*
1312
        /*
1313
         * Investigate the border case in which the right neighbour does not
1313
         * Investigate the border case in which the right neighbour does not
1314
         * exist but the interval fits from the right.
1314
         * exist but the interval fits from the right.
1315
         */
1315
         */
1316
         
1316
         
1317
        if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1317
        if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1318
            /* The interval intersects with the left interval. */
1318
            /* The interval intersects with the left interval. */
1319
            return 0;
1319
            return 0;
1320
        } else if (left_pg + left_cnt*PAGE_SIZE == page) {
1320
        } else if (left_pg + left_cnt*PAGE_SIZE == page) {
1321
            /* The interval can be added by growing the left interval. */
1321
            /* The interval can be added by growing the left interval. */
1322
            leaf->value[leaf->keys - 1] += count;
1322
            leaf->value[leaf->keys - 1] += count;
1323
            return 1;
1323
            return 1;
1324
        } else {
1324
        } else {
1325
            /*
1325
            /*
1326
             * The interval doesn't adjoin with the left interval.
1326
             * The interval doesn't adjoin with the left interval.
1327
             * It must be added individually.
1327
             * It must be added individually.
1328
             */
1328
             */
1329
            btree_insert(&a->used_space, page, (void *) count, leaf);
1329
            btree_insert(&a->used_space, page, (void *) count, leaf);
1330
            return 1;
1330
            return 1;
1331
        }
1331
        }
1332
    }
1332
    }
1333
   
1333
   
1334
    /*
1334
    /*
1335
     * Note that if the algorithm made it thus far, the interval can fit only
1335
     * Note that if the algorithm made it thus far, the interval can fit only
1336
     * between two other intervals of the leaf. The two border cases were already
1336
     * between two other intervals of the leaf. The two border cases were already
1337
     * resolved.
1337
     * resolved.
1338
     */
1338
     */
1339
    for (i = 1; i < leaf->keys; i++) {
1339
    for (i = 1; i < leaf->keys; i++) {
1340
        if (page < leaf->key[i]) {
1340
        if (page < leaf->key[i]) {
1341
            uintptr_t left_pg = leaf->key[i - 1], right_pg = leaf->key[i];
1341
            uintptr_t left_pg = leaf->key[i - 1], right_pg = leaf->key[i];
1342
            count_t left_cnt = (count_t) leaf->value[i - 1], right_cnt = (count_t) leaf->value[i];
1342
            count_t left_cnt = (count_t) leaf->value[i - 1], right_cnt = (count_t) leaf->value[i];
1343
 
1343
 
1344
            /*
1344
            /*
1345
             * The interval fits between left_pg and right_pg.
1345
             * The interval fits between left_pg and right_pg.
1346
             */
1346
             */
1347
 
1347
 
1348
            if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1348
            if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1349
                /* The interval intersects with the left interval. */
1349
                /* The interval intersects with the left interval. */
1350
                return 0;
1350
                return 0;
1351
            } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1351
            } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1352
                /* The interval intersects with the right interval. */
1352
                /* The interval intersects with the right interval. */
1353
                return 0;          
1353
                return 0;          
1354
            } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1354
            } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1355
                /* The interval can be added by merging the two already present intervals. */
1355
                /* The interval can be added by merging the two already present intervals. */
1356
                leaf->value[i - 1] += count + right_cnt;
1356
                leaf->value[i - 1] += count + right_cnt;
1357
                btree_remove(&a->used_space, right_pg, leaf);
1357
                btree_remove(&a->used_space, right_pg, leaf);
1358
                return 1;
1358
                return 1;
1359
            } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1359
            } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1360
                /* The interval can be added by simply growing the left interval. */
1360
                /* The interval can be added by simply growing the left interval. */
1361
                leaf->value[i - 1] += count;
1361
                leaf->value[i - 1] += count;
1362
                return 1;
1362
                return 1;
1363
            } else if (page + count*PAGE_SIZE == right_pg) {
1363
            } else if (page + count*PAGE_SIZE == right_pg) {
1364
                /*
1364
                /*
1365
                     * The interval can be addded by simply moving base of the right
1365
                     * The interval can be addded by simply moving base of the right
1366
                 * interval down and increasing its size accordingly.
1366
                 * interval down and increasing its size accordingly.
1367
                 */
1367
                 */
1368
                leaf->value[i] += count;
1368
                leaf->value[i] += count;
1369
                leaf->key[i] = page;
1369
                leaf->key[i] = page;
1370
                return 1;
1370
                return 1;
1371
            } else {
1371
            } else {
1372
                /*
1372
                /*
1373
                 * The interval is between both neigbouring intervals,
1373
                 * The interval is between both neigbouring intervals,
1374
                 * but cannot be merged with any of them.
1374
                 * but cannot be merged with any of them.
1375
                 */
1375
                 */
1376
                btree_insert(&a->used_space, page, (void *) count, leaf);
1376
                btree_insert(&a->used_space, page, (void *) count, leaf);
1377
                return 1;
1377
                return 1;
1378
            }
1378
            }
1379
        }
1379
        }
1380
    }
1380
    }
1381
 
