Subversion Repositories HelenOS

Rev

Rev 2106 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 2106 Rev 2465
1
/*
1
/*
2
 * Copyright (c) 2006 Jakub Jermar
2
 * Copyright (c) 2006 Jakub Jermar
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/** @addtogroup genarchmm
29
/** @addtogroup genarchmm
30
 * @{
30
 * @{
31
 */
31
 */
32
 
32
 
33
/**
33
/**
34
 * @file
34
 * @file
35
 * @brief   Virtual Address Translation for hierarchical 4-level page tables.
35
 * @brief   Virtual Address Translation for hierarchical 4-level page tables.
36
 */
36
 */
37
 
37
 
38
#include <genarch/mm/page_pt.h>
38
#include <genarch/mm/page_pt.h>
39
#include <mm/page.h>
39
#include <mm/page.h>
40
#include <mm/frame.h>
40
#include <mm/frame.h>
41
#include <mm/as.h>
41
#include <mm/as.h>
42
#include <arch/mm/page.h>
42
#include <arch/mm/page.h>
43
#include <arch/mm/as.h>
43
#include <arch/mm/as.h>
44
#include <arch/types.h>
44
#include <arch/types.h>
45
#include <arch/asm.h>
45
#include <arch/asm.h>
46
#include <memstr.h>
46
#include <memstr.h>
47
 
47
 
48
static void pt_mapping_insert(as_t *as, uintptr_t page, uintptr_t frame, int flags);
48
static void pt_mapping_insert(as_t *as, uintptr_t page, uintptr_t frame, int flags);
49
static void pt_mapping_remove(as_t *as, uintptr_t page);
49
static void pt_mapping_remove(as_t *as, uintptr_t page);
50
static pte_t *pt_mapping_find(as_t *as, uintptr_t page);
50
static pte_t *pt_mapping_find(as_t *as, uintptr_t page);
51
 
51
 
52
page_mapping_operations_t pt_mapping_operations = {
52
page_mapping_operations_t pt_mapping_operations = {
53
    .mapping_insert = pt_mapping_insert,
53
    .mapping_insert = pt_mapping_insert,
54
    .mapping_remove = pt_mapping_remove,
54
    .mapping_remove = pt_mapping_remove,
55
    .mapping_find = pt_mapping_find
55
    .mapping_find = pt_mapping_find
56
};
56
};
57
 
57
 
58
/** Map page to frame using hierarchical page tables.
58
/** Map page to frame using hierarchical page tables.
59
 *
59
 *
60
 * Map virtual address page to physical address frame
60
 * Map virtual address page to physical address frame
61
 * using flags.
61
 * using flags.
62
 *
62
 *
63
 * The page table must be locked and interrupts must be disabled.
63
 * The page table must be locked and interrupts must be disabled.
64
 *
64
 *
65
 * @param as Address space to wich page belongs.
65
 * @param as Address space to wich page belongs.
66
 * @param page Virtual address of the page to be mapped.
66
 * @param page Virtual address of the page to be mapped.
67
 * @param frame Physical address of memory frame to which the mapping is done.
67
 * @param frame Physical address of memory frame to which the mapping is done.
68
 * @param flags Flags to be used for mapping.
68
 * @param flags Flags to be used for mapping.
69
 */
69
 */
70
void pt_mapping_insert(as_t *as, uintptr_t page, uintptr_t frame, int flags)
70
void pt_mapping_insert(as_t *as, uintptr_t page, uintptr_t frame, int flags)
71
{
71
{
72
    pte_t *ptl0, *ptl1, *ptl2, *ptl3;
72
    pte_t *ptl0, *ptl1, *ptl2, *ptl3;
73
    pte_t *newpt;
73
    pte_t *newpt;
74
 
74
 
75
    ptl0 = (pte_t *) PA2KA((uintptr_t) as->genarch.page_table);
75
    ptl0 = (pte_t *) PA2KA((uintptr_t) as->genarch.page_table);
76
 
