Subversion Repositories HelenOS

Rev

Rev 4377 | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 4377 Rev 4692
1
/*
1
/*
2
 * Copyright (c) 2008 Jakub Jermar
2
 * Copyright (c) 2008 Jakub Jermar
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/** @addtogroup fs
29
/** @addtogroup fs
30
 * @{
30
 * @{
31
 */
31
 */
32
 
32
 
33
/**
33
/**
34
 * @file    fat_ops.c
34
 * @file    fat_ops.c
35
 * @brief   Implementation of VFS operations for the FAT file system server.
35
 * @brief   Implementation of VFS operations for the FAT file system server.
36
 */
36
 */
37
 
37
 
38
#include "fat.h"
38
#include "fat.h"
39
#include "fat_dentry.h"
39
#include "fat_dentry.h"
40
#include "fat_fat.h"
40
#include "fat_fat.h"
41
#include "../../vfs/vfs.h"
41
#include "../../vfs/vfs.h"
42
#include <libfs.h>
42
#include <libfs.h>
43
#include <libblock.h>
43
#include <libblock.h>
44
#include <ipc/ipc.h>
44
#include <ipc/ipc.h>
45
#include <ipc/services.h>
45
#include <ipc/services.h>
46
#include <ipc/devmap.h>
46
#include <ipc/devmap.h>
47
#include <async.h>
47
#include <async.h>
48
#include <errno.h>
48
#include <errno.h>
49
#include <string.h>
49
#include <string.h>
50
#include <byteorder.h>
50
#include <byteorder.h>
51
#include <libadt/hash_table.h>
51
#include <adt/hash_table.h>
52
#include <libadt/list.h>
52
#include <adt/list.h>
53
#include <assert.h>
53
#include <assert.h>
54
#include <futex.h>
54
#include <fibril_sync.h>
55
#include <sys/mman.h>
55
#include <sys/mman.h>
56
#include <align.h>
56
#include <align.h>
57
 
57
 
58
#define FAT_NODE(node)  ((node) ? (fat_node_t *) (node)->data : NULL)
58
#define FAT_NODE(node)  ((node) ? (fat_node_t *) (node)->data : NULL)
59
#define FS_NODE(node)   ((node) ? (node)->bp : NULL)
59
#define FS_NODE(node)   ((node) ? (node)->bp : NULL)
60
 
60
 
61
/** Futex protecting the list of cached free FAT nodes. */
61
/** Mutex protecting the list of cached free FAT nodes. */
62
static futex_t ffn_futex = FUTEX_INITIALIZER;
62
static FIBRIL_MUTEX_INITIALIZE(ffn_mutex);
63
 
63
 
64
/** List of cached free FAT nodes. */
64
/** List of cached free FAT nodes. */
65
static LIST_INITIALIZE(ffn_head);
65
static LIST_INITIALIZE(ffn_head);
66
 
66
 
67
static void fat_node_initialize(fat_node_t *node)
67
static void fat_node_initialize(fat_node_t *node)
68
{
68
{
69
    futex_initialize(&node->lock, 1);
69
    fibril_mutex_initialize(&node->lock);
70
    node->bp = NULL;
70
    node->bp = NULL;
71
    node->idx = NULL;
71
    node->idx = NULL;
72
    node->type = 0;
72
    node->type = 0;
73
    link_initialize(&node->ffn_link);
73
    link_initialize(&node->ffn_link);
74
    node->size = 0;
74
    node->size = 0;
75
    node->lnkcnt = 0;
75
    node->lnkcnt = 0;
76
    node->refcnt = 0;
76
    node->refcnt = 0;
77
    node->dirty = false;
77
    node->dirty = false;
78
}
78
}
79
 
79
 
80
static void fat_node_sync(fat_node_t *node)
80
static void fat_node_sync(fat_node_t *node)
81
{
81
{
82
    block_t *b;
82
    block_t *b;
83
    fat_bs_t *bs;
83
    fat_bs_t *bs;
84
    fat_dentry_t *d;
84
    fat_dentry_t *d;
85
    uint16_t bps;
85
    uint16_t bps;
86
    unsigned dps;
86
    unsigned dps;
87
   
87
   
88
    assert(node->dirty);
88
    assert(node->dirty);
89
 
89
 
90
    bs = block_bb_get(node->idx->dev_handle);
90
    bs = block_bb_get(node->idx->dev_handle);
91
    bps = uint16_t_le2host(bs->bps);
91
    bps = uint16_t_le2host(bs->bps);
92
    dps = bps / sizeof(fat_dentry_t);
92
    dps = bps / sizeof(fat_dentry_t);
93
   
93
   
94
    /* Read the block that contains the dentry of interest. */
94
    /* Read the block that contains the dentry of interest. */
95
    b = _fat_block_get(bs, node->idx->dev_handle, node->idx->pfc,
95
    b = _fat_block_get(bs, node->idx->dev_handle, node->idx->pfc,
96
        (node->idx->pdi * sizeof(fat_dentry_t)) / bps, BLOCK_FLAGS_NONE);
96
        (node->idx->pdi * sizeof(fat_dentry_t)) / bps, BLOCK_FLAGS_NONE);
97
 
97
 
98
    d = ((fat_dentry_t *)b->data) + (node->idx->pdi % dps);
98
    d = ((fat_dentry_t *)b->data) + (node->idx->pdi % dps);
99
 
99
 
100
    d->firstc = host2uint16_t_le(node->firstc);
100
    d->firstc = host2uint16_t_le(node->firstc);
101
    if (node->type == FAT_FILE) {
101
    if (node->type == FAT_FILE) {
102
        d->size = host2uint32_t_le(node->size);
102
        d->size = host2uint32_t_le(node->size);
103
    } else if (node->type == FAT_DIRECTORY) {
103
    } else if (node->type == FAT_DIRECTORY) {
104
        d->attr = FAT_ATTR_SUBDIR;
104
        d->attr = FAT_ATTR_SUBDIR;
105
    }
105
    }
106
   
106
   
107
    /* TODO: update other fields? (e.g time fields) */
107
    /* TODO: update other fields? (e.g time fields) */
108
   
108
   
109
    b->dirty = true;        /* need to sync block */
109
    b->dirty = true;        /* need to sync block */
110
    block_put(b);
110
    block_put(b);
111
}
111
}
112
 
112
 
113
static fat_node_t *fat_node_get_new(void)
113
static fat_node_t *fat_node_get_new(void)
114
{
114
{
115
    fs_node_t *fn;
115
    fs_node_t *fn;
116
    fat_node_t *nodep;
116
    fat_node_t *nodep;
117
 
117
 
118
    futex_down(&ffn_futex);
118
    fibril_mutex_lock(&ffn_mutex);
119
    if (!list_empty(&ffn_head)) {
119
    if (!list_empty(&ffn_head)) {
120
        /* Try to use a cached free node structure. */
120
        /* Try to use a cached free node structure. */
121
        fat_idx_t *idxp_tmp;
121
        fat_idx_t *idxp_tmp;
122
        nodep = list_get_instance(ffn_head.next, fat_node_t, ffn_link);
122
        nodep = list_get_instance(ffn_head.next, fat_node_t, ffn_link);
123
        if (futex_trydown(&nodep->lock) == ESYNCH_WOULD_BLOCK)
123
        if (!fibril_mutex_trylock(&nodep->lock))
124
            goto skip_cache;
124
            goto skip_cache;
125
        idxp_tmp = nodep->idx;
125
        idxp_tmp = nodep->idx;
126
        if (futex_trydown(&idxp_tmp->lock) == ESYNCH_WOULD_BLOCK) {
126
        if (!fibril_mutex_trylock(&idxp_tmp->lock)) {
127
            futex_up(&nodep->lock);
127
            fibril_mutex_unlock(&nodep->lock);
128
            goto skip_cache;
128
            goto skip_cache;
129
        }
129
        }
130
        list_remove(&nodep->ffn_link);
130
        list_remove(&nodep->ffn_link);
131
        futex_up(&ffn_futex);
131
        fibril_mutex_unlock(&ffn_mutex);
132
        if (nodep->dirty)
132
        if (nodep->dirty)
133
            fat_node_sync(nodep);
133
            fat_node_sync(nodep);
134
        idxp_tmp->nodep = NULL;
134
        idxp_tmp->nodep = NULL;
135
        futex_up(&nodep->lock);
135
        fibril_mutex_unlock(&nodep->lock);
136
        futex_up(&idxp_tmp->lock);
136
        fibril_mutex_unlock(&idxp_tmp->lock);
137
        fn = FS_NODE(nodep);
137
        fn = FS_NODE(nodep);
138
    } else {
138
    } else {
139
skip_cache:
139
skip_cache:
140
        /* Try to allocate a new node structure. */
140
        /* Try to allocate a new node structure. */
141
        futex_up(&ffn_futex);
141
        fibril_mutex_unlock(&ffn_mutex);
142
        fn = (fs_node_t *)malloc(sizeof(fs_node_t));
142
        fn = (fs_node_t *)malloc(sizeof(fs_node_t));
143
        if (!fn)
143
        if (!fn)
144
            return NULL;
144
            return NULL;
145
        nodep = (fat_node_t *)malloc(sizeof(fat_node_t));
145
        nodep = (fat_node_t *)malloc(sizeof(fat_node_t));
146
        if (!nodep) {
146
        if (!nodep) {
147
            free(fn);
147
            free(fn);
148
            return NULL;
148
            return NULL;
149
        }
149
        }
150
    }
150
    }
151
    fat_node_initialize(nodep);
151
    fat_node_initialize(nodep);
-
 
152
    fs_node_initialize(fn);
152
    fn->data = nodep;
153
    fn->data = nodep;
153
    nodep->bp = fn;
154
    nodep->bp = fn;
154
   
155
   
155
    return nodep;
156
    return nodep;
156
}
157
}
157
 
158
 
158
/** Internal version of fat_node_get().
159
/** Internal version of fat_node_get().
159
 *
160
 *
160
 * @param idxp      Locked index structure.
161
 * @param idxp      Locked index structure.
161
 */
162
 */
162
static fat_node_t *fat_node_get_core(fat_idx_t *idxp)
163
static fat_node_t *fat_node_get_core(fat_idx_t *idxp)
163
{
164
{
164
    block_t *b;
165
    block_t *b;
165
    fat_bs_t *bs;
166
    fat_bs_t *bs;
166
    fat_dentry_t *d;
167
    fat_dentry_t *d;
167
    fat_node_t *nodep = NULL;
168
    fat_node_t *nodep = NULL;
168
    unsigned bps;
169
    unsigned bps;
169
    unsigned spc;
170
    unsigned spc;
170
    unsigned dps;
171
    unsigned dps;
171
 
172
 
172
    if (idxp->nodep) {
173
    if (idxp->nodep) {
173
        /*
174
        /*
174
         * We are lucky.
175
         * We are lucky.
175
         * The node is already instantiated in memory.
176
         * The node is already instantiated in memory.
176
         */
177
         */
177
        futex_down(&idxp->nodep->lock);
178
        fibril_mutex_lock(&idxp->nodep->lock);
178
        if (!idxp->nodep->refcnt++)
179
        if (!idxp->nodep->refcnt++)
179
            list_remove(&idxp->nodep->ffn_link);
180
            list_remove(&idxp->nodep->ffn_link);
180
        futex_up(&idxp->nodep->lock);
181
        fibril_mutex_unlock(&idxp->nodep->lock);
181
        return idxp->nodep;
182
        return idxp->nodep;
182
    }
183
    }
183
 