1381
 
1382
    panic("Inconsistency detected while adding %d pages of used space at %p.\n", count, page);
1382
    panic("Inconsistency detected while adding %d pages of used space at %p.\n", count, page);
1383
}
1383
}
1384
 
1384
 
1385
/** Mark portion of address space area as unused.
1385
/** Mark portion of address space area as unused.
1386
 *
1386
 *
1387
 * The address space area must be already locked.
1387
 * The address space area must be already locked.
1388
 *
1388
 *
1389
 * @param a Address space area.
1389
 * @param a Address space area.
1390
 * @param page First page to be marked.
1390
 * @param page First page to be marked.
1391
 * @param count Number of page to be marked.
1391
 * @param count Number of page to be marked.
1392
 *
1392
 *
1393
 * @return 0 on failure and 1 on success.
1393
 * @return 0 on failure and 1 on success.
1394
 */
1394
 */
1395
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1395
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1396
{
1396
{
1397
    btree_node_t *leaf, *node;
1397
    btree_node_t *leaf, *node;
1398
    count_t pages;
1398
    count_t pages;
1399
    int i;
1399
    int i;
1400
 
1400
 
1401
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1401
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1402
    ASSERT(count);
1402
    ASSERT(count);
1403
 
1403
 
1404
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1404
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1405
    if (pages) {
1405
    if (pages) {
1406
        /*
1406
        /*
1407
         * We are lucky, page is the beginning of some interval.
1407
         * We are lucky, page is the beginning of some interval.
1408
         */
1408
         */
1409
        if (count > pages) {
1409
        if (count > pages) {
1410
            return 0;
1410
            return 0;
1411
        } else if (count == pages) {
1411
        } else if (count == pages) {
1412
            btree_remove(&a->used_space, page, leaf);
1412
            btree_remove(&a->used_space, page, leaf);
1413
            return 1;
1413
            return 1;
1414
        } else {
1414
        } else {
1415
            /*
1415
            /*
1416
             * Find the respective interval.
1416
             * Find the respective interval.
1417
             * Decrease its size and relocate its start address.
1417
             * Decrease its size and relocate its start address.
1418
             */
1418
             */
1419
            for (i = 0; i < leaf->keys; i++) {
1419
            for (i = 0; i < leaf->keys; i++) {
1420
                if (leaf->key[i] == page) {
1420
                if (leaf->key[i] == page) {
1421
                    leaf->key[i] += count*PAGE_SIZE;
1421
                    leaf->key[i] += count*PAGE_SIZE;
1422
                    leaf->value[i] -= count;
1422
                    leaf->value[i] -= count;
1423
                    return 1;
1423
                    return 1;
1424
                }
1424
                }
1425
            }
1425
            }
1426
            goto error;
1426
            goto error;
1427
        }
1427
        }
1428
    }
1428
    }
1429
 
1429
 
1430
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1430
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1431
    if (node && page < leaf->key[0]) {
1431
    if (node && page < leaf->key[0]) {
1432
        uintptr_t left_pg = node->key[node->keys - 1];
1432
        uintptr_t left_pg = node->key[node->keys - 1];
1433
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1433
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1434
 