76
 
77
    if (GET_PTL1_FLAGS(ptl0, PTL0_INDEX(page)) & PAGE_NOT_PRESENT) {
77
    if (GET_PTL1_FLAGS(ptl0, PTL0_INDEX(page)) & PAGE_NOT_PRESENT) {
78
        newpt = (pte_t *)frame_alloc(ONE_FRAME, FRAME_KA);
78
        newpt = (pte_t *)frame_alloc(PTL1_SIZE, FRAME_KA);
79
        memsetb((uintptr_t)newpt, PAGE_SIZE, 0);
79
        memsetb((uintptr_t)newpt, FRAME_SIZE << PTL1_SIZE, 0);
80
        SET_PTL1_ADDRESS(ptl0, PTL0_INDEX(page), KA2PA(newpt));
80
        SET_PTL1_ADDRESS(ptl0, PTL0_INDEX(page), KA2PA(newpt));
81
        SET_PTL1_FLAGS(ptl0, PTL0_INDEX(page), PAGE_PRESENT | PAGE_USER | PAGE_EXEC | PAGE_CACHEABLE | PAGE_WRITE);
81
        SET_PTL1_FLAGS(ptl0, PTL0_INDEX(page), PAGE_PRESENT | PAGE_USER | PAGE_EXEC | PAGE_CACHEABLE | PAGE_WRITE);
82
    }
82
    }
83
 
83
 
84
    ptl1 = (pte_t *) PA2KA(GET_PTL1_ADDRESS(ptl0, PTL0_INDEX(page)));
84
    ptl1 = (pte_t *) PA2KA(GET_PTL1_ADDRESS(ptl0, PTL0_INDEX(page)));
85
 
85
 
86
    if (GET_PTL2_FLAGS(ptl1, PTL1_INDEX(page)) & PAGE_NOT_PRESENT) {
86
    if (GET_PTL2_FLAGS(ptl1, PTL1_INDEX(page)) & PAGE_NOT_PRESENT) {
87
        newpt = (pte_t *)frame_alloc(ONE_FRAME, FRAME_KA);
87
        newpt = (pte_t *)frame_alloc(PTL2_SIZE, FRAME_KA);
88
        memsetb((uintptr_t)newpt, PAGE_SIZE, 0);
88
        memsetb((uintptr_t)newpt, FRAME_SIZE << PTL2_SIZE, 0);
89
        SET_PTL2_ADDRESS(ptl1, PTL1_INDEX(page), KA2PA(newpt));
89
        SET_PTL2_ADDRESS(ptl1, PTL1_INDEX(page), KA2PA(newpt));
90
        SET_PTL2_FLAGS(ptl1, PTL1_INDEX(page), PAGE_PRESENT | PAGE_USER | PAGE_EXEC | PAGE_CACHEABLE | PAGE_WRITE);
90
        SET_PTL2_FLAGS(ptl1, PTL1_INDEX(page), PAGE_PRESENT | PAGE_USER | PAGE_EXEC | PAGE_CACHEABLE | PAGE_WRITE);
91
    }
91
    }
92
 
92
 
93
    ptl2 = (pte_t *) PA2KA(GET_PTL2_ADDRESS(ptl1, PTL1_INDEX(page)));
93
    ptl2 = (pte_t *) PA2KA(GET_PTL2_ADDRESS(ptl1, PTL1_INDEX(page)));
94
 
94
 
95
    if (GET_PTL3_FLAGS(ptl2, PTL2_INDEX(page)) & PAGE_NOT_PRESENT) {
95
    if (GET_PTL3_FLAGS(ptl2, PTL2_INDEX(page)) & PAGE_NOT_PRESENT) {
96
        newpt = (pte_t *)frame_alloc(ONE_FRAME, FRAME_KA);
96
        newpt = (pte_t *)frame_alloc(PTL3_SIZE, FRAME_KA);
97
        memsetb((uintptr_t)newpt, PAGE_SIZE, 0);
97
        memsetb((uintptr_t)newpt, FRAME_SIZE << PTL3_SIZE, 0);
98
        SET_PTL3_ADDRESS(ptl2, PTL2_INDEX(page), KA2PA(newpt));
98
        SET_PTL3_ADDRESS(ptl2, PTL2_INDEX(page), KA2PA(newpt));
99
        SET_PTL3_FLAGS(ptl2, PTL2_INDEX(page), PAGE_PRESENT | PAGE_USER | PAGE_EXEC | PAGE_CACHEABLE | PAGE_WRITE);
99
        SET_PTL3_FLAGS(ptl2, PTL2_INDEX(page), PAGE_PRESENT | PAGE_USER | PAGE_EXEC | PAGE_CACHEABLE | PAGE_WRITE);
100
    }
100
    }
101
 
101
 
102
    ptl3 = (pte_t *) PA2KA(GET_PTL3_ADDRESS(ptl2, PTL2_INDEX(page)));
102
    ptl3 = (pte_t *) PA2KA(GET_PTL3_ADDRESS(ptl2, PTL2_INDEX(page)));
103
 
103
 
104
    SET_FRAME_ADDRESS(ptl3, PTL3_INDEX(page), frame);
104
    SET_FRAME_ADDRESS(ptl3, PTL3_INDEX(page), frame);
105
    SET_FRAME_FLAGS(ptl3, PTL3_INDEX(page), flags);
105
    SET_FRAME_FLAGS(ptl3, PTL3_INDEX(page), flags);
106
}
106
}
107
 