184
 
184
    /*
185
    /*
185
     * We must instantiate the node from the file system.
186
     * We must instantiate the node from the file system.
186
     */
187
     */
187
   
188
   
188
    assert(idxp->pfc);
189
    assert(idxp->pfc);
189
 
190
 
190
    nodep = fat_node_get_new();
191
    nodep = fat_node_get_new();
191
    if (!nodep)
192
    if (!nodep)
192
        return NULL;
193
        return NULL;
193
 
194
 
194
    bs = block_bb_get(idxp->dev_handle);
195
    bs = block_bb_get(idxp->dev_handle);
195
    bps = uint16_t_le2host(bs->bps);
196
    bps = uint16_t_le2host(bs->bps);
196
    spc = bs->spc;
197
    spc = bs->spc;
197
    dps = bps / sizeof(fat_dentry_t);
198
    dps = bps / sizeof(fat_dentry_t);
198
 
199
 
199
    /* Read the block that contains the dentry of interest. */
200
    /* Read the block that contains the dentry of interest. */
200
    b = _fat_block_get(bs, idxp->dev_handle, idxp->pfc,
201
    b = _fat_block_get(bs, idxp->dev_handle, idxp->pfc,
201
        (idxp->pdi * sizeof(fat_dentry_t)) / bps, BLOCK_FLAGS_NONE);
202
        (idxp->pdi * sizeof(fat_dentry_t)) / bps, BLOCK_FLAGS_NONE);
202
    assert(b);
203
    assert(b);
203
 
204
 
204
    d = ((fat_dentry_t *)b->data) + (idxp->pdi % dps);
205
    d = ((fat_dentry_t *)b->data) + (idxp->pdi % dps);
205
    if (d->attr & FAT_ATTR_SUBDIR) {
206
    if (d->attr & FAT_ATTR_SUBDIR) {
206
        /*
207
        /*
207
         * The only directory which does not have this bit set is the
208
         * The only directory which does not have this bit set is the
208
         * root directory itself. The root directory node is handled
209
         * root directory itself. The root directory node is handled
209
         * and initialized elsewhere.
210
         * and initialized elsewhere.
210
         */
211
         */
211
        nodep->type = FAT_DIRECTORY;
212
        nodep->type = FAT_DIRECTORY;
212
        /*
213
        /*
213
         * Unfortunately, the 'size' field of the FAT dentry is not
214
         * Unfortunately, the 'size' field of the FAT dentry is not
214
         * defined for the directory entry type. We must determine the
215
         * defined for the directory entry type. We must determine the
215
         * size of the directory by walking the FAT.
216
         * size of the directory by walking the FAT.
216
         */
217
         */
217
        nodep->size = bps * spc * fat_clusters_get(bs, idxp->dev_handle,
218
        nodep->size = bps * spc * fat_clusters_get(bs, idxp->dev_handle,
218
            uint16_t_le2host(d->firstc));
219
            uint16_t_le2host(d->firstc));
219
    } else {
220
    } else {
220
        nodep->type = FAT_FILE;
221
        nodep->type = FAT_FILE;
221
        nodep->size = uint32_t_le2host(d->size);
222
        nodep->size = uint32_t_le2host(d->size);
222
    }
223
    }
223
    nodep->firstc = uint16_t_le2host(d->firstc);
224
    nodep->firstc = uint16_t_le2host(d->firstc);
224
    nodep->lnkcnt = 1;
225
    nodep->lnkcnt = 1;
225
    nodep->refcnt = 1;
226
    nodep->refcnt = 1;
226
 
227
 
227
    block_put(b);
228
    block_put(b);
228
 
229
 
229
    /* Link the idx structure with the node structure. */
230
    /* Link the idx structure with the node structure. */
230
    nodep->idx = idxp;
231
    nodep->idx = idxp;
231
    idxp->nodep = nodep;
232
    idxp->nodep = nodep;
232
 
233
 
233
    return nodep;
234
    return nodep;
234
}
235
}
235
 
236
 
236
/*
237
/*
237
 * Forward declarations of FAT libfs operations.
238
 * Forward declarations of FAT libfs operations.
238
 */
239
 */
239
static fs_node_t *fat_node_get(dev_handle_t, fs_index_t);
240
static fs_node_t *fat_node_get(dev_handle_t, fs_index_t);
240
static void fat_node_put(fs_node_t *);
241
static void fat_node_put(fs_node_t *);
241
static fs_node_t *fat_create_node(dev_handle_t, int);
242
static fs_node_t *fat_create_node(dev_handle_t, int);
242
static int fat_destroy_node(fs_node_t *);
243
static int fat_destroy_node(fs_node_t *);
243
static int fat_link(fs_node_t *, fs_node_t *, const char *);
244
static int fat_link(fs_node_t *, fs_node_t *, const char *);
244
static int fat_unlink(fs_node_t *, fs_node_t *, const char *);
245
static int fat_unlink(fs_node_t *, fs_node_t *, const char *);
245
static fs_node_t *fat_match(fs_node_t *, const char *);
246
static fs_node_t *fat_match(fs_node_t *, const char *);
246
static fs_index_t fat_index_get(fs_node_t *);
247
static fs_index_t fat_index_get(fs_node_t *);
247
static size_t fat_size_get(fs_node_t *);
248
static size_t fat_size_get(fs_node_t *);
248
static unsigned fat_lnkcnt_get(fs_node_t *);
249
static unsigned fat_lnkcnt_get(fs_node_t *);
249
static bool fat_has_children(fs_node_t *);
250
static bool fat_has_children(fs_node_t *);
250
static fs_node_t *fat_root_get(dev_handle_t);
251
static fs_node_t *fat_root_get(dev_handle_t);
251
static char fat_plb_get_char(unsigned);
252
static char fat_plb_get_char(unsigned);
252
static bool fat_is_directory(fs_node_t *);
253
static bool fat_is_directory(fs_node_t *);
253
static bool fat_is_file(fs_node_t *node);
254
static bool fat_is_file(fs_node_t *node);
254
 
255
 
255
/*
256
/*
256
 * FAT libfs operations.
257
 * FAT libfs operations.
257
 */
258
 */
258
 
259
 
259
/** Instantiate a FAT in-core node. */
260
/** Instantiate a FAT in-core node. */
260
fs_node_t *fat_node_get(dev_handle_t dev_handle, fs_index_t index)
261
fs_node_t *fat_node_get(dev_handle_t dev_handle, fs_index_t index)
261
{
262
{
262
    fat_node_t *nodep;
263
    fat_node_t *nodep;
263
    fat_idx_t *idxp;
264
    fat_idx_t *idxp;
264
 
265
 
265
    idxp = fat_idx_get_by_index(dev_handle, index);
266
    idxp = fat_idx_get_by_index(dev_handle, index);
266
    if (!idxp)
267
    if (!idxp)
267
        return NULL;
268
        return NULL;
268
    /* idxp->lock held */
269
    /* idxp->lock held */
269
    nodep = fat_node_get_core(idxp);
270
    nodep = fat_node_get_core(idxp);
270
    futex_up(&idxp->lock);
271
    fibril_mutex_unlock(&idxp->lock);
271
    return FS_NODE(nodep);
272
    return FS_NODE(nodep);
272
}
273
}
273
 
274
 
274
void fat_node_put(fs_node_t *fn)
275
void fat_node_put(fs_node_t *fn)
275
{
276
{
276
    fat_node_t *nodep = FAT_NODE(fn);
277
    fat_node_t *nodep = FAT_NODE(fn);
277
    bool destroy = false;
278
    bool destroy = false;
278
 
279
 
279
    futex_down(&nodep->lock);
280
    fibril_mutex_lock(&nodep->lock);
280
    if (!--nodep->refcnt) {
281
    if (!--nodep->refcnt) {
281
        if (nodep->idx) {
282
        if (nodep->idx) {
282
            futex_down(&ffn_futex);
283
            fibril_mutex_lock(&ffn_mutex);
283
            list_append(&nodep->ffn_link, &ffn_head);
284
            list_append(&nodep->ffn_link, &ffn_head);
284
            futex_up(&ffn_futex);
285
            fibril_mutex_unlock(&ffn_mutex);
285
        } else {
286
        } else {
286
            /*
287
            /*
287
             * The node does not have any index structure associated
288
             * The node does not have any index structure associated
288
             * with itself. This can only mean that we are releasing
289
             * with itself. This can only mean that we are releasing
289
             * the node after a failed attempt to allocate the index
290
             * the node after a failed attempt to allocate the index
290
             * structure for it.
291
             * structure for it.
291
             */
292
             */
292
            destroy = true;
293
            destroy = true;
293
        }
294
        }
294
    }
295
    }
295
    futex_up(&nodep->lock);
296
    fibril_mutex_unlock(&nodep->lock);
296
    if (destroy) {
297
    if (destroy) {
297
        free(nodep->bp);
298
        free(nodep->bp);
298
        free(nodep);
299
        free(nodep);
299
    }
300
    }
300
}
301
}
301
 
302
 
302
fs_node_t *fat_create_node(dev_handle_t dev_handle, int flags)
303
fs_node_t *fat_create_node(dev_handle_t dev_handle, int flags)
303
{
304
{
304
    fat_idx_t *idxp;
305
    fat_idx_t *idxp;
305
    fat_node_t *nodep;
306
    fat_node_t *nodep;
306
    fat_bs_t *bs;
307
    fat_bs_t *bs;
307
    fat_cluster_t mcl, lcl;
308
    fat_cluster_t mcl, lcl;
308
    uint16_t bps;
309
    uint16_t bps;
309
    int rc;
310
    int rc;
310
 
311
 
311
    bs = block_bb_get(dev_handle);
312
    bs = block_bb_get(dev_handle);
312
    bps = uint16_t_le2host(bs->bps);
313
    bps = uint16_t_le2host(bs->bps);
313
    if (flags & L_DIRECTORY) {
314
    if (flags & L_DIRECTORY) {
314
        /* allocate a cluster */
315
        /* allocate a cluster */
315
        rc = fat_alloc_clusters(bs, dev_handle, 1, &mcl, &lcl);
316
        rc = fat_alloc_clusters(bs, dev_handle, 1, &mcl, &lcl);
316
        if (rc != EOK)
317
        if (rc != EOK)
317
            return NULL;
318
            return NULL;
318
    }
319
    }
319
 
320
 
320
    nodep = fat_node_get_new();
321
    nodep = fat_node_get_new();
321
    if (!nodep) {
322
    if (!nodep) {
322
        fat_free_clusters(bs, dev_handle, mcl);
323
        fat_free_clusters(bs, dev_handle, mcl);
323
        return NULL;
324
        return NULL;
324
    }
325
    }
325
    idxp = fat_idx_get_new(dev_handle);
326
    idxp = fat_idx_get_new(dev_handle);
326
    if (!idxp) {
327
    if (!idxp) {
327
        fat_free_clusters(bs, dev_handle, mcl);
328
        fat_free_clusters(bs, dev_handle, mcl);
328
        fat_node_put(FS_NODE(nodep));
329
        fat_node_put(FS_NODE(nodep));
329
        return NULL;
330
        return NULL;
330
    }
331
    }
331
    /* idxp->lock held */
332
    /* idxp->lock held */
332
    if (flags & L_DIRECTORY) {
333
    if (flags & L_DIRECTORY) {
333
        int i;
334
        int i;
334
        block_t *b;
335
        block_t *b;
335
 