1434
 
1435
        if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1435
        if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1436
            if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1436
            if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1437
                /*
1437
                /*
1438
                 * The interval is contained in the rightmost interval
1438
                 * The interval is contained in the rightmost interval
1439
                 * of the left neighbour and can be removed by
1439
                 * of the left neighbour and can be removed by
1440
                 * updating the size of the bigger interval.
1440
                 * updating the size of the bigger interval.
1441
                 */
1441
                 */
1442
                node->value[node->keys - 1] -= count;
1442
                node->value[node->keys - 1] -= count;
1443
                return 1;
1443
                return 1;
1444
            } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1444
            } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1445
                count_t new_cnt;
1445
                count_t new_cnt;
1446
               
1446
               
1447
                /*
1447
                /*
1448
                 * The interval is contained in the rightmost interval
1448
                 * The interval is contained in the rightmost interval
1449
                 * of the left neighbour but its removal requires
1449
                 * of the left neighbour but its removal requires
1450
                 * both updating the size of the original interval and
1450
                 * both updating the size of the original interval and
1451
                 * also inserting a new interval.
1451
                 * also inserting a new interval.
1452
                 */
1452
                 */
1453
                new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1453
                new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1454
                node->value[node->keys - 1] -= count + new_cnt;
1454
                node->value[node->keys - 1] -= count + new_cnt;
1455
                btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1455
                btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1456
                return 1;
1456
                return 1;
1457
            }
1457
            }
1458
        }
1458
        }
1459
        return 0;
1459
        return 0;
1460
    } else if (page < leaf->key[0]) {
1460
    } else if (page < leaf->key[0]) {
1461
        return 0;
1461
        return 0;
1462
    }
1462
    }
1463
   
1463
   
1464
    if (page > leaf->key[leaf->keys - 1]) {
1464
    if (page > leaf->key[leaf->keys - 1]) {
1465
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1465
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1466
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1466
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1467
 
1467
 
1468
        if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1468
        if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1469
            if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1469
            if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1470
                /*
1470
                /*
1471
                 * The interval is contained in the rightmost interval
1471
                 * The interval is contained in the rightmost interval
1472
                 * of the leaf and can be removed by updating the size
1472
                 * of the leaf and can be removed by updating the size
1473
                 * of the bigger interval.
1473
                 * of the bigger interval.
1474
                 */
1474
                 */
1475
                leaf->value[leaf->keys - 1] -= count;
1475
                leaf->value[leaf->keys - 1] -= count;
1476
                return 1;
1476
                return 1;
1477
            } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1477
            } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1478
                count_t new_cnt;
1478
                count_t new_cnt;
1479
               
1479
               
1480
                /*
1480
                /*
1481
                 * The interval is contained in the rightmost interval
1481
                 * The interval is contained in the rightmost interval
1482
                 * of the leaf but its removal requires both updating
1482
                 * of the leaf but its removal requires both updating
1483
                 * the size of the original interval and
1483
                 * the size of the original interval and
1484
                 * also inserting a new interval.
1484
                 * also inserting a new interval.
1485
                 */
1485
                 */
1486
                new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1486
                new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1487
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1487
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1488
                btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1488
                btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1489
                return 1;
1489
                return 1;
1490
            }
1490
            }
1491
        }
1491
        }
1492
        return 0;
1492
        return 0;
1493
    }  
1493
    }  
1494
   
1494
   
1495
    /*
1495
    /*
1496
     * The border cases have been already resolved.
1496
     * The border cases have been already resolved.
1497
     * Now the interval can be only between intervals of the leaf.
1497
     * Now the interval can be only between intervals of the leaf.
1498
     */
1498
     */
1499
    for (i = 1; i < leaf->keys - 1; i++) {
1499
    for (i = 1; i < leaf->keys - 1; i++) {
1500
        if (page < leaf->key[i]) {
1500
        if (page < leaf->key[i]) {
1501
            uintptr_t left_pg = leaf->key[i - 1];
1501
            uintptr_t left_pg = leaf->key[i - 1];
1502
            count_t left_cnt = (count_t) leaf->value[i - 1];
1502
            count_t left_cnt = (count_t) leaf->value[i - 1];
1503
 