107
 
108
/** Remove mapping of page from hierarchical page tables.
108
/** Remove mapping of page from hierarchical page tables.
109
 *
109
 *
110
 * Remove any mapping of page within address space as.
110
 * Remove any mapping of page within address space as.
111
 * TLB shootdown should follow in order to make effects of
111
 * TLB shootdown should follow in order to make effects of
112
 * this call visible.
112
 * this call visible.
113
 *
113
 *
114
 * Empty page tables except PTL0 are freed.
114
 * Empty page tables except PTL0 are freed.
115
 *
115
 *
116
 * The page table must be locked and interrupts must be disabled.
116
 * The page table must be locked and interrupts must be disabled.
117
 *
117
 *
118
 * @param as Address space to wich page belongs.
118
 * @param as Address space to wich page belongs.
119
 * @param page Virtual address of the page to be demapped.
119
 * @param page Virtual address of the page to be demapped.
120
 */
120
 */
121
void pt_mapping_remove(as_t *as, uintptr_t page)
121
void pt_mapping_remove(as_t *as, uintptr_t page)
122
{
122
{
123
    pte_t *ptl0, *ptl1, *ptl2, *ptl3;
123
    pte_t *ptl0, *ptl1, *ptl2, *ptl3;
124
    bool empty = true;
124
    bool empty = true;
125
    int i;
125
    int i;
126
 
126
 
127
    /*
127
    /*
128
     * First, remove the mapping, if it exists.
128
     * First, remove the mapping, if it exists.
129
     */
129
     */
130
 
130
 
131
    ptl0 = (pte_t *) PA2KA((uintptr_t) as->genarch.page_table);
131
    ptl0 = (pte_t *) PA2KA((uintptr_t) as->genarch.page_table);
132
 
132
 
133
    if (GET_PTL1_FLAGS(ptl0, PTL0_INDEX(page)) & PAGE_NOT_PRESENT)
133
    if (GET_PTL1_FLAGS(ptl0, PTL0_INDEX(page)) & PAGE_NOT_PRESENT)
134
        return;
134
        return;
135
 
135
 
136
    ptl1 = (pte_t *) PA2KA(GET_PTL1_ADDRESS(ptl0, PTL0_INDEX(page)));
136
    ptl1 = (pte_t *) PA2KA(GET_PTL1_ADDRESS(ptl0, PTL0_INDEX(page)));
137
 
137
 
138
    if (GET_PTL2_FLAGS(ptl1, PTL1_INDEX(page)) & PAGE_NOT_PRESENT)
138
    if (GET_PTL2_FLAGS(ptl1, PTL1_INDEX(page)) & PAGE_NOT_PRESENT)
139
        return;
139
        return;
140
 
140
 
141
    ptl2 = (pte_t *) PA2KA(GET_PTL2_ADDRESS(ptl1, PTL1_INDEX(page)));
141
    ptl2 = (pte_t *) PA2KA(GET_PTL2_ADDRESS(ptl1, PTL1_INDEX(page)));
142
 
142
 
143
    if (GET_PTL3_FLAGS(ptl2, PTL2_INDEX(page)) & PAGE_NOT_PRESENT)
143
    if (GET_PTL3_FLAGS(ptl2, PTL2_INDEX(page)) & PAGE_NOT_PRESENT)
144
        return;
144
        return;
145
 
145
 
146
    ptl3 = (pte_t *) PA2KA(GET_PTL3_ADDRESS(ptl2, PTL2_INDEX(page)));
146
    ptl3 = (pte_t *) PA2KA(GET_PTL3_ADDRESS(ptl2, PTL2_INDEX(page)));
147
 
147
 
148
    /* Destroy the mapping. Setting to PAGE_NOT_PRESENT is not sufficient. */
148
    /* Destroy the mapping. Setting to PAGE_NOT_PRESENT is not sufficient. */
149
    memsetb((uintptr_t) &ptl3[PTL3_INDEX(page)], sizeof(pte_t), 0);
149
    memsetb((uintptr_t) &ptl3[PTL3_INDEX(page)], sizeof(pte_t), 0);
150
 
150
 
151
    /*
151
    /*
152
     * Second, free all empty tables along the way from PTL3 down to PTL0.
152
     * Second, free all empty tables along the way from PTL3 down to PTL0.
153
     */
153
     */
154
   