336
 
336
        /*
337
        /*
337
         * Populate the new cluster with unused dentries.
338
         * Populate the new cluster with unused dentries.
338
         */
339
         */
339
        for (i = 0; i < bs->spc; i++) {
340
        for (i = 0; i < bs->spc; i++) {
340
            b = _fat_block_get(bs, dev_handle, mcl, i,
341
            b = _fat_block_get(bs, dev_handle, mcl, i,
341
                BLOCK_FLAGS_NOREAD);
342
                BLOCK_FLAGS_NOREAD);
342
            /* mark all dentries as never-used */
343
            /* mark all dentries as never-used */
343
            memset(b->data, 0, bps);
344
            memset(b->data, 0, bps);
344
            b->dirty = false;
345
            b->dirty = false;
345
            block_put(b);
346
            block_put(b);
346
        }
347
        }
347
        nodep->type = FAT_DIRECTORY;
348
        nodep->type = FAT_DIRECTORY;
348
        nodep->firstc = mcl;
349
        nodep->firstc = mcl;
349
        nodep->size = bps * bs->spc;
350
        nodep->size = bps * bs->spc;
350
    } else {
351
    } else {
351
        nodep->type = FAT_FILE;
352
        nodep->type = FAT_FILE;
352
        nodep->firstc = FAT_CLST_RES0;
353
        nodep->firstc = FAT_CLST_RES0;
353
        nodep->size = 0;
354
        nodep->size = 0;
354
    }
355
    }
355
    nodep->lnkcnt = 0;  /* not linked anywhere */
356
    nodep->lnkcnt = 0;  /* not linked anywhere */
356
    nodep->refcnt = 1;
357
    nodep->refcnt = 1;
357
    nodep->dirty = true;
358
    nodep->dirty = true;
358
 
359
 
359
    nodep->idx = idxp;
360
    nodep->idx = idxp;
360
    idxp->nodep = nodep;
361
    idxp->nodep = nodep;
361
 
362
 
362
    futex_up(&idxp->lock);
363
    fibril_mutex_unlock(&idxp->lock);
363
    return FS_NODE(nodep);
364
    return FS_NODE(nodep);
364
}
365
}
365
 
366
 
366
int fat_destroy_node(fs_node_t *fn)
367
int fat_destroy_node(fs_node_t *fn)
367
{
368
{
368
    fat_node_t *nodep = FAT_NODE(fn);
369
    fat_node_t *nodep = FAT_NODE(fn);
369
    fat_bs_t *bs;
370
    fat_bs_t *bs;
370
 
371
 
371
    /*
372
    /*
372
     * The node is not reachable from the file system. This means that the
373
     * The node is not reachable from the file system. This means that the
373
     * link count should be zero and that the index structure cannot be
374
     * link count should be zero and that the index structure cannot be
374
     * found in the position hash. Obviously, we don't need to lock the node
375
     * found in the position hash. Obviously, we don't need to lock the node
375
     * nor its index structure.
376
     * nor its index structure.
376
     */
377
     */
377
    assert(nodep->lnkcnt == 0);
378
    assert(nodep->lnkcnt == 0);
378
 
379
 
379
    /*
380
    /*
380
     * The node may not have any children.
381
     * The node may not have any children.
381
     */
382
     */
382
    assert(fat_has_children(fn) == false);
383
    assert(fat_has_children(fn) == false);
383
 
384
 
384
    bs = block_bb_get(nodep->idx->dev_handle);
385
    bs = block_bb_get(nodep->idx->dev_handle);
385
    if (nodep->firstc != FAT_CLST_RES0) {
386
    if (nodep->firstc != FAT_CLST_RES0) {
386
        assert(nodep->size);
387
        assert(nodep->size);
387
        /* Free all clusters allocated to the node. */
388
        /* Free all clusters allocated to the node. */
388
        fat_free_clusters(bs, nodep->idx->dev_handle, nodep->firstc);
389
        fat_free_clusters(bs, nodep->idx->dev_handle, nodep->firstc);
389
    }
390
    }
390
 
391
 
391
    fat_idx_destroy(nodep->idx);
392
    fat_idx_destroy(nodep->idx);
392
    free(nodep->bp);
393
    free(nodep->bp);
393
    free(nodep);
394
    free(nodep);
394
    return EOK;
395
    return EOK;
395
}
396
}
396
 
397
 
397
int fat_link(fs_node_t *pfn, fs_node_t *cfn, const char *name)
398
int fat_link(fs_node_t *pfn, fs_node_t *cfn, const char *name)
398
{
399
{
399
    fat_node_t *parentp = FAT_NODE(pfn);
400
    fat_node_t *parentp = FAT_NODE(pfn);
400
    fat_node_t *childp = FAT_NODE(cfn);
401
    fat_node_t *childp = FAT_NODE(cfn);
401
    fat_dentry_t *d;
402
    fat_dentry_t *d;
402
    fat_bs_t *bs;
403
    fat_bs_t *bs;
403
    block_t *b;
404
    block_t *b;
404
    int i, j;
405
    unsigned i, j;
405
    uint16_t bps;
406
    uint16_t bps;
406
    unsigned dps;
407
    unsigned dps;
407
    unsigned blocks;
408
    unsigned blocks;
408
    fat_cluster_t mcl, lcl;
409
    fat_cluster_t mcl, lcl;
409
    int rc;
410
    int rc;
410
 
411
 
411
    futex_down(&childp->lock);
412
    fibril_mutex_lock(&childp->lock);
412
    if (childp->lnkcnt == 1) {
413
    if (childp->lnkcnt == 1) {
413
        /*
414
        /*
414
         * On FAT, we don't support multiple hard links.
415
         * On FAT, we don't support multiple hard links.
415
         */
416
         */
416
        futex_up(&childp->lock);
417
        fibril_mutex_unlock(&childp->lock);
417
        return EMLINK;
418
        return EMLINK;
418
    }
419
    }
419
    assert(childp->lnkcnt == 0);
420
    assert(childp->lnkcnt == 0);
420
    futex_up(&childp->lock);
421
    fibril_mutex_unlock(&childp->lock);
421
 
422
 
422
    if (!fat_dentry_name_verify(name)) {
423
    if (!fat_dentry_name_verify(name)) {
423
        /*
424
        /*
424
         * Attempt to create unsupported name.
425
         * Attempt to create unsupported name.
425
         */
426
         */
426
        return ENOTSUP;
427
        return ENOTSUP;
427
    }
428
    }
428
 
429
 
429
    /*
430
    /*
430
     * Get us an unused parent node's dentry or grow the parent and allocate
431
     * Get us an unused parent node's dentry or grow the parent and allocate
431
     * a new one.
432
     * a new one.
432
     */
433
     */
433
   
434
   
434
    futex_down(&parentp->idx->lock);
435
    fibril_mutex_lock(&parentp->idx->lock);
435
    bs = block_bb_get(parentp->idx->dev_handle);
436
    bs = block_bb_get(parentp->idx->dev_handle);
436
    bps = uint16_t_le2host(bs->bps);
437
    bps = uint16_t_le2host(bs->bps);
437
    dps = bps / sizeof(fat_dentry_t);
438
    dps = bps / sizeof(fat_dentry_t);
438
 
439
 
439
    blocks = parentp->size / bps;
440
    blocks = parentp->size / bps;
440
 
441
 
441
    for (i = 0; i < blocks; i++) {
442
    for (i = 0; i < blocks; i++) {
442
        b = fat_block_get(bs, parentp, i, BLOCK_FLAGS_NONE);
443
        b = fat_block_get(bs, parentp, i, BLOCK_FLAGS_NONE);
443
        for (j = 0; j < dps; j++) {
444
        for (j = 0; j < dps; j++) {
444
            d = ((fat_dentry_t *)b->data) + j;
445
            d = ((fat_dentry_t *)b->data) + j;
445
            switch (fat_classify_dentry(d)) {
446
            switch (fat_classify_dentry(d)) {
446
            case FAT_DENTRY_SKIP:
447
            case FAT_DENTRY_SKIP:
447
            case FAT_DENTRY_VALID:
448
            case FAT_DENTRY_VALID:
448
                /* skipping used and meta entries */
449
                /* skipping used and meta entries */
449
                continue;
450
                continue;
450
            case FAT_DENTRY_FREE:
451
            case FAT_DENTRY_FREE:
451
            case FAT_DENTRY_LAST:
452
            case FAT_DENTRY_LAST:
452
                /* found an empty slot */
453
                /* found an empty slot */
453
                goto hit;
454
                goto hit;
454
            }
455
            }
455
        }
456
        }
456
        block_put(b);
457
        block_put(b);
457
    }
458
    }
458
    j = 0;
459
    j = 0;
459
   
460
   
460
    /*
461
    /*
461
     * We need to grow the parent in order to create a new unused dentry.
462
     * We need to grow the parent in order to create a new unused dentry.
462
     */
463
     */
463
    if (parentp->idx->pfc == FAT_CLST_ROOT) {
464
    if (parentp->idx->pfc == FAT_CLST_ROOT) {
464
        /* Can't grow the root directory. */
465
        /* Can't grow the root directory. */
465
        futex_up(&parentp->idx->lock);
466
        fibril_mutex_unlock(&parentp->idx->lock);
466
        return ENOSPC;
467
        return ENOSPC;
467
    }
468
    }
468
    rc = fat_alloc_clusters(bs, parentp->idx->dev_handle, 1, &mcl, &lcl);
469
    rc = fat_alloc_clusters(bs, parentp->idx->dev_handle, 1, &mcl, &lcl);
469
    if (rc != EOK) {
470
    if (rc != EOK) {
470
        futex_up(&parentp->idx->lock);
471
        fibril_mutex_unlock(&parentp->idx->lock);
471
        return rc;
472
        return rc;
472
    }
473
    }
473
    fat_append_clusters(bs, parentp, mcl);
474
    fat_append_clusters(bs, parentp, mcl);
474
    b = fat_block_get(bs, parentp, i, BLOCK_FLAGS_NOREAD);
475
    b = fat_block_get(bs, parentp, i, BLOCK_FLAGS_NOREAD);
475
    d = (fat_dentry_t *)b->data;
476
    d = (fat_dentry_t *)b->data;
476
    /*
477
    /*
477
     * Clear all dentries in the block except for the first one (the first
478
     * Clear all dentries in the block except for the first one (the first
478
     * dentry will be cleared in the next step).
479
     * dentry will be cleared in the next step).
479
     */
480
     */
480
    memset(d + 1, 0, bps - sizeof(fat_dentry_t));
481
    memset(d + 1, 0, bps - sizeof(fat_dentry_t));
481
 