1503
 
1504
            /*
1504
            /*
1505
             * Now the interval is between intervals corresponding to (i - 1) and i.
1505
             * Now the interval is between intervals corresponding to (i - 1) and i.
1506
             */
1506
             */
1507
            if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1507
            if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1508
                if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1508
                if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1509
                    /*
1509
                    /*
1510
                    * The interval is contained in the interval (i - 1)
1510
                    * The interval is contained in the interval (i - 1)
1511
                     * of the leaf and can be removed by updating the size
1511
                     * of the leaf and can be removed by updating the size
1512
                     * of the bigger interval.
1512
                     * of the bigger interval.
1513
                     */
1513
                     */
1514
                    leaf->value[i - 1] -= count;
1514
                    leaf->value[i - 1] -= count;
1515
                    return 1;
1515
                    return 1;
1516
                } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1516
                } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1517
                    count_t new_cnt;
1517
                    count_t new_cnt;
1518
               
1518
               
1519
                    /*
1519
                    /*
1520
                     * The interval is contained in the interval (i - 1)
1520
                     * The interval is contained in the interval (i - 1)
1521
                     * of the leaf but its removal requires both updating
1521
                     * of the leaf but its removal requires both updating
1522
                     * the size of the original interval and
1522
                     * the size of the original interval and
1523
                     * also inserting a new interval.
1523
                     * also inserting a new interval.
1524
                     */
1524
                     */
1525
                    new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1525
                    new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1526
                    leaf->value[i - 1] -= count + new_cnt;
1526
                    leaf->value[i - 1] -= count + new_cnt;
1527
                    btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1527
                    btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1528
                    return 1;
1528
                    return 1;
1529
                }
1529
                }
1530
            }
1530
            }
1531
            return 0;
1531
            return 0;
1532
        }
1532
        }
1533
    }
1533
    }
1534
 
1534
 
1535
error:
1535
error:
1536
    panic("Inconsistency detected while removing %d pages of used space from %p.\n", count, page);
1536
    panic("Inconsistency detected while removing %d pages of used space from %p.\n", count, page);
1537
}
1537
}
1538
 
1538
 
1539
/** Remove reference to address space area share info.
1539
/** Remove reference to address space area share info.
1540
 *
1540
 *
1541
 * If the reference count drops to 0, the sh_info is deallocated.
1541
 * If the reference count drops to 0, the sh_info is deallocated.
1542
 *
1542
 *
1543
 * @param sh_info Pointer to address space area share info.
1543
 * @param sh_info Pointer to address space area share info.
1544
 */
1544
 */
1545
void sh_info_remove_reference(share_info_t *sh_info)
1545
void sh_info_remove_reference(share_info_t *sh_info)
1546
{
1546
{
1547
    bool dealloc = false;
1547
    bool dealloc = false;
1548
 
1548
 
1549
    mutex_lock(&sh_info->lock);
1549
    mutex_lock(&sh_info->lock);
1550
    ASSERT(sh_info->refcount);
1550
    ASSERT(sh_info->refcount);
1551
    if (--sh_info->refcount == 0) {
1551
    if (--sh_info->refcount == 0) {
1552
        dealloc = true;
1552
        dealloc = true;
1553
        link_t *cur;
1553
        link_t *cur;
1554
       
1554
       
1555
        /*
1555
        /*
1556
         * Now walk carefully the pagemap B+tree and free/remove
1556
         * Now walk carefully the pagemap B+tree and free/remove
1557
         * reference from all frames found there.
1557
         * reference from all frames found there.
1558
         */
1558
         */
1559
        for (cur = sh_info->pagemap.leaf_head.next; cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1559
        for (cur = sh_info->pagemap.leaf_head.next; cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1560
            btree_node_t *node;
1560
            btree_node_t *node;
1561
            int i;
1561
            int i;
1562
           
1562
           
1563
            node = list_get_instance(cur, btree_node_t, leaf_link);
1563
            node = list_get_instance(cur, btree_node_t, leaf_link);
1564
            for (i = 0; i < node->keys; i++)
1564
            for (i = 0; i < node->keys; i++)
1565
                frame_free((uintptr_t) node->value[i]);
1565
                frame_free((uintptr_t) node->value[i]);
1566
        }
1566
        }
1567
       
1567
       
1568
    }
1568
    }
1569
    mutex_unlock(&sh_info->lock);
1569
    mutex_unlock(&sh_info->lock);
1570
   