154
   
155
    /* check PTL3 */
155
    /* check PTL3 */
156
    for (i = 0; i < PTL3_ENTRIES; i++) {
156
    for (i = 0; i < PTL3_ENTRIES; i++) {
157
        if (PTE_VALID(&ptl3[i])) {
157
        if (PTE_VALID(&ptl3[i])) {
158
            empty = false;
158
            empty = false;
159
            break;
159
            break;
160
        }
160
        }
161
    }
161
    }
162
    if (empty) {
162
    if (empty) {
163
        /*
163
        /*
164
         * PTL3 is empty.
164
         * PTL3 is empty.
165
         * Release the frame and remove PTL3 pointer from preceding table.
165
         * Release the frame and remove PTL3 pointer from preceding table.
166
         */
166
         */
167
        frame_free(KA2PA((uintptr_t) ptl3));
167
        frame_free(KA2PA((uintptr_t) ptl3));
168
        if (PTL2_ENTRIES)
168
        if (PTL2_ENTRIES)
169
            memsetb((uintptr_t) &ptl2[PTL2_INDEX(page)], sizeof(pte_t), 0);
169
            memsetb((uintptr_t) &ptl2[PTL2_INDEX(page)], sizeof(pte_t), 0);
170
        else if (PTL1_ENTRIES)
170
        else if (PTL1_ENTRIES)
171
            memsetb((uintptr_t) &ptl1[PTL1_INDEX(page)], sizeof(pte_t), 0);
171
            memsetb((uintptr_t) &ptl1[PTL1_INDEX(page)], sizeof(pte_t), 0);
172
        else
172
        else
173
            memsetb((uintptr_t) &ptl0[PTL0_INDEX(page)], sizeof(pte_t), 0);
173
            memsetb((uintptr_t) &ptl0[PTL0_INDEX(page)], sizeof(pte_t), 0);
174
    } else {
174
    } else {
175
        /*
175
        /*
176
         * PTL3 is not empty.
176
         * PTL3 is not empty.
177
         * Therefore, there must be a path from PTL0 to PTL3 and
177
         * Therefore, there must be a path from PTL0 to PTL3 and
178
         * thus nothing to free in higher levels.
178
         * thus nothing to free in higher levels.
179
         */
179
         */
180
        return;
180
        return;
181
    }
181
    }
182
   
182
   
183
    /* check PTL2, empty is still true */
183
    /* check PTL2, empty is still true */
184
    if (PTL2_ENTRIES) {
184
    if (PTL2_ENTRIES) {
185
        for (i = 0; i < PTL2_ENTRIES; i++) {
185
        for (i = 0; i < PTL2_ENTRIES; i++) {
186
            if (PTE_VALID(&ptl2[i])) {
186
            if (PTE_VALID(&ptl2[i])) {
187
                empty = false;
187
                empty = false;
188
                break;
188
                break;
189
            }
189
            }
190
        }
190
        }
191
        if (empty) {
191
        if (empty) {
192
            /*
192
            /*
193
             * PTL2 is empty.
193
             * PTL2 is empty.
194
             * Release the frame and remove PTL2 pointer from preceding table.
194
             * Release the frame and remove PTL2 pointer from preceding table.
195
             */
195
             */
196
            frame_free(KA2PA((uintptr_t) ptl2));
196
            frame_free(KA2PA((uintptr_t) ptl2));
197
            if (PTL1_ENTRIES)
197
            if (PTL1_ENTRIES)
198
                memsetb((uintptr_t) &ptl1[PTL1_INDEX(page)], sizeof(pte_t), 0);
198
                memsetb((uintptr_t) &ptl1[PTL1_INDEX(page)], sizeof(pte_t), 0);
199
            else
199
            else
200
                memsetb((uintptr_t) &ptl0[PTL0_INDEX(page)], sizeof(pte_t), 0);
200
                memsetb((uintptr_t) &ptl0[PTL0_INDEX(page)], sizeof(pte_t), 0);
201
        }
201
        }
202
        else {
202
        else {
203
            /*
203
            /*
204
             * PTL2 is not empty.
204
             * PTL2 is not empty.
205
             * Therefore, there must be a path from PTL0 to PTL2 and
205
             * Therefore, there must be a path from PTL0 to PTL2 and
206
             * thus nothing to free in higher levels.
206
             * thus nothing to free in higher levels.
207
             */
207
             */
208
            return;
208
            return;
209
        }
209
        }
210
    }
210
    }
211
 