482
 
482
hit:
483
hit:
483
    /*
484
    /*
484
     * At this point we only establish the link between the parent and the
485
     * At this point we only establish the link between the parent and the
485
     * child.  The dentry, except of the name and the extension, will remain
486
     * child.  The dentry, except of the name and the extension, will remain
486
     * uninitialized until the corresponding node is synced. Thus the valid
487
     * uninitialized until the corresponding node is synced. Thus the valid
487
     * dentry data is kept in the child node structure.
488
     * dentry data is kept in the child node structure.
488
     */
489
     */
489
    memset(d, 0, sizeof(fat_dentry_t));
490
    memset(d, 0, sizeof(fat_dentry_t));
490
    fat_dentry_name_set(d, name);
491
    fat_dentry_name_set(d, name);
491
    b->dirty = true;        /* need to sync block */
492
    b->dirty = true;        /* need to sync block */
492
    block_put(b);
493
    block_put(b);
493
    futex_up(&parentp->idx->lock);
494
    fibril_mutex_unlock(&parentp->idx->lock);
494
 
495
 
495
    futex_down(&childp->idx->lock);
496
    fibril_mutex_lock(&childp->idx->lock);
496
   
497
   
497
    /*
498
    /*
498
     * If possible, create the Sub-directory Identifier Entry and the
499
     * If possible, create the Sub-directory Identifier Entry and the
499
     * Sub-directory Parent Pointer Entry (i.e. "." and ".."). These entries
500
     * Sub-directory Parent Pointer Entry (i.e. "." and ".."). These entries
500
     * are not mandatory according to Standard ECMA-107 and HelenOS VFS does
501
     * are not mandatory according to Standard ECMA-107 and HelenOS VFS does
501
     * not use them anyway, so this is rather a sign of our good will.
502
     * not use them anyway, so this is rather a sign of our good will.
502
     */
503
     */
503
    b = fat_block_get(bs, childp, 0, BLOCK_FLAGS_NONE);
504
    b = fat_block_get(bs, childp, 0, BLOCK_FLAGS_NONE);
504
    d = (fat_dentry_t *)b->data;
505
    d = (fat_dentry_t *)b->data;
505
    if (fat_classify_dentry(d) == FAT_DENTRY_LAST ||
506
    if (fat_classify_dentry(d) == FAT_DENTRY_LAST ||
506
        str_cmp(d->name, FAT_NAME_DOT) == 0) {
507
        str_cmp(d->name, FAT_NAME_DOT) == 0) {
507
        memset(d, 0, sizeof(fat_dentry_t));
508
        memset(d, 0, sizeof(fat_dentry_t));
508
        str_cpy(d->name, 8, FAT_NAME_DOT);
509
        str_cpy(d->name, 8, FAT_NAME_DOT);
509
        str_cpy(d->ext, 3, FAT_EXT_PAD);
510
        str_cpy(d->ext, 3, FAT_EXT_PAD);
510
        d->attr = FAT_ATTR_SUBDIR;
511
        d->attr = FAT_ATTR_SUBDIR;
511
        d->firstc = host2uint16_t_le(childp->firstc);
512
        d->firstc = host2uint16_t_le(childp->firstc);
512
        /* TODO: initialize also the date/time members. */
513
        /* TODO: initialize also the date/time members. */
513
    }
514
    }
514
    d++;
515
    d++;
515
    if (fat_classify_dentry(d) == FAT_DENTRY_LAST ||
516
    if (fat_classify_dentry(d) == FAT_DENTRY_LAST ||
516
        str_cmp(d->name, FAT_NAME_DOT_DOT) == 0) {
517
        str_cmp(d->name, FAT_NAME_DOT_DOT) == 0) {
517
        memset(d, 0, sizeof(fat_dentry_t));
518
        memset(d, 0, sizeof(fat_dentry_t));
518
        str_cpy(d->name, 8, FAT_NAME_DOT_DOT);
519
        str_cpy(d->name, 8, FAT_NAME_DOT_DOT);
519
        str_cpy(d->ext, 3, FAT_EXT_PAD);
520
        str_cpy(d->ext, 3, FAT_EXT_PAD);
520
        d->attr = FAT_ATTR_SUBDIR;
521
        d->attr = FAT_ATTR_SUBDIR;
521
        d->firstc = (parentp->firstc == FAT_CLST_ROOT) ?
522
        d->firstc = (parentp->firstc == FAT_CLST_ROOT) ?
522
            host2uint16_t_le(FAT_CLST_RES0) :
523
            host2uint16_t_le(FAT_CLST_RES0) :
523
            host2uint16_t_le(parentp->firstc);
524
            host2uint16_t_le(parentp->firstc);
524
        /* TODO: initialize also the date/time members. */
525
        /* TODO: initialize also the date/time members. */
525
    }
526
    }
526
    b->dirty = true;        /* need to sync block */
527
    b->dirty = true;        /* need to sync block */
527
    block_put(b);
528
    block_put(b);
528
 
529
 
529
    childp->idx->pfc = parentp->firstc;
530
    childp->idx->pfc = parentp->firstc;
530
    childp->idx->pdi = i * dps + j;
531
    childp->idx->pdi = i * dps + j;
531
    futex_up(&childp->idx->lock);
532
    fibril_mutex_unlock(&childp->idx->lock);
532
 
533
 
533
    futex_down(&childp->lock);
534
    fibril_mutex_lock(&childp->lock);
534
    childp->lnkcnt = 1;
535
    childp->lnkcnt = 1;
535
    childp->dirty = true;       /* need to sync node */
536
    childp->dirty = true;       /* need to sync node */
536
    futex_up(&childp->lock);
537
    fibril_mutex_unlock(&childp->lock);
537
 
538
 
538
    /*
539
    /*
539
     * Hash in the index structure into the position hash.
540
     * Hash in the index structure into the position hash.
540
     */
541
     */
541
    fat_idx_hashin(childp->idx);
542
    fat_idx_hashin(childp->idx);
542
 
543
 
543
    return EOK;
544
    return EOK;
544
}
545
}
545
 
546
 
546
int fat_unlink(fs_node_t *pfn, fs_node_t *cfn, const char *nm)
547
int fat_unlink(fs_node_t *pfn, fs_node_t *cfn, const char *nm)
547
{
548
{
548
    fat_node_t *parentp = FAT_NODE(pfn);
549
    fat_node_t *parentp = FAT_NODE(pfn);
549
    fat_node_t *childp = FAT_NODE(cfn);
550
    fat_node_t *childp = FAT_NODE(cfn);
550
    fat_bs_t *bs;
551
    fat_bs_t *bs;
551
    fat_dentry_t *d;
552
    fat_dentry_t *d;
552
    uint16_t bps;
553
    uint16_t bps;
553
    block_t *b;
554
    block_t *b;
554
 
555
 
555
    if (!parentp)
556
    if (!parentp)
556
        return EBUSY;
557
        return EBUSY;
557
   
558
   
558
    if (fat_has_children(cfn))
559
    if (fat_has_children(cfn))
559
        return ENOTEMPTY;
560
        return ENOTEMPTY;
560
 
561
 
561
    futex_down(&parentp->lock);
562
    fibril_mutex_lock(&parentp->lock);
562
    futex_down(&childp->lock);
563
    fibril_mutex_lock(&childp->lock);
563
    assert(childp->lnkcnt == 1);
564
    assert(childp->lnkcnt == 1);
564
    futex_down(&childp->idx->lock);
565
    fibril_mutex_lock(&childp->idx->lock);
565
    bs = block_bb_get(childp->idx->dev_handle);
566
    bs = block_bb_get(childp->idx->dev_handle);
566
    bps = uint16_t_le2host(bs->bps);
567
    bps = uint16_t_le2host(bs->bps);
567
 
568
 
568
    b = _fat_block_get(bs, childp->idx->dev_handle, childp->idx->pfc,
569
    b = _fat_block_get(bs, childp->idx->dev_handle, childp->idx->pfc,
569
        (childp->idx->pdi * sizeof(fat_dentry_t)) / bps,
570
        (childp->idx->pdi * sizeof(fat_dentry_t)) / bps,
570
        BLOCK_FLAGS_NONE);
571
        BLOCK_FLAGS_NONE);
571
    d = (fat_dentry_t *)b->data +
572
    d = (fat_dentry_t *)b->data +
572
        (childp->idx->pdi % (bps / sizeof(fat_dentry_t)));
573
        (childp->idx->pdi % (bps / sizeof(fat_dentry_t)));
573
    /* mark the dentry as not-currently-used */
574
    /* mark the dentry as not-currently-used */
574
    d->name[0] = FAT_DENTRY_ERASED;
575
    d->name[0] = FAT_DENTRY_ERASED;
575
    b->dirty = true;        /* need to sync block */
576
    b->dirty = true;        /* need to sync block */
576
    block_put(b);
577
    block_put(b);
577
 
578
 
578
    /* remove the index structure from the position hash */
579
    /* remove the index structure from the position hash */
579
    fat_idx_hashout(childp->idx);
580
    fat_idx_hashout(childp->idx);
580
    /* clear position information */
581
    /* clear position information */
581
    childp->idx->pfc = FAT_CLST_RES0;
582
    childp->idx->pfc = FAT_CLST_RES0;
582
    childp->idx->pdi = 0;
583
    childp->idx->pdi = 0;
583
    futex_up(&childp->idx->lock);
584
    fibril_mutex_unlock(&childp->idx->lock);
584
    childp->lnkcnt = 0;
585
    childp->lnkcnt = 0;
585
    childp->dirty = true;
586
    childp->dirty = true;
586
    futex_up(&childp->lock);
587
    fibril_mutex_unlock(&childp->lock);
587
    futex_up(&parentp->lock);
588
    fibril_mutex_unlock(&parentp->lock);
588
 
589
 
589
    return EOK;
590
    return EOK;
590
}
591
}
591
 
592
 
592
fs_node_t *fat_match(fs_node_t *pfn, const char *component)
593
fs_node_t *fat_match(fs_node_t *pfn, const char *component)
593
{
594
{
594
    fat_bs_t *bs;
595
    fat_bs_t *bs;
595
    fat_node_t *parentp = FAT_NODE(pfn);
596
    fat_node_t *parentp = FAT_NODE(pfn);
596
    char name[FAT_NAME_LEN + 1 + FAT_EXT_LEN + 1];
597
    char name[FAT_NAME_LEN + 1 + FAT_EXT_LEN + 1];
597
    unsigned i, j;
598
    unsigned i, j;
598
    unsigned bps;       /* bytes per sector */
599
    unsigned bps;       /* bytes per sector */
599
    unsigned dps;       /* dentries per sector */
600
    unsigned dps;       /* dentries per sector */
600
    unsigned blocks;
601
    unsigned blocks;
601
    fat_dentry_t *d;
602
    fat_dentry_t *d;
602
    block_t *b;
603
    block_t *b;
603
 