1570
   
1571
    if (dealloc) {
1571
    if (dealloc) {
1572
        btree_destroy(&sh_info->pagemap);
1572
        btree_destroy(&sh_info->pagemap);
1573
        free(sh_info);
1573
        free(sh_info);
1574
    }
1574
    }
1575
}
1575
}
1576
 
1576
 
1577
/*
1577
/*
1578
 * Address space related syscalls.
1578
 * Address space related syscalls.
1579
 */
1579
 */
1580
 
1580
 
1581
/** Wrapper for as_area_create(). */
1581
/** Wrapper for as_area_create(). */
1582
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1582
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1583
{
1583
{
1584
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address, AS_AREA_ATTR_NONE, &anon_backend, NULL))
1584
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address, AS_AREA_ATTR_NONE, &anon_backend, NULL))
1585
        return (unative_t) address;
1585
        return (unative_t) address;
1586
    else
1586
    else
1587
        return (unative_t) -1;
1587
        return (unative_t) -1;
1588
}
1588
}
1589
 
1589
 
1590
/** Wrapper for as_area_resize(). */
1590
/** Wrapper for as_area_resize(). */
1591
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1591
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1592
{
1592
{
1593
    return (unative_t) as_area_resize(AS, address, size, 0);
1593
    return (unative_t) as_area_resize(AS, address, size, 0);
1594
}
1594
}
1595
 
1595
 
1596
/** Wrapper for as_area_destroy(). */
1596
/** Wrapper for as_area_destroy(). */
1597
unative_t sys_as_area_destroy(uintptr_t address)
1597
unative_t sys_as_area_destroy(uintptr_t address)
1598
{
1598
{
1599
    return (unative_t) as_area_destroy(AS, address);
1599
    return (unative_t) as_area_destroy(AS, address);
1600
}
1600
}
1601
 
1601
 
1602
/** Print out information about address space.
1602
/** Print out information about address space.
1603
 *
1603
 *
1604
 * @param as Address space.
1604
 * @param as Address space.
1605
 */
1605
 */
1606
void as_print(as_t *as)
1606
void as_print(as_t *as)
1607
{
1607
{
1608
    ipl_t ipl;
1608
    ipl_t ipl;
1609
   
1609
   
1610
    ipl = interrupts_disable();
1610
    ipl = interrupts_disable();
1611
    mutex_lock(&as->lock);
1611
    mutex_lock(&as->lock);
1612
   
1612
   
1613
    /* print out info about address space areas */
1613
    /* print out info about address space areas */
1614
    link_t *cur;
1614
    link_t *cur;
1615
    for (cur = as->as_area_btree.leaf_head.next; cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1615
    for (cur = as->as_area_btree.leaf_head.next; cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1616
        btree_node_t *node = list_get_instance(cur, btree_node_t, leaf_link);
1616
        btree_node_t *node = list_get_instance(cur, btree_node_t, leaf_link);
1617
       
1617
       
1618
        int i;
1618
        int i;
1619
        for (i = 0; i < node->keys; i++) {
1619
        for (i = 0; i < node->keys; i++) {
1620
            as_area_t *area = node->value[i];
1620
            as_area_t *area = node->value[i];
1621
       
1621
       
1622
            mutex_lock(&area->lock);
1622
            mutex_lock(&area->lock);
1623
            printf("as_area: %p, base=%p, pages=%d (%p - %p)\n",
1623
            printf("as_area: %p, base=%p, pages=%d (%p - %p)\n",
1624
                area, area->base, area->pages, area->base, area->base + area->pages*PAGE_SIZE);
1624
                area, area->base, area->pages, area->base, area->base + area->pages*PAGE_SIZE);
1625
            mutex_unlock(&area->lock);
1625
            mutex_unlock(&area->lock);
1626
        }
1626
        }
1627
    }
1627
    }
1628
   
1628
   
1629
    mutex_unlock(&as->lock);
1629
    mutex_unlock(&as->lock);
1630
    interrupts_restore(ipl);
1630
    interrupts_restore(ipl);
1631
}
1631
}
1632
 
1632
 
1633
/** @}
1633
/** @}
1634
 */
1634
 */
1635
 
1635