211
 
212
    /* check PTL1, empty is still true */
212
    /* check PTL1, empty is still true */
213
    if (PTL1_ENTRIES) {
213
    if (PTL1_ENTRIES) {
214
        for (i = 0; i < PTL1_ENTRIES; i++) {
214
        for (i = 0; i < PTL1_ENTRIES; i++) {
215
            if (PTE_VALID(&ptl1[i])) {
215
            if (PTE_VALID(&ptl1[i])) {
216
                empty = false;
216
                empty = false;
217
                break;
217
                break;
218
            }
218
            }
219
        }
219
        }
220
        if (empty) {
220
        if (empty) {
221
            /*
221
            /*
222
             * PTL1 is empty.
222
             * PTL1 is empty.
223
             * Release the frame and remove PTL1 pointer from preceding table.
223
             * Release the frame and remove PTL1 pointer from preceding table.
224
             */
224
             */
225
            frame_free(KA2PA((uintptr_t) ptl1));
225
            frame_free(KA2PA((uintptr_t) ptl1));
226
            memsetb((uintptr_t) &ptl0[PTL0_INDEX(page)], sizeof(pte_t), 0);
226
            memsetb((uintptr_t) &ptl0[PTL0_INDEX(page)], sizeof(pte_t), 0);
227
        }
227
        }
228
    }
228
    }
229
 
229
 
230
}
230
}
231
 
231
 
232
/** Find mapping for virtual page in hierarchical page tables.
232
/** Find mapping for virtual page in hierarchical page tables.
233
 *
233
 *
234
 * Find mapping for virtual page.
234
 * Find mapping for virtual page.
235
 *
235
 *
236
 * The page table must be locked and interrupts must be disabled.
236
 * The page table must be locked and interrupts must be disabled.
237
 *
237
 *
238
 * @param as Address space to which page belongs.
238
 * @param as Address space to which page belongs.
239
 * @param page Virtual page.
239
 * @param page Virtual page.
240
 *
240
 *
241
 * @return NULL if there is no such mapping; entry from PTL3 describing the mapping otherwise.
241
 * @return NULL if there is no such mapping; entry from PTL3 describing the mapping otherwise.
242
 */
242
 */
243
pte_t *pt_mapping_find(as_t *as, uintptr_t page)
243
pte_t *pt_mapping_find(as_t *as, uintptr_t page)
244
{
244
{
245
    pte_t *ptl0, *ptl1, *ptl2, *ptl3;
245
    pte_t *ptl0, *ptl1, *ptl2, *ptl3;
246
 
246
 
247
    ptl0 = (pte_t *) PA2KA((uintptr_t) as->genarch.page_table);
247
    ptl0 = (pte_t *) PA2KA((uintptr_t) as->genarch.page_table);
248
 
248
 
249
    if (GET_PTL1_FLAGS(ptl0, PTL0_INDEX(page)) & PAGE_NOT_PRESENT)
249
    if (GET_PTL1_FLAGS(ptl0, PTL0_INDEX(page)) & PAGE_NOT_PRESENT)
250
        return NULL;
250
        return NULL;
251
 
251
 
252
    ptl1 = (pte_t *) PA2KA(GET_PTL1_ADDRESS(ptl0, PTL0_INDEX(page)));
252
    ptl1 = (pte_t *) PA2KA(GET_PTL1_ADDRESS(ptl0, PTL0_INDEX(page)));
253
 
253
 
254
    if (GET_PTL2_FLAGS(ptl1, PTL1_INDEX(page)) & PAGE_NOT_PRESENT)
254
    if (GET_PTL2_FLAGS(ptl1, PTL1_INDEX(page)) & PAGE_NOT_PRESENT)
255
        return NULL;
255
        return NULL;
256
 
256
 
257
    ptl2 = (pte_t *) PA2KA(GET_PTL2_ADDRESS(ptl1, PTL1_INDEX(page)));
257
    ptl2 = (pte_t *) PA2KA(GET_PTL2_ADDRESS(ptl1, PTL1_INDEX(page)));
258
 
258
 
259
    if (GET_PTL3_FLAGS(ptl2, PTL2_INDEX(page)) & PAGE_NOT_PRESENT)
259
    if (GET_PTL3_FLAGS(ptl2, PTL2_INDEX(page)) & PAGE_NOT_PRESENT)
260
        return NULL;
260
        return NULL;
261
 
261
 
262
    ptl3 = (pte_t *) PA2KA(GET_PTL3_ADDRESS(ptl2, PTL2_INDEX(page)));
262
    ptl3 = (pte_t *) PA2KA(GET_PTL3_ADDRESS(ptl2, PTL2_INDEX(page)));
263
 
263
 
264
    return &ptl3[PTL3_INDEX(page)];
264
    return &ptl3[PTL3_INDEX(page)];
265
}
265
}
266
 
266
 
267
/** @}
267
/** @}
268
 */
268
 */
269
 
269