604
 
604
    futex_down(&parentp->idx->lock);
605
    fibril_mutex_lock(&parentp->idx->lock);
605
    bs = block_bb_get(parentp->idx->dev_handle);
606
    bs = block_bb_get(parentp->idx->dev_handle);
606
    bps = uint16_t_le2host(bs->bps);
607
    bps = uint16_t_le2host(bs->bps);
607
    dps = bps / sizeof(fat_dentry_t);
608
    dps = bps / sizeof(fat_dentry_t);
608
    blocks = parentp->size / bps;
609
    blocks = parentp->size / bps;
609
    for (i = 0; i < blocks; i++) {
610
    for (i = 0; i < blocks; i++) {
610
        b = fat_block_get(bs, parentp, i, BLOCK_FLAGS_NONE);
611
        b = fat_block_get(bs, parentp, i, BLOCK_FLAGS_NONE);
611
        for (j = 0; j < dps; j++) {
612
        for (j = 0; j < dps; j++) {
612
            d = ((fat_dentry_t *)b->data) + j;
613
            d = ((fat_dentry_t *)b->data) + j;
613
            switch (fat_classify_dentry(d)) {
614
            switch (fat_classify_dentry(d)) {
614
            case FAT_DENTRY_SKIP:
615
            case FAT_DENTRY_SKIP:
615
            case FAT_DENTRY_FREE:
616
            case FAT_DENTRY_FREE:
616
                continue;
617
                continue;
617
            case FAT_DENTRY_LAST:
618
            case FAT_DENTRY_LAST:
618
                block_put(b);
619
                block_put(b);
619
                futex_up(&parentp->idx->lock);
620
                fibril_mutex_unlock(&parentp->idx->lock);
620
                return NULL;
621
                return NULL;
621
            default:
622
            default:
622
            case FAT_DENTRY_VALID:
623
            case FAT_DENTRY_VALID:
623
                fat_dentry_name_get(d, name);
624
                fat_dentry_name_get(d, name);
624
                break;
625
                break;
625
            }
626
            }
626
            if (fat_dentry_namecmp(name, component) == 0) {
627
            if (fat_dentry_namecmp(name, component) == 0) {
627
                /* hit */
628
                /* hit */
628
                fat_node_t *nodep;
629
                fat_node_t *nodep;
629
                /*
630
                /*
630
                 * Assume tree hierarchy for locking.  We
631
                 * Assume tree hierarchy for locking.  We
631
                 * already have the parent and now we are going
632
                 * already have the parent and now we are going
632
                 * to lock the child.  Never lock in the oposite
633
                 * to lock the child.  Never lock in the oposite
633
                 * order.
634
                 * order.
634
                 */
635
                 */
635
                fat_idx_t *idx = fat_idx_get_by_pos(
636
                fat_idx_t *idx = fat_idx_get_by_pos(
636
                    parentp->idx->dev_handle, parentp->firstc,
637
                    parentp->idx->dev_handle, parentp->firstc,
637
                    i * dps + j);
638
                    i * dps + j);
638
                futex_up(&parentp->idx->lock);
639
                fibril_mutex_unlock(&parentp->idx->lock);
639
                if (!idx) {
640
                if (!idx) {
640
                    /*
641
                    /*
641
                     * Can happen if memory is low or if we
642
                     * Can happen if memory is low or if we
642
                     * run out of 32-bit indices.
643
                     * run out of 32-bit indices.
643
                     */
644
                     */
644
                    block_put(b);
645
                    block_put(b);
645
                    return NULL;
646
                    return NULL;
646
                }
647
                }
647
                nodep = fat_node_get_core(idx);
648
                nodep = fat_node_get_core(idx);
648
                futex_up(&idx->lock);
649
                fibril_mutex_unlock(&idx->lock);
649
                block_put(b);
650
                block_put(b);
650
                return FS_NODE(nodep);
651
                return FS_NODE(nodep);
651
            }
652
            }
652
        }
653
        }
653
        block_put(b);
654
        block_put(b);
654
    }
655
    }
655
 
656
 
656
    futex_up(&parentp->idx->lock);
657
    fibril_mutex_unlock(&parentp->idx->lock);
657
    return NULL;
658
    return NULL;
658
}
659
}
659
 
660
 
660
fs_index_t fat_index_get(fs_node_t *fn)
661
fs_index_t fat_index_get(fs_node_t *fn)
661
{
662
{
662
    return FAT_NODE(fn)->idx->index;
663
    return FAT_NODE(fn)->idx->index;
663
}
664
}
664
 
665
 
665
size_t fat_size_get(fs_node_t *fn)
666
size_t fat_size_get(fs_node_t *fn)
666
{
667
{
667
    return FAT_NODE(fn)->size;
668
    return FAT_NODE(fn)->size;
668
}
669
}
669
 
670
 
670
unsigned fat_lnkcnt_get(fs_node_t *fn)
671
unsigned fat_lnkcnt_get(fs_node_t *fn)
671
{
672
{
672
    return FAT_NODE(fn)->lnkcnt;
673
    return FAT_NODE(fn)->lnkcnt;
673
}
674
}
674
 
675
 
675
bool fat_has_children(fs_node_t *fn)
676
bool fat_has_children(fs_node_t *fn)
676
{
677
{
677
    fat_bs_t *bs;
678
    fat_bs_t *bs;
678
    fat_node_t *nodep = FAT_NODE(fn);
679
    fat_node_t *nodep = FAT_NODE(fn);
679
    unsigned bps;
680
    unsigned bps;
680
    unsigned dps;
681
    unsigned dps;
681
    unsigned blocks;
682
    unsigned blocks;
682
    block_t *b;
683
    block_t *b;
683
    unsigned i, j;
684
    unsigned i, j;
684
 
685
 
685
    if (nodep->type != FAT_DIRECTORY)
686
    if (nodep->type != FAT_DIRECTORY)
686
        return false;
687
        return false;
687
   
688
   
688
    futex_down(&nodep->idx->lock);
689
    fibril_mutex_lock(&nodep->idx->lock);
689
    bs = block_bb_get(nodep->idx->dev_handle);
690
    bs = block_bb_get(nodep->idx->dev_handle);
690
    bps = uint16_t_le2host(bs->bps);
691
    bps = uint16_t_le2host(bs->bps);
691
    dps = bps / sizeof(fat_dentry_t);
692
    dps = bps / sizeof(fat_dentry_t);
692
 
693
 
693
    blocks = nodep->size / bps;
694
    blocks = nodep->size / bps;
694
 
695
 
695
    for (i = 0; i < blocks; i++) {
696
    for (i = 0; i < blocks; i++) {
696
        fat_dentry_t *d;
697
        fat_dentry_t *d;
697
   
698
   
698
        b = fat_block_get(bs, nodep, i, BLOCK_FLAGS_NONE);
699
        b = fat_block_get(bs, nodep, i, BLOCK_FLAGS_NONE);
699
        for (j = 0; j < dps; j++) {
700
        for (j = 0; j < dps; j++) {
700
            d = ((fat_dentry_t *)b->data) + j;
701
            d = ((fat_dentry_t *)b->data) + j;
701
            switch (fat_classify_dentry(d)) {
702
            switch (fat_classify_dentry(d)) {
702
            case FAT_DENTRY_SKIP:
703
            case FAT_DENTRY_SKIP:
703
            case FAT_DENTRY_FREE:
704
            case FAT_DENTRY_FREE:
704
                continue;
705
                continue;
705
            case FAT_DENTRY_LAST:
706
            case FAT_DENTRY_LAST:
706
                block_put(b);
707
                block_put(b);
707
                futex_up(&nodep->idx->lock);
708
                fibril_mutex_unlock(&nodep->idx->lock);
708
                return false;
709
                return false;
709
            default:
710
            default:
710
            case FAT_DENTRY_VALID:
711
            case FAT_DENTRY_VALID:
711
                block_put(b);
712
                block_put(b);
712
                futex_up(&nodep->idx->lock);
713
                fibril_mutex_unlock(&nodep->idx->lock);
713
                return true;
714
                return true;
714
            }
715
            }
715
            block_put(b);
716
            block_put(b);
716
            futex_up(&nodep->idx->lock);
717
            fibril_mutex_unlock(&nodep->idx->lock);
717
            return true;
718
            return true;
718
        }
719
        }
719
        block_put(b);
720
        block_put(b);
720
    }
721
    }
721
 
722
 
722
    futex_up(&nodep->idx->lock);
723
    fibril_mutex_unlock(&nodep->idx->lock);
723
    return false;
724
    return false;
724
}
725
}
725
 
726
 
726
fs_node_t *fat_root_get(dev_handle_t dev_handle)
727
fs_node_t *fat_root_get(dev_handle_t dev_handle)
727
{
728
{
728
    return fat_node_get(dev_handle, 0);
729
    return fat_node_get(dev_handle, 0);
729
}
730
}
730
 
731
 
731
char fat_plb_get_char(unsigned pos)
732
char fat_plb_get_char(unsigned pos)
732
{
733
{
733
    return fat_reg.plb_ro[pos % PLB_SIZE];
734
    return fat_reg.plb_ro[pos % PLB_SIZE];
734
}
735
}
735
 
736
 
736
bool fat_is_directory(fs_node_t *fn)
737
bool fat_is_directory(fs_node_t *fn)
737
{
738
{
738
    return FAT_NODE(fn)->type == FAT_DIRECTORY;
739
    return FAT_NODE(fn)->type == FAT_DIRECTORY;
739
}
740
}
740
 
741
 
741
bool fat_is_file(fs_node_t *fn)
742
bool fat_is_file(fs_node_t *fn)
742
{
743
{
743
    return FAT_NODE(fn)->type == FAT_FILE;
744
    return FAT_NODE(fn)->type == FAT_FILE;
744
}
745
}
745
 
746
 
746
/** libfs operations */
747
/** libfs operations */
747
libfs_ops_t fat_libfs_ops = {
748
libfs_ops_t fat_libfs_ops = {
748
    .match = fat_match,
749
    .match = fat_match,
749
    .node_get = fat_node_get,
750
    .node_get = fat_node_get,
750
    .node_put = fat_node_put,
751
    .node_put = fat_node_put,
751
    .create = fat_create_node,
752
    .create = fat_create_node,
752
    .destroy = fat_destroy_node,
753
    .destroy = fat_destroy_node,
753
    .link = fat_link,
754
    .link = fat_link,
754
    .unlink = fat_unlink,
755
    .unlink = fat_unlink,
755
    .index_get = fat_index_get,
756
    .index_get = fat_index_get,
756
    .size_get = fat_size_get,
757
    .size_get = fat_size_get,
757
    .lnkcnt_get = fat_lnkcnt_get,
758
    .lnkcnt_get = fat_lnkcnt_get,
758
    .has_children = fat_has_children,
759
    .has_children = fat_has_children,
759
    .root_get = fat_root_get,
760
    .root_get = fat_root_get,
760
    .plb_get_char = fat_plb_get_char,
761
    .plb_get_char = fat_plb_get_char,
761
    .is_directory = fat_is_directory,
762
    .is_directory = fat_is_directory,
762
    .is_file = fat_is_file
763
    .is_file = fat_is_file
763
};
764
};
764
 
765
 
765
/*
766
/*
766
 * VFS operations.
767
 * VFS operations.
767
 */
768
 */
768
 
769
 
769
void fat_mounted(ipc_callid_t rid, ipc_call_t *request)
770
void fat_mounted(ipc_callid_t rid, ipc_call_t *request)
770
{
771
{
771
    dev_handle_t dev_handle = (dev_handle_t) IPC_GET_ARG1(*request);
772
    dev_handle_t dev_handle = (dev_handle_t) IPC_GET_ARG1(*request);
-
 
773
    enum cache_mode cmode;
772
    fat_bs_t *bs;
774
    fat_bs_t *bs;
773
    uint16_t bps;
775
    uint16_t bps;
774
    uint16_t rde;
776
    uint16_t rde;
775
    int rc;
777
    int rc;
776
 
778
 
777
    /* accept the mount options */
779
    /* accept the mount options */
778
    ipc_callid_t callid;
780
    ipc_callid_t callid;
779
    size_t size;
781
    size_t size;
780
    if (!ipc_data_write_receive(&callid, &size)) {
782
    if (!ipc_data_write_receive(&callid, &size)) {
781
        ipc_answer_0(callid, EINVAL);
783
        ipc_answer_0(callid, EINVAL);
782
        ipc_answer_0(rid, EINVAL);
784
        ipc_answer_0(rid, EINVAL);
783
        return;
785
        return;
784
    }
786
    }
785
    char *opts = malloc(size + 1);
787
    char *opts = malloc(size + 1);
786
    if (!opts) {
788
    if (!opts) {
787
        ipc_answer_0(callid, ENOMEM);
789
        ipc_answer_0(callid, ENOMEM);
788
        ipc_answer_0(rid, ENOMEM);
790
        ipc_answer_0(rid, ENOMEM);
789
        return;
791
        return;
790
    }
792
    }
791
    ipcarg_t retval = ipc_data_write_finalize(callid, opts, size);
793
    ipcarg_t retval = ipc_data_write_finalize(callid, opts, size);
792
    if (retval != EOK) {
794
    if (retval != EOK) {
793
        ipc_answer_0(rid, retval);
795
        ipc_answer_0(rid, retval);
794
        free(opts);
796
        free(opts);
795
        return;
797
        return;
796
    }
798
    }
797
    opts[size] = '\0';
799
    opts[size] = '\0';
798
 
800
 
-
 
801
    /* Check for option enabling write through. */
-
 
802
    if (str_cmp(opts, "wtcache") == 0)
-
 
803
        cmode = CACHE_MODE_WT;
-
 
804
    else
-
 
805
        cmode = CACHE_MODE_WB;
-
 
806
 
799
    /* initialize libblock */
807
    /* initialize libblock */
800
    rc = block_init(dev_handle, BS_SIZE);
808
    rc = block_init(dev_handle, BS_SIZE);
801
    if (rc != EOK) {
809
    if (rc != EOK) {
802
        ipc_answer_0(rid, rc);
810
        ipc_answer_0(rid, rc);
803
        return;
811
        return;
804
    }
812
    }
805
 
813
 
806
    /* prepare the boot block */
814
    /* prepare the boot block */
807
    rc = block_bb_read(dev_handle, BS_BLOCK * BS_SIZE, BS_SIZE);
815
    rc = block_bb_read(dev_handle, BS_BLOCK * BS_SIZE, BS_SIZE);
808
    if (rc != EOK) {
816
    if (rc != EOK) {
809
        block_fini(dev_handle);
817
        block_fini(dev_handle);
810
        ipc_answer_0(rid, rc);
818
        ipc_answer_0(rid, rc);
811
        return;
819
        return;
812
    }
820
    }
813
 
821
 
814
    /* get the buffer with the boot sector */
822
    /* get the buffer with the boot sector */
815
    bs = block_bb_get(dev_handle);
823
    bs = block_bb_get(dev_handle);
816
   
824
   
817
    /* Read the number of root directory entries. */
825
    /* Read the number of root directory entries. */
818
    bps = uint16_t_le2host(bs->bps);
826
    bps = uint16_t_le2host(bs->bps);
819
    rde = uint16_t_le2host(bs->root_ent_max);
827
    rde = uint16_t_le2host(bs->root_ent_max);
820
 
828
 
821
    if (bps != BS_SIZE) {
829
    if (bps != BS_SIZE) {
822
        block_fini(dev_handle);
830
        block_fini(dev_handle);
823
        ipc_answer_0(rid, ENOTSUP);
831
        ipc_answer_0(rid, ENOTSUP);
824
        return;
832
        return;
825
    }
833
    }
826
 
834
 
827
    /* Initialize the block cache */
835
    /* Initialize the block cache */
828
    rc = block_cache_init(dev_handle, bps, 0 /* XXX */);
836
    rc = block_cache_init(dev_handle, bps, 0 /* XXX */, cmode);
829
    if (rc != EOK) {
837
    if (rc != EOK) {
830
        block_fini(dev_handle);
838
        block_fini(dev_handle);
831
        ipc_answer_0(rid, rc);
839
        ipc_answer_0(rid, rc);
832
        return;
840
        return;
833
    }
841
    }
834
 
842
 
835
    rc = fat_idx_init_by_dev_handle(dev_handle);
843
    rc = fat_idx_init_by_dev_handle(dev_handle);
836
    if (rc != EOK) {
844
    if (rc != EOK) {
837
        block_fini(dev_handle);
845
        block_fini(dev_handle);
838
        ipc_answer_0(rid, rc);
846
        ipc_answer_0(rid, rc);
839
        return;
847
        return;
840
    }
848
    }
841
 
849
 
842
    /* Initialize the root node. */
850
    /* Initialize the root node. */
843
    fs_node_t *rfn = (fs_node_t *)malloc(sizeof(fs_node_t));
851
    fs_node_t *rfn = (fs_node_t *)malloc(sizeof(fs_node_t));
844
    if (!rfn) {
852
    if (!rfn) {
845
        block_fini(dev_handle);
853
        block_fini(dev_handle);
846
        fat_idx_fini_by_dev_handle(dev_handle);
854
        fat_idx_fini_by_dev_handle(dev_handle);
847
        ipc_answer_0(rid, ENOMEM);
855
        ipc_answer_0(rid, ENOMEM);
848
        return;
856
        return;
849
    }
857
    }
-
 
858
    fs_node_initialize(rfn);
850
    fat_node_t *rootp = (fat_node_t *)malloc(sizeof(fat_node_t));
859
    fat_node_t *rootp = (fat_node_t *)malloc(sizeof(fat_node_t));
851
    if (!rootp) {
860
    if (!rootp) {
852
        free(rfn);
861
        free(rfn);
853
        block_fini(dev_handle);
862
        block_fini(dev_handle);
854
        fat_idx_fini_by_dev_handle(dev_handle);
863
        fat_idx_fini_by_dev_handle(dev_handle);
855
        ipc_answer_0(rid, ENOMEM);
864
        ipc_answer_0(rid, ENOMEM);
856
        return;
865
        return;
857
    }
866
    }
858
    fat_node_initialize(rootp);
867
    fat_node_initialize(rootp);
859
 
868
 
860
    fat_idx_t *ridxp = fat_idx_get_by_pos(dev_handle, FAT_CLST_ROOTPAR, 0);
869
    fat_idx_t *ridxp = fat_idx_get_by_pos(dev_handle, FAT_CLST_ROOTPAR, 0);
861
    if (!ridxp) {
870
    if (!ridxp) {
862
        free(rfn);
871
        free(rfn);
863
        free(rootp);
872
        free(rootp);
864
        block_fini(dev_handle);
873
        block_fini(dev_handle);
865
        fat_idx_fini_by_dev_handle(dev_handle);
874
        fat_idx_fini_by_dev_handle(dev_handle);
866
        ipc_answer_0(rid, ENOMEM);
875
        ipc_answer_0(rid, ENOMEM);
867
        return;
876
        return;
868
    }
877
    }
869
    assert(ridxp->index == 0);
878
    assert(ridxp->index == 0);
870
    /* ridxp->lock held */
879
    /* ridxp->lock held */
871
 
880
 
872
    rootp->type = FAT_DIRECTORY;
881
    rootp->type = FAT_DIRECTORY;
873
    rootp->firstc = FAT_CLST_ROOT;
882
    rootp->firstc = FAT_CLST_ROOT;
874
    rootp->refcnt = 1;
883
    rootp->refcnt = 1;
875
    rootp->lnkcnt = 0;  /* FS root is not linked */
884
    rootp->lnkcnt = 0;  /* FS root is not linked */
876
    rootp->size = rde * sizeof(fat_dentry_t);
885
    rootp->size = rde * sizeof(fat_dentry_t);
877
    rootp->idx = ridxp;
886
    rootp->idx = ridxp;
878
    ridxp->nodep = rootp;
887
    ridxp->nodep = rootp;
879
    rootp->bp = rfn;
888
    rootp->bp = rfn;
880
    rfn->data = rootp;
889
    rfn->data = rootp;
881
   
890
   
882
    futex_up(&ridxp->lock);
891
    fibril_mutex_unlock(&ridxp->lock);
883
 
892
 
884
    ipc_answer_3(rid, EOK, ridxp->index, rootp->size, rootp->lnkcnt);
893
    ipc_answer_3(rid, EOK, ridxp->index, rootp->size, rootp->lnkcnt);
885
}
894
}
886
 
895
 
887
void fat_mount(ipc_callid_t rid, ipc_call_t *request)
896
void fat_mount(ipc_callid_t rid, ipc_call_t *request)
888
{
897
{
889
    ipc_answer_0(rid, ENOTSUP);
898
    libfs_mount(&fat_libfs_ops, fat_reg.fs_handle, rid, request);
890
}
899
}
891
 
900
 
892
void fat_lookup(ipc_callid_t rid, ipc_call_t *request)
901
void fat_lookup(ipc_callid_t rid, ipc_call_t *request)
893
{
902
{
894
    libfs_lookup(&fat_libfs_ops, fat_reg.fs_handle, rid, request);
903
    libfs_lookup(&fat_libfs_ops, fat_reg.fs_handle, rid, request);
895
}
904
}
896
 
905
 
897
void fat_read(ipc_callid_t rid, ipc_call_t *request)
906
void fat_read(ipc_callid_t rid, ipc_call_t *request)
898
{
907
{
899
    dev_handle_t dev_handle = (dev_handle_t)IPC_GET_ARG1(*request);
908
    dev_handle_t dev_handle = (dev_handle_t)IPC_GET_ARG1(*request);
900
    fs_index_t index = (fs_index_t)IPC_GET_ARG2(*request);
909
    fs_index_t index = (fs_index_t)IPC_GET_ARG2(*request);
901
    off_t pos = (off_t)IPC_GET_ARG3(*request);
910
    off_t pos = (off_t)IPC_GET_ARG3(*request);
902
    fs_node_t *fn = fat_node_get(dev_handle, index);
911
    fs_node_t *fn = fat_node_get(dev_handle, index);
903
    fat_node_t *nodep;
912
    fat_node_t *nodep;
904
    fat_bs_t *bs;
913
    fat_bs_t *bs;
905
    uint16_t bps;
914
    uint16_t bps;
906
    size_t bytes;
915
    size_t bytes;
907
    block_t *b;
916
    block_t *b;
908
 
917
 
909
    if (!fn) {
918
    if (!fn) {
910
        ipc_answer_0(rid, ENOENT);
919
        ipc_answer_0(rid, ENOENT);
911
        return;
920
        return;
912
    }
921
    }
913
    nodep = FAT_NODE(fn);
922
    nodep = FAT_NODE(fn);
914
 
923
 
915
    ipc_callid_t callid;
924
    ipc_callid_t callid;
916
    size_t len;
925
    size_t len;
917
    if (!ipc_data_read_receive(&callid, &len)) {
926
    if (!ipc_data_read_receive(&callid, &len)) {
918
        fat_node_put(fn);
927
        fat_node_put(fn);
919
        ipc_answer_0(callid, EINVAL);
928
        ipc_answer_0(callid, EINVAL);
920
        ipc_answer_0(rid, EINVAL);
929
        ipc_answer_0(rid, EINVAL);
921
        return;
930
        return;
922
    }
931
    }
923
 
932
 
924
    bs = block_bb_get(dev_handle);
933
    bs = block_bb_get(dev_handle);
925
    bps = uint16_t_le2host(bs->bps);
934
    bps = uint16_t_le2host(bs->bps);
926
 
935
 
927
    if (nodep->type == FAT_FILE) {
936
    if (nodep->type == FAT_FILE) {
928
        /*
937
        /*
929
         * Our strategy for regular file reads is to read one block at
938
         * Our strategy for regular file reads is to read one block at
930
         * most and make use of the possibility to return less data than
939
         * most and make use of the possibility to return less data than
931
         * requested. This keeps the code very simple.
940
         * requested. This keeps the code very simple.
932
         */
941
         */
933
        if (pos >= nodep->size) {
942
        if (pos >= nodep->size) {
934
            /* reading beyond the EOF */
943
            /* reading beyond the EOF */
935
            bytes = 0;
944
            bytes = 0;
936
            (void) ipc_data_read_finalize(callid, NULL, 0);
945
            (void) ipc_data_read_finalize(callid, NULL, 0);
937
        } else {
946
        } else {
938
            bytes = min(len, bps - pos % bps);
947
            bytes = min(len, bps - pos % bps);
939
            bytes = min(bytes, nodep->size - pos);
948
            bytes = min(bytes, nodep->size - pos);
940
            b = fat_block_get(bs, nodep, pos / bps,
949
            b = fat_block_get(bs, nodep, pos / bps,
941
                BLOCK_FLAGS_NONE);
950
                BLOCK_FLAGS_NONE);
942
            (void) ipc_data_read_finalize(callid, b->data + pos % bps,
951
            (void) ipc_data_read_finalize(callid, b->data + pos % bps,
943
                bytes);
952
                bytes);
944
            block_put(b);
953
            block_put(b);
945
        }
954
        }
946
    } else {
955
    } else {
947
        unsigned bnum;
956
        unsigned bnum;
948
        off_t spos = pos;
957
        off_t spos = pos;
949
        char name[FAT_NAME_LEN + 1 + FAT_EXT_LEN + 1];
958
        char name[FAT_NAME_LEN + 1 + FAT_EXT_LEN + 1];
950
        fat_dentry_t *d;
959
        fat_dentry_t *d;
951
 
960
 
952
        assert(nodep->type == FAT_DIRECTORY);
961
        assert(nodep->type == FAT_DIRECTORY);
953
        assert(nodep->size % bps == 0);
962
        assert(nodep->size % bps == 0);
954
        assert(bps % sizeof(fat_dentry_t) == 0);
963
        assert(bps % sizeof(fat_dentry_t) == 0);
955
 
964
 
956
        /*
965
        /*
957
         * Our strategy for readdir() is to use the position pointer as
966
         * Our strategy for readdir() is to use the position pointer as
958
         * an index into the array of all dentries. On entry, it points
967
         * an index into the array of all dentries. On entry, it points
959
         * to the first unread dentry. If we skip any dentries, we bump
968
         * to the first unread dentry. If we skip any dentries, we bump
960
         * the position pointer accordingly.
969
         * the position pointer accordingly.
961
         */
970
         */
962
        bnum = (pos * sizeof(fat_dentry_t)) / bps;
971
        bnum = (pos * sizeof(fat_dentry_t)) / bps;
963
        while (bnum < nodep->size / bps) {
972
        while (bnum < nodep->size / bps) {
964
            off_t o;
973
            off_t o;
965
 
974
 
966
            b = fat_block_get(bs, nodep, bnum, BLOCK_FLAGS_NONE);
975
            b = fat_block_get(bs, nodep, bnum, BLOCK_FLAGS_NONE);
967
            for (o = pos % (bps / sizeof(fat_dentry_t));
976
            for (o = pos % (bps / sizeof(fat_dentry_t));
968
                o < bps / sizeof(fat_dentry_t);
977
                o < bps / sizeof(fat_dentry_t);
969
                o++, pos++) {
978
                o++, pos++) {
970
                d = ((fat_dentry_t *)b->data) + o;
979
                d = ((fat_dentry_t *)b->data) + o;
971
                switch (fat_classify_dentry(d)) {
980
                switch (fat_classify_dentry(d)) {
972
                case FAT_DENTRY_SKIP:
981
                case FAT_DENTRY_SKIP:
973
                case FAT_DENTRY_FREE:
982
                case FAT_DENTRY_FREE:
974
                    continue;
983
                    continue;
975
                case FAT_DENTRY_LAST:
984
                case FAT_DENTRY_LAST:
976
                    block_put(b);
985
                    block_put(b);
977
                    goto miss;
986
                    goto miss;
978
                default:
987
                default:
979
                case FAT_DENTRY_VALID:
988
                case FAT_DENTRY_VALID:
980
                    fat_dentry_name_get(d, name);
989
                    fat_dentry_name_get(d, name);
981
                    block_put(b);
990
                    block_put(b);
982
                    goto hit;
991
                    goto hit;
983
                }
992
                }
984
            }
993
            }
985
            block_put(b);
994
            block_put(b);
986
            bnum++;
995
            bnum++;
987
        }
996
        }
988
miss:
997
miss:
989
        fat_node_put(fn);
998
        fat_node_put(fn);
990
        ipc_answer_0(callid, ENOENT);
999
        ipc_answer_0(callid, ENOENT);
991
        ipc_answer_1(rid, ENOENT, 0);
1000
        ipc_answer_1(rid, ENOENT, 0);
992
        return;
1001
        return;
993
hit:
1002
hit:
994
        (void) ipc_data_read_finalize(callid, name, str_size(name) + 1);
1003
        (void) ipc_data_read_finalize(callid, name, str_size(name) + 1);
995
        bytes = (pos - spos) + 1;
1004
        bytes = (pos - spos) + 1;
996
    }
1005
    }
997
 
1006
 
998
    fat_node_put(fn);
1007
    fat_node_put(fn);
999
    ipc_answer_1(rid, EOK, (ipcarg_t)bytes);
1008
    ipc_answer_1(rid, EOK, (ipcarg_t)bytes);
1000
}
1009
}
1001
 
1010
 
1002
void fat_write(ipc_callid_t rid, ipc_call_t *request)
1011
void fat_write(ipc_callid_t rid, ipc_call_t *request)
1003
{
1012
{
1004
    dev_handle_t dev_handle = (dev_handle_t)IPC_GET_ARG1(*request);
1013
    dev_handle_t dev_handle = (dev_handle_t)IPC_GET_ARG1(*request);
1005
    fs_index_t index = (fs_index_t)IPC_GET_ARG2(*request);
1014
    fs_index_t index = (fs_index_t)IPC_GET_ARG2(*request);
1006
    off_t pos = (off_t)IPC_GET_ARG3(*request);
1015
    off_t pos = (off_t)IPC_GET_ARG3(*request);
1007
    fs_node_t *fn = fat_node_get(dev_handle, index);
1016
    fs_node_t *fn = fat_node_get(dev_handle, index);
1008
    fat_node_t *nodep;
1017
    fat_node_t *nodep;
1009
    fat_bs_t *bs;
1018
    fat_bs_t *bs;
1010
    size_t bytes;
1019
    size_t bytes;
1011
    block_t *b;
1020
    block_t *b;
1012
    uint16_t bps;
1021
    uint16_t bps;
1013
    unsigned spc;
1022
    unsigned spc;
1014
    unsigned bpc;       /* bytes per cluster */
1023
    unsigned bpc;       /* bytes per cluster */
1015
    off_t boundary;
1024
    off_t boundary;
1016
    int flags = BLOCK_FLAGS_NONE;
1025
    int flags = BLOCK_FLAGS_NONE;
1017
   
1026
   
1018
    if (!fn) {
1027
    if (!fn) {
1019
        ipc_answer_0(rid, ENOENT);
1028
        ipc_answer_0(rid, ENOENT);
1020
        return;
1029
        return;
1021
    }
1030
    }
1022
    nodep = FAT_NODE(fn);
1031
    nodep = FAT_NODE(fn);
1023
   
1032
   
1024
    ipc_callid_t callid;
1033
    ipc_callid_t callid;
1025
    size_t len;
1034
    size_t len;
1026
    if (!ipc_data_write_receive(&callid, &len)) {
1035
    if (!ipc_data_write_receive(&callid, &len)) {
1027
        fat_node_put(fn);
1036
        fat_node_put(fn);
1028
        ipc_answer_0(callid, EINVAL);
1037
        ipc_answer_0(callid, EINVAL);
1029
        ipc_answer_0(rid, EINVAL);
1038
        ipc_answer_0(rid, EINVAL);
1030
        return;
1039
        return;
1031
    }
1040
    }
1032
 
1041
 
1033
    bs = block_bb_get(dev_handle);
1042
    bs = block_bb_get(dev_handle);
1034
    bps = uint16_t_le2host(bs->bps);
1043
    bps = uint16_t_le2host(bs->bps);
1035
    spc = bs->spc;
1044
    spc = bs->spc;
1036
    bpc = bps * spc;
1045
    bpc = bps * spc;
1037
 
1046
 
1038
    /*
1047
    /*
1039
     * In all scenarios, we will attempt to write out only one block worth
1048
     * In all scenarios, we will attempt to write out only one block worth
1040
     * of data at maximum. There might be some more efficient approaches,
1049
     * of data at maximum. There might be some more efficient approaches,
1041
     * but this one greatly simplifies fat_write(). Note that we can afford
1050
     * but this one greatly simplifies fat_write(). Note that we can afford
1042
     * to do this because the client must be ready to handle the return
1051
     * to do this because the client must be ready to handle the return
1043
     * value signalizing a smaller number of bytes written.
1052
     * value signalizing a smaller number of bytes written.
1044
     */
1053
     */
1045
    bytes = min(len, bps - pos % bps);
1054
    bytes = min(len, bps - pos % bps);
1046
    if (bytes == bps)
1055
    if (bytes == bps)
1047
        flags |= BLOCK_FLAGS_NOREAD;
1056
        flags |= BLOCK_FLAGS_NOREAD;
1048
   
1057
   
1049
    boundary = ROUND_UP(nodep->size, bpc);
1058
    boundary = ROUND_UP(nodep->size, bpc);
1050
    if (pos < boundary) {
1059
    if (pos < boundary) {
1051
        /*
1060
        /*
1052
         * This is the easier case - we are either overwriting already
1061
         * This is the easier case - we are either overwriting already
1053
         * existing contents or writing behind the EOF, but still within
1062
         * existing contents or writing behind the EOF, but still within
1054
         * the limits of the last cluster. The node size may grow to the
1063
         * the limits of the last cluster. The node size may grow to the
1055
         * next block size boundary.
1064
         * next block size boundary.
1056
         */
1065
         */
1057
        fat_fill_gap(bs, nodep, FAT_CLST_RES0, pos);
1066
        fat_fill_gap(bs, nodep, FAT_CLST_RES0, pos);
1058
        b = fat_block_get(bs, nodep, pos / bps, flags);
1067
        b = fat_block_get(bs, nodep, pos / bps, flags);
1059
        (void) ipc_data_write_finalize(callid, b->data + pos % bps,
1068
        (void) ipc_data_write_finalize(callid, b->data + pos % bps,
1060
            bytes);
1069
            bytes);
1061
        b->dirty = true;        /* need to sync block */
1070
        b->dirty = true;        /* need to sync block */
1062
        block_put(b);
1071
        block_put(b);
1063
        if (pos + bytes > nodep->size) {
1072
        if (pos + bytes > nodep->size) {
1064
            nodep->size = pos + bytes;
1073
            nodep->size = pos + bytes;
1065
            nodep->dirty = true;    /* need to sync node */
1074
            nodep->dirty = true;    /* need to sync node */
1066
        }
1075
        }
1067
        ipc_answer_2(rid, EOK, bytes, nodep->size);
1076
        ipc_answer_2(rid, EOK, bytes, nodep->size);
1068
        fat_node_put(fn);
1077
        fat_node_put(fn);
1069
        return;
1078
        return;
1070
    } else {
1079
    } else {
1071
        /*
1080
        /*
1072
         * This is the more difficult case. We must allocate new
1081
         * This is the more difficult case. We must allocate new
1073
         * clusters for the node and zero them out.
1082
         * clusters for the node and zero them out.
1074
         */
1083
         */
1075
        int status;
1084
        int status;
1076
        unsigned nclsts;
1085
        unsigned nclsts;
1077
        fat_cluster_t mcl, lcl;
1086
        fat_cluster_t mcl, lcl;
1078
 
1087
 
1079
        nclsts = (ROUND_UP(pos + bytes, bpc) - boundary) / bpc;
1088
        nclsts = (ROUND_UP(pos + bytes, bpc) - boundary) / bpc;
1080
        /* create an independent chain of nclsts clusters in all FATs */
1089
        /* create an independent chain of nclsts clusters in all FATs */
1081
        status = fat_alloc_clusters(bs, dev_handle, nclsts, &mcl, &lcl);
1090
        status = fat_alloc_clusters(bs, dev_handle, nclsts, &mcl, &lcl);
1082
        if (status != EOK) {
1091
        if (status != EOK) {
1083
            /* could not allocate a chain of nclsts clusters */
1092
            /* could not allocate a chain of nclsts clusters */
1084
            fat_node_put(fn);
1093
            fat_node_put(fn);
1085
            ipc_answer_0(callid, status);
1094
            ipc_answer_0(callid, status);
1086
            ipc_answer_0(rid, status);
1095
            ipc_answer_0(rid, status);
1087
            return;
1096
            return;
1088
        }
1097
        }
1089
        /* zero fill any gaps */
1098
        /* zero fill any gaps */
1090
        fat_fill_gap(bs, nodep, mcl, pos);
1099
        fat_fill_gap(bs, nodep, mcl, pos);
1091
        b = _fat_block_get(bs, dev_handle, lcl, (pos / bps) % spc,
1100
        b = _fat_block_get(bs, dev_handle, lcl, (pos / bps) % spc,
1092
            flags);
1101
            flags);
1093
        (void) ipc_data_write_finalize(callid, b->data + pos % bps,
1102
        (void) ipc_data_write_finalize(callid, b->data + pos % bps,
1094
            bytes);
1103
            bytes);
1095
        b->dirty = true;        /* need to sync block */
1104
        b->dirty = true;        /* need to sync block */
1096
        block_put(b);
1105
        block_put(b);
1097
        /*
1106
        /*
1098
         * Append the cluster chain starting in mcl to the end of the
1107
         * Append the cluster chain starting in mcl to the end of the
1099
         * node's cluster chain.
1108
         * node's cluster chain.
1100
         */
1109
         */
1101
        fat_append_clusters(bs, nodep, mcl);
1110
        fat_append_clusters(bs, nodep, mcl);
1102
        nodep->size = pos + bytes;
1111
        nodep->size = pos + bytes;
1103
        nodep->dirty = true;        /* need to sync node */
1112
        nodep->dirty = true;        /* need to sync node */
1104
        ipc_answer_2(rid, EOK, bytes, nodep->size);
1113
        ipc_answer_2(rid, EOK, bytes, nodep->size);
1105
        fat_node_put(fn);
1114
        fat_node_put(fn);
1106
        return;
1115
        return;
1107
    }
1116
    }
1108
}
1117
}
1109
 
1118
 
1110
void fat_truncate(ipc_callid_t rid, ipc_call_t *request)
1119
void fat_truncate(ipc_callid_t rid, ipc_call_t *request)
1111
{
1120
{
1112
    dev_handle_t dev_handle = (dev_handle_t)IPC_GET_ARG1(*request);
1121
    dev_handle_t dev_handle = (dev_handle_t)IPC_GET_ARG1(*request);
1113
    fs_index_t index = (fs_index_t)IPC_GET_ARG2(*request);
1122
    fs_index_t index = (fs_index_t)IPC_GET_ARG2(*request);
1114
    size_t size = (off_t)IPC_GET_ARG3(*request);
1123
    size_t size = (off_t)IPC_GET_ARG3(*request);
1115
    fs_node_t *fn = fat_node_get(dev_handle, index);
1124
    fs_node_t *fn = fat_node_get(dev_handle, index);
1116
    fat_node_t *nodep;
1125
    fat_node_t *nodep;
1117
    fat_bs_t *bs;
1126
    fat_bs_t *bs;
1118
    uint16_t bps;
1127
    uint16_t bps;
1119
    uint8_t spc;
1128
    uint8_t spc;
1120
    unsigned bpc;   /* bytes per cluster */
1129
    unsigned bpc;   /* bytes per cluster */
1121
    int rc;
1130
    int rc;
1122
 
1131
 
1123
    if (!fn) {
1132
    if (!fn) {
1124
        ipc_answer_0(rid, ENOENT);
1133
        ipc_answer_0(rid, ENOENT);
1125
        return;
1134
        return;
1126
    }
1135
    }
1127
    nodep = FAT_NODE(fn);
1136
    nodep = FAT_NODE(fn);
1128
 
1137
 
1129
    bs = block_bb_get(dev_handle);
1138
    bs = block_bb_get(dev_handle);
1130
    bps = uint16_t_le2host(bs->bps);
1139
    bps = uint16_t_le2host(bs->bps);
1131
    spc = bs->spc;
1140
    spc = bs->spc;
1132
    bpc = bps * spc;
1141
    bpc = bps * spc;
1133
 
1142
 
1134
    if (nodep->size == size) {
1143
    if (nodep->size == size) {
1135
        rc = EOK;
1144
        rc = EOK;
1136
    } else if (nodep->size < size) {
1145
    } else if (nodep->size < size) {
1137
        /*
1146
        /*
1138
         * The standard says we have the freedom to grow the node.
1147
         * The standard says we have the freedom to grow the node.
1139
         * For now, we simply return an error.
1148
         * For now, we simply return an error.
1140
         */
1149
         */
1141
        rc = EINVAL;
1150
        rc = EINVAL;
1142
    } else if (ROUND_UP(nodep->size, bpc) == ROUND_UP(size, bpc)) {
1151
    } else if (ROUND_UP(nodep->size, bpc) == ROUND_UP(size, bpc)) {
1143
        /*
1152
        /*
1144
         * The node will be shrunk, but no clusters will be deallocated.
1153
         * The node will be shrunk, but no clusters will be deallocated.
1145
         */
1154
         */
1146
        nodep->size = size;
1155
        nodep->size = size;
1147
        nodep->dirty = true;        /* need to sync node */
1156
        nodep->dirty = true;        /* need to sync node */
1148
        rc = EOK;  
1157
        rc = EOK;  
1149
    } else {
1158
    } else {
1150
        /*
1159
        /*
1151
         * The node will be shrunk, clusters will be deallocated.
1160
         * The node will be shrunk, clusters will be deallocated.
1152
         */
1161
         */
1153
        if (size == 0) {
1162
        if (size == 0) {
1154
            fat_chop_clusters(bs, nodep, FAT_CLST_RES0);
1163
            fat_chop_clusters(bs, nodep, FAT_CLST_RES0);
1155
        } else {
1164
        } else {
1156
            fat_cluster_t lastc;
1165
            fat_cluster_t lastc;
1157
            (void) fat_cluster_walk(bs, dev_handle, nodep->firstc,
1166
            (void) fat_cluster_walk(bs, dev_handle, nodep->firstc,
1158
                &lastc, (size - 1) / bpc);
1167
                &lastc, (size - 1) / bpc);
1159
            fat_chop_clusters(bs, nodep, lastc);
1168
            fat_chop_clusters(bs, nodep, lastc);
1160
        }
1169
        }
1161
        nodep->size = size;
1170
        nodep->size = size;
1162
        nodep->dirty = true;        /* need to sync node */
1171
        nodep->dirty = true;        /* need to sync node */
1163
        rc = EOK;  
1172
        rc = EOK;  
1164
    }
1173
    }
1165
    fat_node_put(fn);
1174
    fat_node_put(fn);
1166
    ipc_answer_0(rid, rc);
1175
    ipc_answer_0(rid, rc);
1167
    return;
1176
    return;
1168
}
1177
}
1169
 
1178
 
-
 
1179
void fat_close(ipc_callid_t rid, ipc_call_t *request)
-
 
1180
{
-
 
1181
    ipc_answer_0(rid, EOK);
-
 
1182
}
-
 
1183
 
1170
void fat_destroy(ipc_callid_t rid, ipc_call_t *request)
1184
void fat_destroy(ipc_callid_t rid, ipc_call_t *request)
1171
{
1185
{
1172
    dev_handle_t dev_handle = (dev_handle_t)IPC_GET_ARG1(*request);
1186
    dev_handle_t dev_handle = (dev_handle_t)IPC_GET_ARG1(*request);
1173
    fs_index_t index = (fs_index_t)IPC_GET_ARG2(*request);
1187
    fs_index_t index = (fs_index_t)IPC_GET_ARG2(*request);
1174
    int rc;
1188
    int rc;
1175
 
1189
 
1176
    fs_node_t *fn = fat_node_get(dev_handle, index);
1190
    fs_node_t *fn = fat_node_get(dev_handle, index);
1177
    if (!fn) {
1191
    if (!fn) {
1178
        ipc_answer_0(rid, ENOENT);
1192
        ipc_answer_0(rid, ENOENT);
1179
        return;
1193
        return;
1180
    }
1194
    }
1181
 
1195
 
1182
    rc = fat_destroy_node(fn);
1196
    rc = fat_destroy_node(fn);
1183
    ipc_answer_0(rid, rc);
1197
    ipc_answer_0(rid, rc);
1184
}
1198
}
1185
 
1199
 
-
 
1200
void fat_open_node(ipc_callid_t rid, ipc_call_t *request)
-
 
1201
{
-
 
1202
    libfs_open_node(&fat_libfs_ops, fat_reg.fs_handle, rid, request);
-
 
1203
}
-
 
1204
 
-
 
1205
void fat_stat(ipc_callid_t rid, ipc_call_t *request)
-
 
1206
{
-
 
1207
    libfs_stat(&fat_libfs_ops, fat_reg.fs_handle, rid, request);
-
 
1208
}
-
 
1209
 
-
 
1210
void fat_sync(ipc_callid_t rid, ipc_call_t *request)
-
 
1211
{
-
 
1212
    /* Dummy implementation */
-
 
1213
    ipc_answer_0(rid, EOK);
-
 
1214
}
-
 
1215
 
1186
/**
1216
/**
1187
 * @}
1217
 * @}
1188
 */
1218
 */
1189
 
1219